با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی انگلیسی

نویسندگان

1 گروه مهندسی بیوسیستم، دانشگاه آزاد اسلامی، تاکستان، ایران

2 گروه مهندسی مکانیک، دانشگاه آزاد اسلامی، شهر قدس، ایران

3 گروه علوم و مهندسی صنایع غذایی، دانشگاه آزاد اسلامی، تهران، ایران

10.22067/jam.2025.91535.1331

چکیده

سامانه‌های کاشت لوبیا برای کشاورزی جهانی ضروری است و به‌عنوان یک منبع غذایی حیاتی برای بسیاری از جمعیت‌ها عمل می‌کند. بهینه‌سازی این روش‌های کاشت برای افزایش کارایی و کاهش اثرات زیست‌محیطی بسیار مهم است. این مطالعه ورودی‌ها و خروجی‌های انرژی مرتبط با دو تکنیک کشت لوبیا چیتی را ارزیابی می‌کند: سیستم‌های تخت و نواری. این تحقیق که در استان فارس، جنوب ایران انجام شد، شامل 90 مزرعه، 60 مزرعه با استفاده از سیستم‌های تخت و 30 با استفاده از سیستم نواری بود. این ارزیابی مصرف انرژی بر حسب مگاژول در هکتار برای نهاده‌های مختلف از جمله نیروی کار، ماشین‌ها، گازوئیل، کودهای شیمیایی، سموم شیمیایی، برق و بذر را پوشش می‌دهد. سامانه تخت مصرف 20,067.12 مگاژول در هکتار را نشان می‌دهد، در حالی‌که سیستم نواری از 18,171.76 مگاژول در هکتار استفاده می‌کند. از نظر عملکرد، سامانه تخت 3000 کیلوگرم در هکتار در مقایسه با 3500 کیلوگرم در هکتار برای سامانه نواری تولید می‌کند. این مطالعه بیشتر معیارهای بهره‌وری انرژی را بررسی می‌کند و عملکرد برتر سامانه نوار را با نسبت کارایی مصرف انرژی بالاتر (3.85 در مقابل 2.99) و بهره‌وری انرژی بیشتر 0.19 کیلوگرم بر مگاژول در مقایسه با 0.15 کیلوگرم بر مگاژول برجسته می‌کند. معیارهای انرژی خاص نشان می‌دهد که سامانه نواری انرژی کمتری به‌ازای هر کیلوگرم لوبیا تولیدشده مصرف می‌کند 5.19 در مقابل 6.69 مگاژول بر کیلوگرم علاوه بر این، سود خالص انرژی برای سامانه نواری با 51,828.24 مگاژول در هکتار بالاتر است، در مقابل 39,932.88 مگاژول در هکتار برای سامانه تخت یافته‌ها بر نیازهای بهینه انرژی برای هر دو سامانه تأکید می‌کنند، به‌طور کلی، نتایج، نیازمندی‌های انرژی مطلوب و کارایی روش کاشت نواری را نسبت به سیستم مسطح سنتی نشان می‌دهد و بر پتانسیل آن برای تخصیص بهینه منابع در کشت لوبیا چیتی تاکید می‌کند. نتایج الگوریتم ژنتیک چندهدفه نشان داد که سامانه‌های نواری در مقایسه با سامانه‌های مسطح که 3707.62 مگا ژول در هکتار (22.66 درصد) صرفه‌جویی می‌کنند، به میزان قابل‌توجهی 3749.11 مگاژول در هکتار (25.99 درصد) صرفه‌جویی انرژی می‌کنند. این بیشتر مزایای کارایی کاشت نواری را برجسته می‌کند.

کلیدواژه‌ها

موضوعات

©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)

  1. Abad-González, J., Nadi, F., & Pérez-Neira, D. (2024). Energy-water-food security nexus in mung bean production in Iran: An LCA approach. Ecological Indicators, 158, 111442. https://doi.org/10.1016/J.ECOLIND.2023.111442
  2. Abidi, M. H., Al-Ahmari, A. M., Umer, U., & Rasheed, M. S. (2018). Multi-objective optimization of micro-electrical discharge machining of nickel-titanium-based shape memory alloy using MOGA-II. Measurement, 125, 336-349. https://doi.org/10.1016/J.MEASUREMENT.2018.04.096
  3. Aghili Nategh, N., Banaeian, N., Gholamshahi, A., & Nosrati, M. (2021). Optimization of energy, economic, and environmental indices in sunflower cultivation: A comparative analysis. Environmental Progress & Sustainable Energy, 40(2), e13505. https://doi.org/10.1002/EP.13505
  4. Altieri, M. A., Funes-Monzote, F. R., & Petersen, P. (2012). Agroecologically efficient agricultural systems for smallholder farmers: Contributions to food sovereignty. Agronomy for Sustainable Development, 32(1), 1-13. https://doi.org/10.1007/S13593-011-0065-6/FIGURES/4
  5. Amoozad-Khalili, M., Feizabadi, Y., & Norouzi, G. (2021). Application of artificial neural network for prediction of energy flow in wheat production based on mechanization development approach. Energy Equipment and Systems, 9(2), 191-207. https://doi.org/10.22059/EES.2021.244667
  6. Arthur, D. E., Uzairu, A., Mamza, P., Stephen, A. E., & Shallangwa, G. (2016). Quantum modelling of the Structure-Activity and toxicity relationship studies of some potent compounds on SR leukemia cell line. Chemical Data Collections, 5-6, 46-61. https://doi.org/10.1016/J.CDC.2016.10.004
  7. Behnia, M., Ghahderijani, M., Kaab, A., & Behnia, M. (2025). Evaluation of sustainable energy use in sugarcane production: A holistic model from planting to harvest and life cycle assessment. Environmental and Sustainability Indicators, 26, 100617. https://doi.org/10.1016/J.INDIC.2025.100617
  8. Boix-Cots, D., Pardo-Bosch, F., Blanco, A., Aguado, A., & Pujadas, P. (2022). A systematic review on MIVES: A sustainability-oriented multi-criteria decision-making method. Building and Environment, 223, 109515. https://doi.org/10.1016/J.BUILDENV.2022.109515
  9. Bordonal, R. de O., Carvalho, J. L. N., Lal, R., de Figueiredo, E. B., de Oliveira, B. G., & La Scala, N. (2018). Sustainability of sugarcane production in Brazil. A review. Agronomy for Sustainable Development, 38(2), 1-23. https://doi.org/10.1007/S13593-018-0490-X
  10. Boydston, R. A., Porter, L. D., Chaves-Cordoba, B., Khot, L. R., & Miklas, P. N. (2018). The impact of tillage on pinto bean cultivar response to drought induced by deficit irrigation. Soil and Tillage Research, 180, 63-72. https://doi.org/10.1016/J.STILL.2018.02.011
  11. Cochran, W. G. (1977). The estimation of sample size. Sampling Techniques, 3, 72-90.
  12. Deb, K., Zope, P., & Jain, A. (2003). Distributed computing of pareto-optimal solutions with evolutionary algorithms. International Conference on Evolutionary Multi-Criterion Optimization, 534-549.
  13. Elhami, B., Akram, A., & Khanali, M. (2016). Optimization of energy consumption and environmental impacts of chickpea production using data envelopment analysis (DEA) and multi objective genetic algorithm (MOGA) approaches. Information Processing in Agriculture, 3(3), 190-205.
  14. Elsoragaby, S., Yahya, A., Mahadi, M. R., Nawi, N. M., Mairghany, M., M Elhassan, S. M., & Kheiralla, A. F. (2020). Applying multi-objective genetic algorithm (MOGA) to optimize the energy inputs and greenhouse gas emissions (GHG) in wetland rice production. Energy Reports, 6, 2988-2998. https://doi.org/10.1016/J.EGYR.2020.10.010
  15. Fathollahi-Fard, A. M., Tian, G., Ke, H., Fu, Y., & Wong, K. Y. (2023). Efficient multi-objective metaheuristic algorithm for sustainable harvest planning problem. Computers & Operations Research, 158, 106304. https://doi.org/10.1016/J.COR.2023.106304
  16. Fonseca Hernández, D., Mojica, L., Berhow, M. A., Brownstein, K., Lugo Cervantes, E., & Gonzalez de Mejia, E. (2023). Black and pinto beans (Phaseolus vulgaris) unique mexican varieties exhibit antioxidant and anti-inflammatory potential. Food Research International, 169, 112816. https://doi.org/10.1016/J.FOODRES.2023.112816
  17. Ghasemi-Mobtaker, H., Kaab, A., & Rafiee, S. (2020). Application of life cycle analysis to assess environmental sustainability of wheat cultivation in the west of Iran. Energy, 193. https://doi.org/10.1016/j.energy.2019.116768
  18. Ghasemi-Mobtaker, Hassan, Akram, A., & Keyhani, A. (2012). Energy use and sensitivity analysis of energy inputs for alfalfa production in Iran. Energy for Sustainable Development, 16(1), 84-89.
  19. Ghasemi-Mobtaker, Hassan, Ataiee, F. S., Akram, A., & Kaab, A. (2024). Feasibility study of using photovoltaic cells for a commercial hydroponic greenhouse: Energy analysis and life cycle assessment. E-Prime - Advances in Electrical Engineering, Electronics and Energy, 8, 100597. https://doi.org/10.1016/J.PRIME.2024.100597
  20. Ghasemi-Mobtaker, Hassan, Kaab, A., Rafiee, S., & Nabavi-Pelesaraei, A. (2022). A comparative of modeling techniques and life cycle assessment for prediction of output energy, economic profit, and global warming potential for wheat farms. Energy Reports, 8, 4922-4934. https://doi.org/10.1016/J.EGYR.2022.03.184
  21. Habibi-Yangjeh, A., Pourbasheer, E., & Danandeh-Jenagharad, M. (2009). Application of principal component-genetic algorithm-artificial neural network for prediction acidity constant of various nitrogen-containing compounds in water. Monatshefte Für Chemie- Chemical Monthly, 140(1), 15-27. https://doi.org/10.1007/s00706-008-0049-7
  22. Heusala, H., Sinkko, T., Sözer, N., Hytönen, E., Mogensen, L., & Knudsen, M. T. (2020). Carbon footprint and land use of oat and faba bean protein concentrates using a life cycle assessment approach. Journal of Cleaner Production, 242, 118376. https://doi.org/10.1016/J.JCLEPRO.2019.118376
  23. Hosseinzadeh-Bandbafha, H., Safarzadeh, D., Ahmadi, E., Nabavi-Pelesaraei, A., & Hosseinzadeh-Bandbafha, E. (2017). Applying data envelopment analysis to evaluation of energy efficiency and decreasing of greenhouse gas emissions of fattening farms. Energy, 120, 652-662. https://doi.org/10.1016/j.energy.2016.11.117
  24. Hu, N., Zhou, P., & Yang, J. (2017). Comparison and combination of NLPQL and MOGA algorithms for a marine medium-speed diesel engine optimisation. Energy Conversion and Management, 133, 138-152. https://doi.org/10.1016/J.ENCONMAN.2016.11.066
  25. Jamali, M., Soufizadeh, S., Yeganeh, B., & Emam, Y. (2021). A comparative study of irrigation techniques for energy flow and greenhouse gas (GHG) emissions in wheat agroecosystems under contrasting environments in south of Iran. Renewable and Sustainable Energy Reviews, 139, 110704. https://doi.org/10.1016/J.RSER.2021.110704
  26. Kaab, A., Ghasemi-Mobtaker, H., & Sharifi, M. (2023). A study of changes in energy consumption trend and environmental indicators in the production of agricultural crops using a life cycle assessment approach in the years 2018-2022. Iranian Journal of Biosystem Engineering, 54(3), 1-18. https://doi.org/10.22059/ijbse.2023.364738.665522
  27. Kaab, A., Khanali, M., Shadamanfar, S., & Jalalvand, M. (2024). Assessment of energy audit and environmental impacts throughout the life cycle of barley production under different irrigation systems. Environmental and Sustainability Indicators, 22, 100357. https://doi.org/10.1016/J.INDIC.2024.100357
  28. Kaab, A., Sharifi, M., Mobli, H., Nabavi-Pelesaraei, A., & Chau, K. (2019). Use of optimization techniques for energy use efficiency and environmental life cycle assessment modification in sugarcane production. Energy, 181, 1298-1320. https://doi.org/10.1016/J.ENERGY.2019.06.002
  29. Khosruzzaman, S., Asgar, M. A., Karim N., & Akbar S. (2010). Energy intensity and productivity in relation to agriculture-Bangladesh perspective. Journal of Agricultural Technology, 6(4), 615-630. http://www.ijat-rmutto.com
  30. Konak, A., Coit, D. W., & Smith, A. E. (2006). Multi-objective optimization using genetic algorithms: A tutorial. Reliability Engineering & System Safety, 91(9), 992-1007.
  31. Mandal, S., Roy, S., Das, A., Ramkrushna, G. I., Lal, R., Verma, B. C., Kumar, A., Singh, R. K., & Layek, J. (2015). Energy efficiency and economics of rice cultivation systems under subtropical Eastern Himalaya. Energy for Sustainable Development, 28, 115-121. https://doi.org/10.1016/j.esd.2015.08.002
  32. Mawof, A., Prasher, S. O., Bayen, S., Anderson, E. C., Nzediegwu, C., & Patel, R. (2022). Barley Straw Biochar and Compost Affect Heavy Metal Transport in Soil and Uptake by Potatoes Grown under Wastewater Irrigation. Sustainability, 14(9), 5665. https://doi.org/10.3390/SU14095665
  33. Ministry of Jihad-e-Agriculture of Iran. (2024). Annual Agricultural Statistics. www.maj.ir (in Persian).
  34. Mohammadi, A., & Omid, M. (2010). Economical analysis and relation between energy inputs and yield of greenhouse cucumber production in Iran. Applied Energy, 87(1), 191-196. https://doi.org/10.1016/J.APENERGY.2009.07.021
  35. Mousavi-Avval, S. H., Rafiee, S., Sharifi, M., Hosseinpour, S., Notarnicola, B., Tassielli, G., & Renzulli, P. A. (2017). Application of multi-objective genetic algorithms for optimization of energy, economics and environmental life cycle assessment in oilseed production. Journal of Cleaner Production, 140, 804-815.
  36. Nategh, N. A., Banaeian, N., Gholamshahi, A., & Nosrati, M. (2021). Optimization of energy, economic, and environmental indices in sunflower cultivation: A comparative analysis. Environmental Progress & Sustainable Energy, 40(2), e13505. https://doi.org/10.1002/EP.13505
  37. Noorani, M. H., Asakereh, A., & Siahpoosh, M. R. (2023). Investigating cumulative energy and exergy consumption and environmental impact of sesame production systems, a case study. International Journal of Exergy, 42(1), 96-114. https://doi.org/10.1504/IJEX.2023.134289
  38. Patle, D. S., Sharma, S., Ahmad, Z., & Rangaiah, G. P. (2014). Multi-objective optimization of two alkali catalyzed processes for biodiesel from waste cooking oil. Energy Conversion and Management, 85, 361-372. https://doi.org/10.1016/J.ENCONMAN.2014.05.034
  39. Pourreza Movahed, Z., Kabiri, M., Ranjbar, S., & Joda, F. (2020). Multi-objective optimization of life cycle assessment of integrated waste management based on genetic algorithms: A case study of Tehran. Journal of Cleaner Production, 247, 119153. https://doi.org/10.1016/J.JCLEPRO.2019.119153
  40. Rahman, M. M., & Szabó, G. (2021). Multi-objective urban land use optimization using spatial data: A systematic review. Sustainable Cities and Society, 74, 103214. https://doi.org/10.1016/J.SCS.2021.103214
  41. Ramedani, Z., Alimohammadian, L., Kheialipour, K., Delpisheh, P., & Abbasi, Z. (2019). Comparing energy state and environmental impacts in ostrich and chicken production systems. Environmental Science and Pollution Research, 26(27), 28284-28293. https://doi.org/10.1007/S11356-019-05972-8/TABLES/11
  42. Shamshirband, S., Khoshnevisan, B., Yousefi, M., Bolandnazar, E., Anuar, N. B., Wahab, A. W. A., & Khan, S. U. R. (2015). A multi-objective evolutionary algorithm for energy management of agricultural systems-a case study in Iran. Renewable and Sustainable Energy Reviews, 44, 457-465.
  43. Taghdisian, H., Pishvaie, M. R., & Farhadi, F. (2015). Multi-objective optimization approach for green design of methanol plant based on CO2-efficeincy indicator. Journal of Cleaner Production, 103, 640-650. https://doi.org/10.1016/J.JCLEPRO.2014.05.032
  44. Zangina, J. S., Suleiman, M. A., & Ahmed, A. (2023). Energy analysis and optimization of heat integrated air separation column based on non-equilibrium stage model. Results in Engineering, 19, 101211. https://doi.org/10.1016/J.RINENG.2023.101211
  45. Zhou, Y., & Fan, H. (2018). Research on multi objective optimization model of sustainable agriculture industrial structure based on genetic algorithm. Journal of Intelligent & Fuzzy Systems, 35(3), 2901-2907. https://doi.org/10.3233/JIFS-169645
CAPTCHA Image