Document Type : Research Article
Authors
- D. Girma Gadisa 1
- K. Purushottam Kolhe 2
- S. Kedir Busse 1
- M. Mohammed Issa 3
- T. Aseffa Abeye 3
- D. Alemu Anawte 3
1 Department of Mechanical Engineering, College of Mechanical, Chemical, & Materials Engineering, Adama Science and Technology University, Adama, Ethiopia
2 Department of Mechanical Engineering, Sinhgad College of Engineering, Pune University, Vadgaon, India
3 Ethiopian Institute of Agricultural Research, Agricultural Engineering Research, Melkassa Agricultural Research Center, Adama, Ethiopia
Abstract
Smallholder maize production in sub-Saharan Africa, crucial for regional food security, grapples with persistent yield gaps driven by labor-intensive planting practices and a critical lack of mechanization specifically designed to accommodate the traits of native plant varieties. This study characterizes three maize varieties (CML-539, Melkassa 3, and Melkassa 6Q) to develop design parameters for adaptive multi-crop planters. Geometric properties including length, width, and thickness were measured using digital calipers, with 100 seeds per variety. Analysis was performed for elongation, geometric and arithmetic mean diameters, surface area, projected area, transverse cross-sectional area, sphericity, flakiness ratio, aspect ratio, shape index, and roundness. Gravimetric properties including bulk and true densities, porosity, thousand seed mass, and angle of repose were systematically analyzed to optimize seed-handling mechanisms in planter design. Physical property analysis revealed distinct varietal requirements: CML-539's irregular morphology (9.42 mm length, 49.30% porosity) necessitates vibration-assisted metering and aerated delivery systems; Melkassa 6Q's uniform properties (71.11± 6.66% sphericity, 811.62 kg m-3 bulk density) permit gravity-fed mechanisms; and Melkassa 3's intermediate characteristics of > 2.3 elongation ratio and 19.31% density variation require adjustable furrow openers of 25-30° rake angles. Geometric variability necessitates the implementation of adaptive solutions, such as curved seed tubes and adjustable furrow openers, to effectively prevent tilt and bridging. The resulting modular planter system, incorporating moisture-responsive metering, adaptive cell sizing, and aerated delivery, aligns with Ethiopia’s agroecological standards of 75 cm row spacing and depth range of 4 to 7 centimeters. This framework offers a scalable, sustainable model for precision smallholder mechanization, transferable to global maize systems.
Keywords
Main Subjects
©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)
- Alemayehu, A., Tamado, T., Nigussie, D., Yigzaw, D., Kinde, T., & Wortmann, C. S. (2017). Maize common bean intercropping to optimize maize-based crop production. The Journal of Agricultural Science, 155(7), 1124-1136. https://doi.org/10.1017/S0021859617000193
- Ayele, S. (2022). The resurgence of agricultural mechanisation in Ethiopia: rhetoric or real commitment? Journal of Peasant Studies, 49(1), 137-157. https://doi.org/10.1080/03066150.2020.1847091
- Balanian, H., Karparvarfard, S. H., Mousavi Khanghah, A., Raoufat, M. H., & Azimi-Nejadian, H. (2021). Prediction of Seed Flow Rate of a Multi-Slot Rotor Feeding Device of a Corn Planter. Journal of Agricultural Machinery, 11(1), 17-27. https://doi.org/10.22067/jam.v11i1.79992
- Bhiman, J., Patel, S., Yaduvanshi, B., & Gupta, P. (2019). Optimization of the operational parameters of a picking-type pneumatic planter using response surface methodology. Journal of AgriSearch, 6(1), 38-43. https://doi.org/10.21921/jas.v6i1.14919
- Bisrat, G., Laike, K, A., & Hae, K. K. (2015). Evaluation of Conservation Tillage Techniques for Maize Production in Ethiopia. Ethiopian Journal of Agricultural Sciences, 25(2), 47-58.
- Central Statistical Agency. (2021). Farm Management Practices Agricaltural Sample Survey 2020/21. In Central Statistical Agency: Vol. III (Issue 12). https://www.statsethiopia.gov.et
- Dinberu, A., & Megersa, M. (2023). Effect of Inter and Intra Row Spacing on Growth , Yield and Yield Components of Sorghum (Sorghum bicolor (L.) Moench ) at Assosa District , Western Ethiopia. American Journal of Plant Biology, 8(1), 20-24. https://doi.org/10.11648/j.ajpb.20230801.14
- FAO. (2023). Standard operating procedure for soil bulk density; Cylinder method. Food and Agriculture Organization of the United Nations. https://doi.org/10.4060/cc7568en
- Getaneh, L., Belete, K., & Tana, T. (2016). Growth and Productivity of Maize (Zea mays) as Influenced by Inter- and Intra-Row Spacing in Kombolcha, Eastern Ethiopia. Journal of Biology, Agriculture and Healthcare, 6(13), 90-101.
- Ghabshyam, P., Raghunandan, S., Pankaj, G., & Kripanarayan, S. (2023). A review of methodologies and influencing factors in planter performance evaluation for higher maize yield. The Pharma Innovation Journal, 12(12), 1465-1471. www.thepharmajournal.com
- Girma, O., Tola, S., & Olaniyan, A. (2024). Design and development of a tractor-drawn multi-row garlic planter. Agricultural Engineering International: CIGR Journal, 26(2), 34-56.
- Huang. (2022). Measurement of physical properties of sorghum seeds and calibration of discrete element modeling parameters. Agriculture (Switzerland), 12(5), 2-19. https://doi.org/10.3390/agriculture12050681
- Jyotirmay, M., Prem, S. T., Krishna, P. S., Balaji, M. N., Jagjeet, Singh, A., & Ramesh, K. S. (2024). Flexible orifice seed metering plate to address variability in seed shape, size and orientation enhances field performance of a pneumatic planter. Discover Applied Sciences, 6(11). https://doi.org/10.1007/s42452-024-06275-5
- Kara, B. (2011). Effect of seed size and shape on grain yield and some ear characteristics of maize. Research on Crops, 12(3), 680-685.
- Kawuyo, U. A., Aviara, N. A., Mari, H. H., & Ahmed, M. (2022). Physical properties of four varieties of sorghum grain at different moisture contents. Arid Zone Journal of Engineering, Technology & Environment, 18(1), 159-168. www.azojete.com.ng
- Kebede, M. B. (2019). Effect of Inter and Intra Row Spacing on Growth , Yield Components and Yield of Hybrid Maize (Zea mays) Varieties at Haramaya , Eastern Ethiopia. American Journal of Plant Sciences, 10(7), 1548-1564. https://doi.org/10.4236/ajps.2019.109110
- Kimmelshue, C. L., Goggi, S., & Moore, K. J. (2022). Seed Size, Planting Depth, and a Perennial Groundcover System Effect on Corn Emergence and Grain Yield. Agronomy, 12(2). https://doi.org/10.3390/agronomy12020437
- Liang, G., Chi, B., Li, N., Chen, W., Qin, W., Wu, X., & Huang, X. (2021). Evaluating agronomic factors for maize production in a semi-arid Loess Plateau. Agronomy Journal, 113(6), 5157-5169. https://doi.org/10.1002/agj2.20818
- Masa, M., Tana, T., & Abdulatif, A. (2017). Effect of Plant Spacing on Yield and Yield Related Traits of Common Bean Varieties at Areka ,Southern Ethiopia. Journal of Plant Biology & Soil Healt, 4(2).
- Meseret, A. (2024). Design, Fabrication and Performance Evaluation of Two Row Animal Drawn Maize Planter with Fertilizer Applicator. Ethiopian Institute of Agricultural Research, 5(2), 153-166. https://doi.org/10.46592/turkager.1487496
- Muhidin, B. (2019). Effect of Inter-and Intra-Row Spacing on Yield and Yield Components of Maize QPM Hybrid, BHQPY545 in Southwestern Ethiopia Muhidin. International Journal of Research Studies in Agricultural Sciences, 6(10), 19-26. https://doi.org/10.20431/2454-6224.0703003
- Omar, S., Abd Ghani, R., Khalid, N., Jolánkai, M., Tarnawa, Á., Percze, A., Mikó, P. P., & Kende, Z. (2023). Effects of Seed Quality and Hybrid Type on Maize Germination and Yield in Hungary. Agriculture, 13(9), 2-14. https://doi.org/10.3390/agriculture13091836
- Pandey, H. S., & Sawant, C. P. (2023). Design and Development of a Seed Metering Mechanism for Ginger Planter. Journal of Scientific and Industrial Research, 82(10), 1071-1080. https://doi.org/10.56042/jsir.v82i10.225
- Panwar, G., Swarnkar, R., Kumar, N., & Shukla, K. (2023). Evaluation of physical properties of maize and pigeonpea seeds for seed metering mechanism. Journal of Experimental Agriculture International, 45(12), 89-97. https://doi.org/10.9734/jeai/2023/v45i122269
- Pascual, K. S., Rafael, M. L., Remocal, A. T., & Regalado, M. J. C. (2021). Development and evaluation of four-wheel tractor-attached multi-crop planter for mechanized seeding of maize in the Philippines. CIGR Journal, 23(3), 143.
- Patel, S. K., Bhimani, J. B., Yduvanshi, B. K., & Gupta, P. (2024). Radish (Raphanus raphanistrum sativus) Seed Planter Parameters Optimization using Response Surface Methodology. Journal of Scientific and Industrial Research, 83(5), 483-489. https://doi.org/10.56042/jsir.v83i5.2823
- Rabbani, M. A., Hossain, M. M., Asha, J. F., & Khan, N. A. (2016). Design and development of a low cost planter for maize establishment. Journal of Science Technology and Environment Informatics, 4(1), 270-279. https://doi.org/10.18801/jstei.040116.30
- Seyoum, A., Paul, D., & Sinafikeh, A. (2013). Crop production in Ethiopia: Regional patterns and trends. Food and Agriculture in Ethiopia: Progress and Policy Challenges, 9780812208, 53-83. https://doi.org/10.9783/9780812208610.53
- Shah, K., Alam, S., Nasir, F. E., Qadir, M. O., Haq, I. U., & Tahir Khan, M. (2022). Design and performance evaluation of a novel variable rate multi-crop seed metering unit for precision agriculture. IEEE Access, 10(September), 133152-133163. https://doi.org/10.1109/ACCESS.2022.3231136
- Sharma, P. T., & Dewangan, K. N. (2023). Design and development of a vertical plate precision seed metering device with positive seed knockout mechanism. Agricultural Engineering International: CIGR Journal, 25(1), 27-42.
- Singh, S., Sahoo, D. C., & Bisht, J. K. (2017). Development and performance evaluation of manual/bullock operated multicrop planter for hilly region. Agricultural Engineering International: CIGR Journal, 19(1), 81-86.
- Sinha, A. K., Sinha, A. K., Sharma, S., Khar, S., Gupta, V., Parkash, S., Mishra, S. K., & Gupta, S. (2021). Maize sowing with multi crop planter under rain fed conditions in Rajouri District of J & K proved beneficial. Journal of Krishi Vigyan, 9(2), 120-123. https://doi.org/10.5958/2349-4433.2021.00023.4
- Soyoye, B. O., Ademosun, O. C., & Agbetoye, L. A. S. (2018). Determination of some physical and mechanical properties of soybean and maize in relation to planter design. Agricultural Engineering International: CIGR Journal, 20(1), 81-89.
- Theodrose, S., Kindie, T., Mezegebu, G., Nigussie, D., & Mengistu, K. (2024). Calibration and Evaluation of CERES-Maize and CROPGRO-Dry Bean Crop Simulation Models of the DSSAT in the Great Rift Valley Region of Ethiopia. International Journal of Applied Agricultural Sciences, 10(4), 149-156. https://doi.org/10.11648/j.ijaas.20241004.11
- Tolossa, A., & Gizawu, T. (2024). Effect of Intra and Inter Row Spacing on Yield, Yield Components and Growth Parameter of Hybrid Maize at Mettu, South Western Ethiopia. Journal of Environment and Earth Science, 10(1), 16-19. https://doi.org/10.7176/JEES/10-1-03
- Van Loon, J., Krupnik, T. J., López-Gómez, J. A., Timsina, J., & Govaerts, B. (2020). A standard methodology for evaluation of mechanical maize seed meters for smallholder farmers comparing devices from Latin America, Sub-Saharan Africa, and Asia. Agronomy, 10(8). https://doi.org/10.3390/agronomy10081091
- Woldesenbet, M. (2014). Effect of Spacing on the Growth Parameters of Common Bean at Keker , Southwestern Ethiopia. International Journal of Research in Agricultural Sciences, 1(5), 15-18.
- Zewdie, B., Olaniyan, A. M., Wako, A., Alemu, D., & Lema, T. (2024). Engineering properties of common bean in perspective of physical and frictional parameters for threshing machine design. INMATEH Agricultural Engineering, 73(2), 771-783. https://doi.org/10.35633/inmateh-73-65
Send comment about this article