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Abstract  
In botanical terms, the classification of plants reveals a multitude of species derived from different sources. 

The first step for quality control of herbal medicines is to identify their different species and genotypes. The 
present study investigated the classification of ten different mint genotypes using Gas Chromatography-mass 
Spectrometry (GC-MS) and an electronic nose (e-nose) system utilizing Metal Oxide Semiconductor (MOS) 
sensors. Leaf samples were harvested from various mint genotypes, and subsequently, the system sensors' 
responses to each of these samples were recorded. The classification of plants was performed using biplot 
diagrams based on GC and GC-MS data, with clustering facilitated by the Ward method. The responses of all e-
nose sensors were further analysed through various approaches, including Principal Components Analysis 
(PCA), Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), and Artificial Neural 
Network (ANN). The results from the qualitative analysis of essential oils via GC-MS demonstrate that more 
than 99% of the identified compounds belong to four chemical groups: hydrocarbon and oxygenated 
monoterpenes, as well as hydrocarbon and oxygenated sesquiterpenes. Also, based on biplot analysis, different 
mint populations could be generally divided into 8 groups. The results of principal component analysis showed 
that the first two main components can cover a total of 97% of the data variance. The classification accuracy 
achieved through e-nose data for LDA, QDA, and ANN was 98.9%, 99.9%, and 96%, respectively. Proper 
classification of mint genotypes by e-nose system could be used as a sensitive, reliable, and low-cost alternative 
to traditional methods.  
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Table of abbreviations 

Definition Abbreviation 

Medicinal and Aromatic Plants MAPs 

Metal Oxide Semiconductor MOS 

Principal Components Analysis PCA 

Linear Discriminant Analysis LDA 

Quadratic Discriminant Analysis QDA 

Artificial Neural Network ANN 

Area Under the Curve AUC 

Retention time of hydrocarbon with smaller alkanes tr (n) 

Retention time of hydrocarbon with larger alkanes tr (N) 

Retention time of unknown composition tr (unknown) 

Carbon number of smaller alkanes N 

Kovats Index KI 

The lowest sensor response before the measurement phase (baseline) Xs (0) 

The sensor response at time t Xs (t) 

The normalized sensor response at time t Ys (t) 

 

Introduction  

In recent years, there has been an increasing 
demand for the production of medicinal plants 
due to the consumers’ interest in natural 

products, as they are thought to be safer and 
more cost-effective (Tangpao et al., 2022). 
This has led to the development of 
pharmaceutical, cosmetic, and food industries 
based on natural products, which, in turn, has 
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increased the demand for natural raw materials 
such as medicinal plants (Nguyen, Duong, & 
Mentreddy, 2019). The global trade in 
medicinal and aromatic plants, along with their 
products, has seen remarkable growth both in 
quantity and quality, indicating a positive 
outlook (Asl Roosta, Moghaddasi, & Hosseini, 
2017). The Lamiaceae family with 200 genera 
and 3,200 species is one of the largest and 
most diverse plant families, rich in medicinal 
plants (Okur et al., 2021a). Different species 
of mint plant such as Mentha piperita, Mentha 
spicata, and Mentha pulegium are valuable 
medicinal and aromatic species of this family, 
all belonging to the Mentha genus. According 
to the latest published statistics in 2015, the 
global trade value for mint essential oil exports 
and imports reached an impressive $185 
million, while essential oils from other species 
of mint totaled $322 million. Ranked just 
behind citrus, mint essential oil boasts a 
remarkable annual production of 6,000 to 
8,000 tonnes, establishing itself as one of the 
top essential oils worldwide (Banal, Rañola, 
Santiago, & Sevilla, 2014; Lubbe & 
Verpoorte, 2011). The aerial parts of the mint 
contain a high amount of active ingredients 
such as essential oils and various phenolic and 
flavonoid compounds, recognized for their 
valuable biological properties. The essential 
oil and extract of this plant are used in the 
pharmaceutical, food, and cosmetic industries 
due to its antimicrobial and high antioxidant 
properties and special taste (Kiani, Minaei, & 
Ghasemi-Varnamhasti, 2018). In general, 
botanically, plants have different species from 
different sources. The first step for quality 
control of herbal medicines is to identify their 
different species and genotypes. In the 
traditional quality evaluation system, odor 
serves as a vital quality indicator, as most 
medicinal plants produce scents that can be 
associated with their species or legitimacy. 
Smell is one of the most important sensory 
properties of food. Smell measurement is an 
advanced method that is especially effective in 
obtaining parameters affecting food quality 
because the smell emitted from food is 
extremely sensitive to the changing 

constituents. At present, a sensory method or 
panel test is used for qualitative evaluation and 
identification of aromatic substances. 
Although this method is relatively fast, it has 
many limitations in standard measurement 
stability and repeatability (Guohua et al., 
2015). Accurate laboratory methods are also 
used, such as gas chromatography (GC), gas 
chromatography-mass spectrometry (GC-MS), 
or high-performance liquid chromatography 
(HPLC) (Kiani et al., 2018; Li, Yu, Xu, & 
Gao, 2017). Despite having high accuracy, 
these meticulous methods have a high cost and 
require knowledgeable people to operate these 
tools, painstaking sample preparation, and a 
long time for analysis (Gebicki & Szulczynski, 
2018). This led to using non-destructive and 
less expensive methods, one of which is the e-
nose method. This system includes a 
combination of factors such as understanding 
of the human olfactory system and rapid 
advances in sensor technology and pattern 
recognition systems for smell detection (Zaki 
Dizaji, Adibzadeh, & Aghili Nategh, 2020). 
Therefore, olfactory volatile compounds can 
be identified as a fingerprint. Many studies 
have been conducted on the application of the 
e-nose (olfactory machine) technique in the 
food industry and quality control of some 
medicinal and aromatic plants such as berry 
ripening (Aghili Nategh, Dalvand, & Anvar, 
2020), sugar cane syrup sucrose detection 
(Zaki Dizaji et al., 2020), detection and 
classification of fungal infection in garlic 
(Makarichian, Chayjan, Ahmadi, & Zafari, 
2022), discrimination of flavoured and 
unflavoured olive oils (Rodrigues, Silva, 
Veloso, Pereira, & Peres, 2021), acrylamide 
detection in olives (Martín-Tornero et al., 
2021) and Lamiaceae (Okur et al., 2021a), 
qualitative classification of 9 genotypes of 
Rosa essential oils (Gorji-Chakespari, 
Nikbakht, Sefidkon, Ghasemi-Varnamkhasti, 
& Valero, 2017), and isolation of different 
cultivars and species of Chinese Cymbidium 
(Zhang et al., 2014), mint (Kiani et al., 2018; 
Okur et al., 2021b), and basil (Tangpao et al., 
2022). To date, no preliminary assessments 
have been performed to ascertain the genotype 
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of the mint. The present study aimed to 
investigate the performance of an e-nose 
system in combination with GC-MS and 
chemometric instruments to identify genotypes 
and different species of mint. 

 
Materials and Methods 

Preparation of Mentha samples 

Different populations of Mentha plant (10 
genotypes) were harvested from the collection 
of this plant at the farm of the Department of 
Horticultural Sciences, Faculty of Agriculture, 
Shahid Chamran University of Ahvaz, Iran 
(Table 1). Plants were harvested from about 5 

cm above the ground level at the early 
reproductive stage. 100 g of aerial parts of 
each sample of Mentha populations, including 
leaves and inflorescences, were used for 
essential oil extraction to perform GC test. Oil 
extraction of plant was performed by water 
distillation method and Clevenger apparatus 
for 3 hours. To remove excess moisture from 
the extracted essential oils, sodium sulphate 
was added to them after collecting the 
essential oils in the dark and sealed vials and 
the oil samples were kept at 4 °C until the 
analysis of their chemical compounds. 

 
Table 1- List of mint genotypes with botanical name and origin 

Number Genotype code Botanical name Origin 

1 E1 Mentha spicata L. Ilam, Iran 

2 E4 Mentha spicata L. Ilam, Iran 

3 H1S Mentha spicata L. Budapest, Hungary 

4 H1P Mentha × piperata  Budapest, Hungary 

5 H3 Mentha spicata L. Budapest, Hungary 

6 H6 Mentha spicata L. Budapest, Hungary 

7 H7 Mentha × piperata  Budapest, Hungary 

8 H10 Mentha citrata Budapest, Hungary 

9 H16 Mentha spicata L. Budapest, Hungary 

10 T19 Mentha rotondifolia L. Tehran, Iran 

 
Identification of essential oil components (GC and 

GC-MS) 

Quantitative and qualitative analysis of the 
chemical compounds of the essential oil was 
performed using gas chromatography 
(SHIMADZU, Model GC-17A) and gas 
chromatography-mass spectrometry (Agilent, 
Model B5977) under the following conditions. 
The gas chromatography (GC) apparatus 
utilized was equipped with a BP-5 column, 
measuring 30 m in length, 0.32 mm in 
diameter, and featuring a stationary phase 
layer thickness of 0.25 μm. The oven 
temperature was kept at 60°C for 1 minute and 
then increased at a rate of 5 °C per minute to 
250 °C. This peak temperature was then 
maintained for an additional 2 minutes. The 
injector and flame ionization detector (FID) 
temperatures were 280 and 300°C, 
respectively, and helium gas with a flow rate 
of 1.1 mL min-1 was used as the carrier gas.  

The gas chromatography-mass 

spectrometry (GC-MS) system was fitted with 
an HP-5 ms column featuring a length of 30 m, 
a diameter of 0.25 mm, and a stationary phase 
layer thickness of 0.25 μm. The temperature 
program of the column included increasing the 
temperature from 65 to 250°C at a rate of 5°C 
per minute, which eventually remained at this 
temperature for 2 minutes. The temperature of 
the injection chamber and the transmission line 
to the MS part of the apparatus were 265 and 
275°C, respectively, and helium gas was used 
as the carrier gas at a rate of 1.1 mL min-1. The 
scan time was 0.6 seconds, and the ionization 
energy was 70 electron volts. The essential oils 
were injected into a gas chromatograph-mass 
spectrometry apparatus, and the mass spectra 
of the essential oil compounds were obtained. 
The spectra were identified by utilizing the 
mass database, assessing inhibition time, and 
critically analysing the mass spectra of each 
essential oil component. This process included 
comparing their failure patterns with standard 



?    Journal of Agricultural Machinery Vol. ?, No. ?, ?, ? 

spectra alongside reference to reputable 
sources (Adams, 2007). The quantitative 
percentage of each compound was determined 
based on the area under its curve in the GC 
chromatogram and by computer programming 
(using GC Solution software). The percentage 
of chemical compounds constituting each 
essential oil sample and the Kovats index of 
each compound were calculated, and spectra 
were identified by calculating the Kovats 
Index (KI) with injecting normal hydrocarbons 
(C4- C28) under the same conditions with 
injecting essential oils. The Kovats index of 
essential oil compounds was calculated using 
the Equation (1):  

𝐾𝐼 = 100 × [𝑛 + ((𝑁 − 𝑛) ×
tr(unknown)−tr(n)

tr(N)−tr(n)
)]  

(1) 

where KI = Kovats index, n = carbon 
number of the smaller alkane, N = carbon 
number of the larger alkane, tr (unknown) = the 
retention time of unknown composition, tr (N) = 
the retention time of hydrocarbon with the 
larger alkane, and tr (n) = the retention time of 
hydrocarbon with smaller alkanes. 

 
Preparing samples for e-nose test 

20 grams fresh aerial parts of each sample 
(plant) was poured into the measuring chamber 
of the e-nose device. Then, this chamber was 
connected to the e-nose system and the data 
collection steps were performed from the 
device. After the sensors started working, data 
collection of chemical compounds of essential 
oil from each population of mint was 
performed by e-nose apparatus. 

 
E-nose device 

To conduct the experiments, an e-nose 
system made at the Shahid Chamran 
University of Ahvaz was used (Zaki Dizaji et 

al., 2020). This system includes a sampling 
chamber, a system equipment box, and a 
computer (Figure 1). System equipment 
consists of a sensor chamber, sample housing, 
two CL10R0 carbon filters, two micro-pumps 
(model R-385 with a flow rate of 25 cm3 s-1), 
three solenoid valves, data collection system, 
two power supplies 5 and 12 volts, and an inlet 
air filter. Sensors are tasked with the 
conversion of chemical changes into electrical 
signals, highlighting the significance of 
selecting the correct sensor array (Rafaela, 
Murilo, Luiza, & Daniel, 2022). The sensor 
array consists of eight metal oxide 
semiconductor sensors, including MQ2, MQ3, 
MQ5, MQ8, MQ9, MQ135, MQ137, and 
MQ138 (Hanwai Electronics Co., China). 
Metal oxide semiconductor sensors are used 
for their high chemical stability, high 
sensitivity, easy manufacturing, and suitability 
for a wide range of food and agricultural 
products. The sensors' responses were captured 
by a production system linked to a computer 
running LabVIEW 2015 software. The e-nose 
system was scheduled for three phases: 
baseline correction (100 seconds), sample 
smell injection on the sensors (90 seconds), 
and cleaning of the sensor chamber and 
sample with clean air (100 seconds). During 
these phases, the voltage changes in response 
from the sensors are meticulously recorded 
over time. In general, the voltage response of 
the sensors in these 290 seconds is collected 
by the produced system. The time required for 
each step is obtained via trial and error. The 
number of e-nose test repetitions for each 
sample is 15. The sample chamber consists of 
a closed chamber with a volume of about 500 
cc, maintaining the sample’s temperature at 
room conditions, about 30°C, and a humidity 
of about 25%.  
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Fig. 1. (Left) The e-nose system, which comprises a sampling chamber, a system equipment box, and a computer, and 

(right) a schematic block diagram illustrating the components of the e-nose device  

 
Data analysis 

To analyse the differences between GC and 
GC-MS data and to explore the internal 
relationships among traits using principal 
component analysis, a two-dimensional biplot 
diagram was generated through clustering with 
the Ward method, Euclidean square distance 
criterion, and SPSS and Genstate software.  

Preprocessing is the first step in analysing 
the response of the array of e-nose sensors. 
This involves removing irrelevant information 
to make the information more efficient for the 
next steps of the analysis. The first 
preprocessing stage is dedicated to aligning the 
sensors' responses with a baseline (stable 
response) to correct for deviations and 
significantly enhance the contrast of their 
outputs. In this study, the fractional method 
was used to correct the baseline (Equation 2). 
In this method, the baseline is subtracted from 
the sensor response and then divided by the 
baseline. The response obtained is not only 
dimensionless but also normalized and can be 
used for small or large signals (Zaki Dizaji et 
al., 2020).  
𝑌𝑠(𝑡) = [𝑋𝑠(𝑡) − 𝑋𝑠(0)]/𝑋𝑠(0)                   (2) 

In this regard, Xs (0) is the lowest sensor 
response before the measurement phase 
(baseline), Xs (t) is the sensor response at time 
t, and Ys (t) is the normalized sensor response. 
After these steps, the pre-processed data are 
analysed in different ways, and finally the 
sample is evaluated. In general, pattern 
recognition is done by two methods: statistical 
methods or artificial neural methods. These 
methods are based on qualitative expression or 
classification of data. This research involved 

the analysis of data utilizing various statistical 
and intelligent techniques, including PCA, 
LDA, QDA, and ANN. In order to analyse the 
performance of these methods, the parameters 
of the classification performance such as 
accuracy, precision, sensitivity, specificity, 
and area under the curve (AUC) were used 
based on the values of the confusion matrix 
(Kaushal, Nayi, Rahadian, & Chen, 2022; 
Mahmodi, Mostafaei, & Mirzaee-Ghaleh, 
2019). 

The main component analysis follows the 
idea of reducing the data dimension. In fact, a 
number of interconnected characteristics are 
expressed in the form of several compact and 
independent indices that are the main 
components of the main multiple 
characteristics. The linear discriminant 
analysis is one of the most widely used 
methods for classifying observations in 
different classes, especially when it has more 
than two classes. The quadratic discriminant 
analysis is a statistical method used to find the 
quadratic composition of properties that best 
separate two or more groups of objects. A 
multi-layer perceptron (MLP) algorithm was 
also used. The classification involved a 
network that features an input layer, a hidden 
layer, and an output layer. The hidden layer 
contains several neurons that represent a 
nonlinear network system. Considering that 
this research utilizes a neural network for real-
time classification, it is better to be close to the 
desired error rate with the same number of 
epochs or fewer repetitions. Therefore, a 
hidden layer was considered for the network to 
increase the speed of training. The hyperbolic 
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tangent activation function was used for the 
hidden layer. The post-diffusion algorithm was 
used to train the network, and through a trial-
and-error approach, it was concluded that the 
optimal number of neurons for the hidden 
layer is 8. Finally, the optimal model was 
selected. Based on the data from eight sensors 
at the network input, and with an output layer 
composed of 10 nodes, the samples are 
classified using a structure of 8-8-10. Data 
processing was performed in Microsoft Excel 
2019, MATLAB 2015, and Unscrambler 10.3 
(CAMO) software. 

 
Results and Discussion 

GC and GC-MS results 

According to the results of qualitative 
analysis of essential oil by GC-MS apparatus, 
72 different compounds were identified in the 
essential oils of different populations of 
Mentha plant (Table 2). More than 99% of the 
identified compounds were in four chemical 
groups, including hydrocarbon and oxygenated 
monoterpenes, as well as hydrocarbon and 
oxygenated sesquiterpenes (Hawrył et al., 
2015). Oxygenated monoterpenes made up 
about 75% of the essential oils from various 
populations of mint, followed by hydrocarbon 
monoterpenes, hydrocarbon sesquiterpenes, 
and oxygenated sesquiterpenes in that order. In 
other words, aroma of Mentha plant covers the 
subgroups of terpenes, esters, alcohols, and 
ketones. These results align closely with the 
majority of results presented in other studies 
(Kiani et al., 2018; Okur et al., 2021a).  

According to the results of biplot and 
cluster analysis, different populations of mint 
are generally divided into 8 groups (Table 3). 
This separate division showed that the desired 
traits were appropriate criteria for creating 
diversity in the studied populations (Figure 2). 
The first group includes H7 and H1P 
populations of mint with high levels of 
menthone (60.05%) and Isomenthone 
(10.93%) compounds. The second group 
includes the population of H3, rich in Menthol 
compounds (26.58%) and Menthyl acetate 
(3.16%). The third group includes E1 and H10 
populations with high levels of Linalool 

compounds (39.93%), α-Cubebene (9.71%), 
Caryophyllene (E) (5.73%), and Geranyl 
acetate (2.39%). The fourth group includes E4 
populations rich in Limonene (19.27%), α-
Terpineol (7.19%), Pulegone (2.81%), cis-
Sabinene hydrate (1.66%), and α-Humulene 
(1.23%). The fifth group includes the 
population of H16 with a high level of 
Carvone compounds (70.06%). The sixth 
group has the population of H6 rich in 
Carvone compounds (62.27%) and 1,8-
Cinnamol (14.97%). The seventh group 
includes the population of T19 containing 
Pipritenone compounds (5.21%) and α-Pinene 
(1.12%). Lastly, the eighth group includes the 
population of H1S with high levels of cis-
Carvyl acetate compounds (47.41%), Myrcene 
(6.97), Germacrene D (3.52%), β-Pinene 
(1.80%), Sabinene (1.32%), and β-Elemene 
(1.15%).  

According to the results of principal 
components analysis, the biplot diagram, and 
clustering of different populations of mint 
based on essential oil components, the 
biosynthetic pathway of Menthone and 
isomenthone monoterpenes seems to be active 
in H7 and H1P populations, and genes 
responsible for encoding enzymes and the 
production pathway of Menthol and menthyl 
acetate were most highly expressed in the H3 
population. The results demonstrated that the 
path of synthesis of essential oil compounds in 
E1 and H10 populations could result in the 
production of Linalool and Geranyl acetate 
monoterpenes and α-Cubebene and 
Caryophyllene (E) sesquiterpenes. Also, the 
high levels of Limonene, α-Terpinyl, 
Pulegone, and cis-sabinene hydrate 
monoterpenes in the E4 population indicated 
that the biosynthetic pathway enzymes of these 
compounds are more active in the above 
population. The study of the essential oil 
components of H16, H6, and T16 populations 
showed the predominance of the biosynthesis 
pathway of Carvone and 1,8-cineole 
compounds in the H16 and H6 populations, 
and Pipritenone and α-Pinene in the T16 
population. Pinene, Sabinene, Germacrene D, 
and β-Elemene sesquiterpenes have been the 
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most active biosynthetic pathways of essential oil compounds in the H1S population.  
 

Table 2- The essential oil chemical composition of different accessions of mint by GC-MS 
Row Component RT KIc KIr E4 E1 H1S H1P H3 H6 H7 H10 H16 T19 

1 α-Pinene 5.10 931 932 0.71 0.31 1.02 0.60 0.52 0.41 0.53 0.24 0.55 1.12 
2 Camphene 5.38 946 946 0.13 0.06 - - - - - - - 0.14 
3 Sabinene 5.81 969 969 0.64 0.81 1.32 0.49 0.52 0.33 0.43 0.60 0.52 1.11 
4 β-Pinene 5.94 976 974 1.05 0.67 1.80 0.90 0.79 0.71 0.83 0.57 0.67 1.78 
5 Myrcene 6.17 988 988 0.89 11.99 6.97 0.70 0.52 0.49 0.69 2.10 3.17 1.48 
6 α-Phellandrene 6.45 1002 1002 - 0.12 0.13 - 0.08 0.39 - - 0.10 0.09 
7 α-Terpinene 6.78 1015 1014 0.07 0.05 0.07 - 0.09 0.15 - 0.06 - - 
8 Limonene 6.98 1023 1024 19.27 0.82 10.71 1.67 5.24 - 2.74 1.02 11.72 12.60 
9 1,8-Cineole 7.14 1030 1026 4.62 6.19 8.50 4.23 3.88 14.97 3.66 5.33 1.55 7.50 
10 β-Ocimene (Z) 7.19 1032 1032 0.43 0.76 0.42 0.40 0.38 0.56 0.35 0.90 0.11 0.25 
11 β-Ocimene (E) 7.50 1045 1044 0.22 1.01 0.09 0.09 0.12 0.25 0.09 0.91 0.06 0.11 
12 γ-Terpinene 7.79 1056 1054 0.17 0.30 0.15 - 0.18 - - 0.22 0.17 - 
13 cis-Sabinene hydrate 7.95 1063 1065 1.66 0.16 0.51 0.06 1.22 0.30 - 0.25 1.34 0.28 
14 Terpineol 8.55 1087 1086 0.08 0.39 0.16 - 0.07 - - 0.37 0.10 0.07 
15 Linalool 8.74 1095 1095 - 39.93 0.60 0.16 0.34 - 0.18 39.76 0.17 0.16 
16 trans-Sabinene hydrate 8.80 1097 1098 0.23 - 0.06 - 0.08 0.16 - 0.11 0.09 0.17 
17 cis-Thujene 8.91 1102 1101 0.13 0.63 0.06 0.05 - 0.12 - 0.30 - 0.06 
18 cis-p-menth-2-en-1-ol 9.36 1117 1118 0.11 0.46 0.08 - 0.07 0.17 - 0.38 0.07 - 
19 trans-p-mentha-2,8-dien-1-ol 9.41 1119 1119 0.05 - 0.13 - - 0.12 - - - - 
20 trans-Limonene oxide 9.93 1136 1137 0.07 - 0.13 0.11 0.10 0.06 0.13 - 0.07 0.05 
21 Comphor 10.02 1139 1141 - - - 0.13 0.06 - 0.12 - 0.09 - 
22 cis-β-Terpineol 10.14 1143 1140 - - 0.14 - 0.12 - - - - - 
23 Menthone 10.50 1155 1148 - - - 53.78 39.29 0.17 60.05 0.07 0.06 - 
24 Isomenthone 10.67 1161 1158 0.90 0.49 0.58 10.93 7.17 0.09 10.44 0.16 0.29 0.98 
25 Borneol 10.78 1165 1165 - 0.05 - - - 0.17 - - - - 
26 Menthol 10.86 1167 1167 - 0.05 - 14.44 26.58 0.12 8.52 0.07 - - 
27 cis-Linalool oxide (Pyranoid) 10.93 1170 1170 0.85 0.16 0.59 - - 0.17 0.62 0.31 0.45 0.13 
28 Terpinene-8-ol 11.12 1176 1174 - - 0.21 0.18 0.18 - 0.08 - - - 
29 Isomenthol 11.28 1181 1179 0.30 - 0.49 0.18 0.19 - 0.16 - 0.32 0.43 
30 α-Terpineol 11.38 1185 1186 7.19 6.73 0.28 - - 0.17 - 6.90 - 1.28 
31 Dihydrocarveol 11.54 1190 1192 - - 0.14 0.08 0.10 2.02 0.06 0.94 0.06 0.09 
32 trans-Dihydrocarvone 11.84 1200 1200 0.14 0.13 0.20 - - 0.44 - - 0.25 0.12 
33 trans-Carveol 12.29 1217 1215 1.30 1.01 0.06 - 0.07 1.97 - 0.88 0.96 0.62 
34 cis-Carveol 12.56 1228 1226 0.08 - 0.16 0.09 - - 0.07 - - - 
35 Pulegone 12.68 1232 1233 2.81 - 0.11 1.26 0.71 0.61 2.47 0.06 0.13 0.13 
36 Carvone 12.78 1236 1239 40.63 16.75 0.48 0.81 2.57 62.27 0.87 13.45 70.06 50.98 
37 Pipperiton 13.10 1248 1249 - - - - - 0.36 - - 0.12 0.14 
38 cis-Carvone oxide 13.42 1260 1259 - - 0.58 - - - - - 0.06 0.08 
39 Geranial 13.55 1265 1264 - 0.07 0.55 - - - - - - - 
40 trans-Carvone oxide 13.76 1273 1273 0.27 - - 0.15 0.35 0.13 - - 0.10 3.50 
41 Isobornyl acetate 14.07 1285 1283 0.08 0.15 0.08 0.09 - - 0.09 - 0.07 - 
42 Menthyl acetate 14.25 1291 1294 - - 0.37 2.94 3.16 0.11 1.54 - - - 
43 Carvacrol 14.33 1294 1298 0.13 - 0.24 - - 0.16 - - - - 
44 trans-Carvyl acetate 15.58 1339 1339 1.22 - 0.31 - 0.05 0.40 - - 0.13 - 
45 Piperitenone 15.63 1341 1340 0.28 - - - - 0.08 - - - 5.21 
46 α-Cubebene 15.83 1348 1345 - 3.30 - - - - - 9.71 - - 
47 Neryl acetate 16.07 1357 1359 - - 0.05 - - - - - - 0.13 
48 cis-Carvyl acetate 16.36 1367 1365 0.18 1.20 47.41 - - 0.11 - 1.05 0.07 3.73 
49 Geranyl acetate 16.75 1381 1379 1.26 2.39 - - - - - 2.07 - - 
50 β-Borbonene 16.89 1386 1387 - 0.05 0.08 0.13 0.23 1.14 0.15 0.08 0.59 0.13 
51 β-Elemene 17.05 1392 1389 0.55 0.35 1.15 0.42 0.17 0.78 0.42 0.85 0.70 0.16 
52 cis-α-Bergamotene 17.57 1410 1411 0.06 - 0.06 - 0.11 0.06 - - - 0.06 
53 Caryophyllene (E) 18.82 1420 1417 3.46 5.73 4.99 1.83 0.54 3.76 1.82 2.82 1.11 1.36 
54 trans-α-Bergamotene 18.20 1434 1432 - - 0.06 - - - - - - - 
55 Aromadendrene 18.51 1445 1439 0.22 - - 0.09 0.05 0.21 0.08 - 0.11 0.13 
56 α-Humulene 18.76 1455 1452 1.23 0.55 0.82 0.29 0.54 0.88 0.31 0.50 0.47 0.67 
57 Germacrene-D 19.51 1483 1484 1.67 1.81 3.52 1.89 1.75 1.76 1.76 2.48 0.95 0.51 
58 Bicyclogermacrene 19.91 1498 1500 0.34 0.52 1.24 0.33 0.61 0.30 0.33 0.23 0.49 0.05 
59 γ-Cadinene 20.35 1515 1513 0.16 0.11 - - - 0.14 - 0.15 - - 
60 Δ-Cadinene 20.58 1523 1522 0.49 0.05 0.08 0.05 0.06 0.23 - 0.05 0.08 0.12 
61 α-Cadinene 20.95 1538 1537 0.14 - - - - 0.07 - - - - 
62 Elemol 21.21 1548 1548 0.08 0.72 - - - - - 2.14 - - 
63 Germacrene-B 21.45 1557 1559 0.10 0.05 0.15 - - 0.06 - 0.07 - 0.17 
64 Spathulenol 21.95 1576 1577 0.22 0.09 0.29 - 0.15 0.11 - 0.12 0.09 0.05 
65 Caryophyllene oxide 22.16 1584 1582 0.39 0.30 0.32 0.11 - 0.23 0.13 0.22 0.06 0.14 
66 Viridiflorol 22.35 1592 1592 - 0.82 - 0.11 0.42 - 0.09 0.06 - - 
67 10-epi-γ-Eudesmol 23.07 1621 1622 0.44 0.07 - - - 0.22 - 0.14 0.06 0.20 
68 γ-Eudesmol 23.39 1634 1630 0.15 0.16 0.07 - - - - 0.37 - - 
69 epi-α-Morolol 23.57 1642 1640 0.36 0.38 0.07 - 0.07 0.08 - 0.18 - 0.05 
70 α-Morolol 23.66 1646 1644 - - - - - 0.44 - 0.15 - - 
71 α-Eudesmol 23.82 1652 1652 - 0.05 - - - - - 0.16 - - 
72 α-Cadinol 23.92 1656 1652 0.45 0.14 0.15 0.06 0.10 0.22 - 0.31 0.15 0.26 

 Monoterpene hydrocarbons - - - 23.66 7.30 22.84 4.85 8.50 3.29 5.66 6.99 17.24 18.76 
 Oxygenated monoterpenes - - - 64.52 76.57 63.09 89.66 86.30 85.46 89.05 72.07 76.51 75.90 
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 Sesquiterpene hydrocarbons - - - 8.41 12.52 12.15 5.03 4.06 9.38 4.88 16.95 4.50 3.37 
 Oxygenated sesquiterpenes - - - 2.09 2.74 0.90 0.28 0.73 1.31 0.29 3.85 0.36 0.70 
 Total - - - 98.67 99.13 98.98 99.82 99.59 99.43 99.87 99.86 98.61 98.73 

RT: Retention time; KIc: Calculated kovats index; KIr: Reference kovats index 

 

Table 3- Results of biplot analysis and cluster analysis of different populations of mint by GC-MS 

Group Genotype 
Compound 

High Zero or low 

1 
H7 and 

H1P 
Menthone (60.05%), Isomenthone (10.93%) 

cis-Sabinene hydrate, α-Terpineol, trans-

Carvone, Piperitenone, α- Cubebene, Carvyl 

acetate, Geranyl acetate, α-Humulene 

2 H3 Menthol (26.58%), Menthyl acetate (3.16%) 
Piperitenone, α-Cubebene, Carvyl acetate, 

Geranyl acetate, β-Pinene 

3 
E1 and  

H10 

Linalool (39.93%), α- Cubebene (9.71%), 

Caryophyllene E (5.73%), Geranyl acetate 

(2.39%) 

cis-Sabinene hydrate, β-Pinene, Menthone, 

Pulegone, Menthyl acetate, Piperitenone 

4 E4 
Limonene (19.27%), α-Terpineol (7.19%), 

Pulegone (2.81%), cis-Sabinene hydrate 

(1.66%), α-Humulene (1.23%) 

Linalool, Menthone, Menthyl acetate, α-

Pinene 

5 H16 Carvone (70.06%), 
Menthone, α-Terpineol, Menthyl acetate, 

Pipritenone, α-Cubebene, Geranyl acetate 
6 H6 Carvone (62.27%), 1,8-cineole (14.97%) Limonene, α- Cubebene, Geranyl acetate 

7 T19 Piperitenone (5.21%), α-Pinene (1.12%) 
β-Elemene, Germacrene D, Menthone, 

Menthyl, Geranyl acetate 

8 H1S 
cis-Carvyl acetate (47.41%), Myrcene (6.97%), 

Geranyl acetate (3.52%), β-Pinene (1.80%), 

Sabinene (1.32%), β-Elemene (1.15%) 

Menthone, Menthol, Piperitenone, α- 

Cubebene 
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Fig. 2. Graphic display of biplot of different populations of mint using two main components derived from the 

dominant components of essential oil; P1, P2, P3, P4, P5, P6, P7, P8, P9, and P10 = E4, E1, H1S, H1P, H3, H6, H7, 

H10, H16, and T19; AP = α-Pinene, S = Sabinene, BP = β-Pinene, MY = Myrcene, LM = Limonene, CI =1,8-cineole, 

SH = cis-Sabinene hydrate, LN = Linalool, MN = Menthone, MNI = Isomenthone, ML = Menthol, T = α-Terpineol, CL 

= trans-Carvone, PU = Pulegone, CN = Carvone, MA = Menthyl acetate, PI = Piperitenone, CU = α- Cubebene, CY = 

cis-Carvyl acetate, GA = Geranyl acetate, E = β-Elemene, CP = caryophyllene E, H = α-Humulene, and G = 

Germacrene D 
 

E-nose results 

The study of the signal form of the sensors 
of the e-nose system shows that the response 
set of sensors varies for different types of mint 
genotypes, indicating that the organic matter 
of each genotype is distinct. The response 
pattern of sensors to the essential oil of E1, 
H3, H6, and H7 genotypes showed that the 
volatiles from these genotypes had the highest 

response in the MQ138 sensor, while the 
highest numerical response for the H16, E4, 
HIS, and H1P genotypes was in the MQ3 
sensor (Figure 3). Both sensors demonstrate 
impressive accuracy in detecting alcohol 
compounds, which, as evidenced by GC 
results, are among the most significant 
compounds found in mint genotypes.  
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Fig. 3. The mean response of e-nose sensors to ten genotypes  

 
PCA results 

The two main components of PCA covered 
97% of the variance in the data. According to 
Figure 4, the amount of variance in the first 
and second major components was 85% and 
12%, respectively. Genotypes E1, H16, T19, 
and H6 are clearly identifiable, which is rather 
consistent with the results of the GC (Table 3). 
There is a lot of overlap among H1P, E4, H1S, 
and H10 genotypes. The loading diagram was 
used to investigate the participation of sensors 
in the detection of the degree of processing. 
These sensors are displayed in the loading 
diagram with the values of specific 
coefficients. The high coefficient value for a 
sensor in the loading diagram highlights its 
important role in detecting different types of 
mint genotypes. Moreover, by removing the 
least crucial sensors from the process of 

identifying mint genotypes and streamlining 
the data analysis, the overall expenses 
associated with constructing a sensor array can 
be significantly lowered (Heidarbeigi et al., 
2015). Although all sensors were effective in 
detecting mint genotypes, the MQ5 sensor 
showed the least involvement (Figure 4), so it 
is possible to remove it from the olfactory 
system when detecting the mint genotypes. In 
one study, the use of e-nose for identification 
of the ripeness stage of berries was 
investigated. The PCA technique was applied 
for data analysis. Results from the PCA 
indicated a significant categorization of the 
volatile profiles of berries at the ripe, nearly 
ripe, intermediate, nearly unripe, and unripe 
stages (Aghili Nategh et al., 2020).  

 

 

0

0.2

0.4

0.6
MQ 3

MQ 5

MQ 8

MQ 9

MQ 135

MQ 137

MQ 138

MQ 2

T19



?    Journal of Agricultural Machinery Vol. ?, No. ?, ?, ? 

 
 

Fig. 4. (top) Loading and (bottom) score plots of PCA to detect the mint genotypes 

 
LDA results 

Figure 5 illustrates the diagram for the LDA 
linear resolution analysis, showcasing the first 
two principal components (LD1-LD2) derived 
from e-nose signals for mint genotype 
detection. Accordingly, the LDA can 
determine the genotypes of the mint plant well. 
In particular, genotypes E1, E4, and T19 are 
completely differentiated. There was a 
noticeable overlap not only between H1P and 
T19 genotypes, but also between H1S and 
H16, as well as between H6 and H10 
genotypes. According to the confusion matrix 
(Table 4), the analysis accuracy was 95.33%. 
Table 5 gives the performance parameters of 
the classifier according to the above-

mentioned confusion matrix, including 
classification accuracy, precision, sensitivity, 
specificity, and AUC for genotypes of mint. 
The average per class accuracy, precision, 
sensitivity, specificity, and AUC were 98.9%, 
95.7%, 95.3%, 99.3%, and 97.6%, 
respectively. Lin et al. isolated different 
species of Apiaceae flower via e-nose data in 
combination with the LDA method (Lin et al., 
2013). In a study, researchers used ANN, 
LDA, and SVM to classify contaminated and 
healthy mushrooms over a 28-day storage 
period, with LDA showing the best 
performance (Makarichian et al., 2022). 

 

 
Fig. 5. Score plot of LDA analysis for detecting the mint genotypes 
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Table 4- Confusion matrices obtained from LDA, QDA, and ANN 

  1 2 3 4 5 6 7 8 9 10 

LDA 

1 13 0 0 0 0 0 0 0 0 0 

2 0 15 0 0 0 1 0 0 0 0 

3 0 0 15 0 0 0 0 0 0 1 

4 0 0 0 15 0 0 0 0 0 0 

5 2 0 0 0 13 0 0 0 0 0 

6 0 0 0 0 0 14 0 0 0 0 

7 0 0 0 0 2 0 15 0 0 0 

8 0 0 0 0 0 0 0 15 1 0 

9 0 0 0 0 0 0 0 0 14 0 

10 0 0 0 0 0 0 0 0 0 14 

Correct classification: 95.33% 

QDA 

1 15 0 0 0 0 0 0 0 0 0 

2 0 15 0 0 0 0 0 0 0 0 

3 0 0 15 0 0 0 0 0 0 0 

4 0 0 0 15 0 0 0 0 0 0 

5 0 0 0 0 13 0 0 0 0 0 

6 0 0 0 0 0 15 0 0 0 0 

7 0 0 0 0 2 0 15 0 0 0 

8 0 0 0 0 0 0 0 15 0 0 

9 0 0 0 0 0 0 0 0 15 0 

10 0 0 0 0 0 0 0 0 0 15 

Correct classification: 98.33% 

ANN 

1 13 0 0 0 0 0 0 0 0 0 

2 0 15 0 0 0 0 0 0 0 0 

3 0 0 13 0 0 0 0 0 0 0 

4 0 0 0 15 0 0 0 0 0 0 

5 1 0 0 0 14 0 0 0 0 0 

6 0 0 0 0 0 15 0 0 1 0 

7 1 0 0 0 1 0 15 0 0 0 

8 0 0 0 0 0 0 0 15 0 0 

9 0 0 0 0 0 0 0 0 14 0 

10 0 0 2 0 0 0 0 0 0 15 

Correct classification: 96% 

 
Table 5- Performance measurements of LDA, QDA, and ANN 

Classifi

er 

Method 

LDA QDA ANN 

Class 
Precisi

on 

Sensitivi

ty 

Specifici

ty 

Accura

cy 

AU

C 

Precisi

on 

Sensitivi

ty 

Specifici

ty 

Accura

cy 

AU

C 

Precisi

on 

Sensitivi

ty 

Specifici

ty 

Accura

cy 

AU

C 

E1 1.00 0.87 1.00 0.99 0.93 1.00 1.00 1.00 1.00 1.00 1.00 0.87 1.00 0.99 0.93 

E4 0.94 1.00 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1 1.00 0.99 0.99 1.00 

H1S 0.94 1.00 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.87 1.00 0.99 0.93 

H1P 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

H3 0.87 0.87 0.98 0.97 0.93 1.00 0.87 1.00 0.99 0.93 0.93 0.93 0.99 0.99 0.96 

H6 1.00 0.93 1.00 0.99 0.97 1.00 1.00 1.00 1.00 1.00 0.94 1.00 0.99 0.99 1.00 

H7 0.88 1.00 0.98 0.99 0.99 1.00 1.00 1.00 1.00 1.00 0.88 1.00 0.98 0.99 0.99 

H10 0.94 1.00 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

H16 1.00 0.93 1.00 0.99 0.97 1.00 1.00 1.00 1.00 1.00 1.00 0.93 1.00 0.99 0.97 

T19 1.00 0.93 1.00 0.99 0.97 1.00 1.00 1.00 1.00 1.00 0.88 1.00 0.98 0.99 0.99 

Average 0.957 0.953 0.993 0.989 
0.97

6 
1 0.987 1 0.999 

0.99

3 
0.963 0.96 0.993 0.992 

0.97

7 

 
QDA results 

This method is extensively used in 
statistics, recognition pattern, and machine 
learning to find a combination of unique traits. 

Table 4 shows the confusion matrix for the 
Quadratic Discriminant Analysis (QDA) 
employed in the nonlinear resolution analysis 
of e-nose signals for the detection of mint 
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genotypes. According to the confusion matrix, 
the analysis accuracy was 98.33%. The sample 
is only misdiagnosed in the H1P genotype 2. 
The average per class accuracy, precision, 
sensitivity, specificity, and AUC were 99.9%, 
100%, 98.7%, 100%, and 99.3%, respectively 
(Table 5). In previous research, the quadratic 
analysis successfully used to classify diesel-
biodiesel blends (Mahmodi et al., 2019).  

 
ANN results 

To minimize neural network training time, 
only one hidden layer was considered. The 
best network was found with a topology of 8-
11-10, and a network with 11 neurons in the 
hidden layer. Table 4 shows the confusion 
matrix. Achieving a 96% classification 
accuracy across 10 genotypes can likely be 
explained by the significant variety and 
abundance of aromatic compounds present in 
these genotypes. The average class accuracy, 
precision, sensitivity, specificity, and AUC 
were 99.2%, 96.3%, 96%, 99.3%, and 97.7%, 
respectively (Table 5). Aghili Nategh et al. 
(2020) demonstrated that the optimal 
architecture (10-11-5) effectively classifies 
samples into five distinct categories in ANN 
analysis, achieving an impressive accuracy of 
100% for blackberries and 88.3% for white 
berries. 

 
Conclusion  

The e-nose system is essential for the rapid, 
non-destructive determination of quality 
indicators without the need for manual 
measurements in the medicinal and aromatic 
plants industry. The results of qualitative 
analysis of essential oil by GC-MS showed 
that there were 72 unique compounds in the 

essential oil of different populations of mint. 
More than 99% of the identified compounds 
were in four chemical groups, including 
hydrocarbon and oxygenated monoterpenes 
and sesquiterpenes. The average values of 
yield parameters (AUC, Accuracy, Precision, 
Specificity, and Sensitivity) and classification 
analysis show that QDA was the best method 
for the classification of different genotypes of 
mint, while principal component analysis, 
linear discriminant analysis, and artificial 
neural network were less accurate than 
quadratic discriminant analysis. 
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 چکیده

( MOS)  یفلگگ   دیاکسگگ   ی ادمگگهین  یبر حسگگهر ا  یمبتن  یکیالکترون  ینیب  ستمیس  کینعناع توسط    پیده ژنوت  یبندطبقه  یمطالعه حاضر به بررس
 ا گگا ،یگ یبنگگدطبقه یبه  ر نمونه ثبت شگگد. بگگرا  ستمیس  یمختلف نعناع برداشت شد، سپس پاسخ سنسور ا  ی اپیبرگ از ژنوت  ی انمونهپردازد.  یم

 لیگگ و تحل هیگگ (، تج LDA) یخط صیتشخ لیو تحل  هی(، تج PCA)  یاصل  یاج ا  لیو تحل  هیتج   ی ابا روش  یکیالکترون  ینیب  یحسهر ا  مامپاسخ ت
 ا توسگگط دسگگتهاه اسگگانس یفیک لیو تحل هیتج  جیقرار گرفت. بر اساس نتا ی( مورد بررسANN) یمصنوع ی( و شبکه عصبQDAدرجه دوم )   یمتما

GC-MSدار قگگرار ژ یاکسگگ  ی اترپنی گگا و سسگگکو  ا و مونوترپندروکربنیشامل   ییایمیشده در چهار گروه شییشناسا باتیترک درصد 99از  شی، ب
 ی امؤلفگگه لیگگ تحل جیکرد. نتا میگروه تقس 8به  یطور کلتوا  بهیمختلف نعناع را م  ی اتیپلات، جمع  یبا  لیو تحل  هیبر اساس تج   نیداشتند.  مچن

 ا را پوشگگش د نگگد. داده انسیدرصد از وار 97توانند در مجموع یاول م ینشا  داد که دو مؤلفه اصل  ستمیآمده از سدستبه  ی ااز داده  تفادهبا اس  یاصل
 یمصگگنوع یوضوح درجه دوم و شبکه عصگگب لیو تحل هیتج  ،یوضوح خط لیو تحل  هیتج   یبرا  یکیالکترون  ینیب  ی ابا استفاده از داده  یبنددقت طبقه

حسگگاس،   ینیه یعنوا  جگگاتوانگگد بگگهیم  یکیالکترون  ینیب  ستمینعناع توسط س  ی اپیمناسب ژنوت  بندیطبقه.  آمد  دستبه  %96و    9/99،  9/98  بیترتبه
 .ردیمورد استفاده قرار گ یسنت ی اروش یبرا نهی  اعتماد و کمقابل
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