with the collaboration of Iranian Society of Mechanical Engineers (ISME)

Document Type : Research Article-en

Authors

1 Guizhou Academy of Tobacco Science, Guiyang, Guizhou, 550081, China

2 College of Tobacco Science, Guizhou University, Guiyang, Guizhou, 550025, China

3 Guizhou Academy of Forestry, Guiyang, Guizhou, 550001, China

4 Bijie Tobacco Company of Guizhou Province, Bijie, Guizhou, 551700, China

5 Fuling Branch of Chongqing Tobacco Company, China National Tobacco Corporation, Fuling, Chongqing 408107, China

Abstract

Residual plastic mulch film pollution in agricultural fields threatens soil health and sustainable agriculture due to structural degradation and inefficient recovery. To address this, this study investigated the effects of mulch film thickness (0.006-0.014 mm), mulching duration (0-120 days), and two contrasting ecological regions in the Guizhou Province of China: Longgang Town (Kaiyang County) and Linquan Town (Qianxi County), on physical properties and recyclability in tobacco cultivation. Analyses of mechanical, optical, and recycling efficiency revealed that tensile, tear, and puncture strengths increase proportionally with thickness across identical durations, while elongation rates initially increase and then decline. Prolonged mulching reduces mechanical performance at fixed thicknesses, with longitudinal tensile and tear strengths consistently exceeding transverse values. Optical properties vary significantly: unused films exhibit peak light transmittance and haze, while 0.008 mm films achieve maximum transmittance, and thicker films (0.010-0.014 mm) show higher haze. Recycling efficiency correlates positively with thickness and inversely with mulching duration. After 120 days, recycling efficiency strongly correlates with longitudinal and transverse tear loads. Regional variations significantly affect the mechanical properties of 0.010 mm films, suggesting that 0.010 mm films may adapt better to diverse environments. Thicker films show higher recyclability after 120 days of mulching due to retained structural integrity. These findings systematically link physical degradation patterns to recyclability under field conditions, offering actionable insights for optimizing mulch film use, designing durable products, and improving recovery machinery. The study supports sustainable agricultural practices by balancing film performance, environmental adaptability, and end-of-life recovery efficiency.

Keywords

Main Subjects

©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)

  1. Ainali, N. M., Bikiaris, D. N., & Lambropoulou, D. A. (2021). Aging effects on low- and high-density polyethylene, polypropylene and polystyrene under UV irradiation: An insight into decomposition mechanism by py-GC/MS for microplastic analysis. Journal of Analytical and Applied Pyrolysis, 158, 105207. https://doi.org/10.1016/j.jaap.2021.105207
  2. Antunes, M. C., Agnelli, J. A. M., Babetto, A. S., Bonse, B. C., & Bettini, S. H. P. (2018). Correlating different techniques in the thermooxidative degradation monitoring of high-density polyethylene containing pro-degradant and antioxidants. Polymer Testing, 69, 182‑187. https://doi.org/10.1016/j.polymertesting.2018.05.008
  3. Beltrán-Sanahuja, A., Benito-Kaesbach, A., Sánchez-García, N., & Sanz-Lázaro, C. (2021). Degradation of conventional and biobased plastics in soil under contrasting environmental conditions. Science of The Total Environment, 787, 147678. https://doi.org/10.1016/j.scitotenv.2021.147678
  4. Briassoulis, D., Babou, E., Hiskakis, M., & Kyrikou, I. (2015). Degradation in soil behavior of artificially aged polyethylene films with pro‐oxidants. Journal of Applied Polymer Science, 132(30). https://doi.org/10.1002/app.42289
  5. Bulati, A., Zhan, L., Xu, Z., & Yang, K. (2025). Obtaining the value of waste polyethylene mulch film through pretreatment and recycling technology in China. Waste Management (new York, N.Y.), 197, 35‑49. https://doi.org/10.1016/j.wasman.2025.02.029
  6. Chen, Q., Wang, Q., Zhang, C., Zhang, J., Dong, Z., & Xu, Q. (2021). Aging simulation of thin-film plastics in different environments to examine the formation of microplastic. Water Research, 202, 117462. https://doi.org/10.1016/j.watres.2021.117462
  7. Chiellini, E., Corti, A., D’Antone, S., & Baciu, R. (2006). Oxo-biodegradable carbon backbone polymers – Oxidative degradation of polyethylene under accelerated test conditions. Polymer Degradation and Stability, 91(11), 2739‑2747. https://doi.org/10.1016/j.polymdegradstab.2006.03.022
  8. Cuadri, A. A., & Martín-Alfonso, J. E. (2017). The effect of thermal and thermo-oxidative degradation conditions on rheological, chemical and thermal properties of HDPE. Polymer Degradation and Stability, 141, 11‑18. https://doi.org/10.1016/j.polymdegradstab.2017.05.005
  9. Feng, C., Wang, X., Zhang, J., Dong, J., Yu, X., Wang, Y., & Ling, A. (2020). Study on the Optimal Film Transmittance for Transplanting Short Tobacco Seedlings under Plastic Film. Chinese tobacco science, 41(1), 16‑21. https://doi.org/10.13496/j.issn.1007-5119.2020.01.003
  10. Gao, H., Yan, C., Liu, Q., Ding, W., Chen, B., & Li, Z. (2019). Effects of plastic mulching and plastic residue on agricultural production: A meta-analysis. Science of The Total Environment, 651, 484‑492. https://doi.org/10.1016/j.scitotenv.2018.09.105
  11. Gao, W., Li, Z., Cai, K., Zeng, Y., Lin, Y., Wu, S., …, & Pan, W. (2020). Impacts of Mulching Plastic Film Residue on Migration of Soil Nitrogen and Growth of Flue-cured Tobacco Roots. Acta Pedologica Sinica, 57(6), 1556‑1563. https://doi.org/10.11766/trxb201906030257
  12. Han, Y., Wei, M., Shi, X., Wang, D., Zhang, X., Zhao, Y., …, & Li, F. (2020). Effects of Tensile Stress and Soil Burial on Mechanical and Chemical Degradation Potential of Agricultural Plastic Films. Sustainability, 12(19), 7985. https://doi.org/10.3390/su12197985
  13. Huang, F., Zhang, Q., Wang, L., Zhang, C., & Zhang, Y. (2023). Are biodegradable mulch films a sustainable solution to microplastic mulch film pollution? A biogeochemical perspective. Journal of Hazardous Materials, 459, 132024. https://doi.org/10.1016/j.jhazmat.2023.132024
  14. Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrady, A., …, & Law, K. L. (2015). Plastic waste inputs from land into the ocean. Science, 347(6223), 768‑771. https://doi.org/10.1126/science.1260352
  15. Jiang, D., Chen, X., Yan, L., Yang, J., & Li, Y. (2023). Mechanical and friction properties of agricultural plastic film during autumn harvest period of cotton in Xinjiang, China. Environmental Science and Pollution Research, 30(38), 89238‑89252. https://doi.org/10.1007/s11356-023-28642-2
  16. Kasirajan, S., & Ngouajio, M. (2012). Polyethylene and biodegradable mulches for agricultural applications: A review. Agronomy for Sustainable Development, 32(2), 501‑529. https://doi.org/10.1007/s13593-011-0068-3
  17. Khalid, N., Aqeel, M., Noman, A., & Fatima Rizvi, Z. (2023). Impact of plastic mulching as a major source of microplastics in agroecosystems. Journal of Hazardous Materials, 445, 130455. https://doi.org/10.1016/j.jhazmat.2022.130455
  18. Liang, R., Zhu, Z., Peng, C., Bian, Z., Yang, X., Wang, H., & Wang, X.-X. (2024). Mulch film to plastic debris: A survey of agricultural soils of hebei province, north China. Science of the Total Environment, 918, 170509. https://doi.org/10.1016/j.scitotenv.2024.170509
  19. Lin, N., Luo, X., Wen, J., Fu, J., Zhang, H., Siddique, K. H. M., …, & Zhao, Y. (2024). Black biodegradable mulching increases grain yield and net return while decreasing carbon footprint in rain-fed conditions of the Loess Plateau. Field Crops Research, 318, 109590. https://doi.org/10.1016/j.fcr.2024.109590
  20. Liu, E. K., He, W. Q., & Yan, C. R. (2014). ‘White revolution’ to ‘white pollution’—Agricultural plastic film mulch in China. Environmental Research Letters, 9(9), 091001. https://doi.org/10.1088/1748-9326/9/9/091001
  21. Liu, P., Zhan, X., Wu, X., Li, J., Wang, H., & Gao, S. (2020). Effect of weathering on environmental behavior of microplastics: Properties, sorption and potential risks. Chemosphere, 242, 125193. https://doi.org/10.1016/j.chemosphere.2019.125193
  22. Madrid, B., Wortman, S., Hayes, D. G., DeBruyn, J. M., Miles, C., Flury, M., …, & DeVetter, L. W. (2022). End-of-Life Management Options for Agricultural Mulch Films in the United States—A Review. Frontiers in Sustainable Food Systems, 6. https://doi.org/10.3389/fsufs.2022.921496
  23. Qiang, L., Hu, H., Li, G., Xu, J., Cheng, J., Wang, J., & Zhang, R. (2023). Plastic mulching, and occurrence, incorporation, degradation, and impacts of polyethylene microplastics in agroecosystems. Ecotoxicology and Environmental Safety, 263, 115274. https://doi.org/10.1016/j.ecoenv.2023.115274
  24. Shen, L., Wang, P., & Zhang, L. (2012). Degradation property of degradable film and its effect on soil temperature and moisture and maize growth. Transactions of the Chinese Society of Agricultural Engineering, 28(4), 111‑116.
  25. Singh, B., & Sharma, N. (2008). Mechanistic implications of plastic degradation. Polymer Degradation and Stability, 93(3), 561‑584. https://doi.org/10.1016/j.polymdegradstab.2007.11.008
  26. Song, Y. K., Hong, S. H., Jang, M., Han, G. M., Jung, S. W., & Shim, W. J. (2018). Corrections to “Combined Effects of UV Exposure Duration and Mechanical Abrasion on Microplastic Fragmentation by Polymer Type”. Environmental Science & Technology, 52(6), 3831‑3832. https://doi.org/10.1021/acs.est.8b00172
  27. Steinmetz, Z., Wollmann, C., Schaefer, M., Buchmann, C., David, J., Tröger, J., …, & Schaumann, G. E. (2016). Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? Science of The Total Environment, 550, 690‑705. https://doi.org/10.1016/j.scitotenv.2016.01.153
  28. Sun, D., Li, H., Wang, E., He, W., Hao, W., Yan, C., …, & Zhang, F. (2020). An overview of the use of plastic-film mulching in China to increase crop yield and water-use efficiency. National Science Review, 7(10), 1523‑1526. https://doi.org/10.1093/nsr/nwaa146
  29. Sun, J., Wang, X., Zheng, H., Xiang, H., Jiang, X., & Fan, J. (2024). Characterization of the degradation products of biodegradable and traditional plastics on UV irradiation and mechanical abrasion. Science of The Total Environment, 909, 168618. https://doi.org/10.1016/j.scitotenv.2023.168618
  30. Tang, Y., Zhao, Y., Wang, J., & Wang, Z. (2020). Design and experiment of film removing device for clamping finger-chain type residual film collector. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 36(13), 11‑19. https://doi.org/10.11975/j.issn.1002-6819.2020.13.002
  31. Tang, Y., Zuo, F., Li, C., Zhang, Q., Gao, W., & Cheng, J. (2024). Combined effects of biochar and biodegradable mulch film on chromium bioavailability and the agronomic characteristics of tobacco. Scientific Reports, 14(1), 6867. https://doi.org/10.1038/s41598-024-56973-8
  32. Wang, B., Pan, Y., Zhao, L., Li, J., & Guo, Z. (2024). Kinetics and mechanism of thermal and thermo-oxidative degradation for high-density polyethylene modified by fullerene and its derivative. Thermochimica Acta, 742, 179871. https://doi.org/10.1016/j.tca.2024.179871
  33. Wang, S., Li, Q., Ye, C., Ma, W., Sun, Y., Zhao, B., …, & Li, D. (2024). Effects of mulch films with different thicknesses on the microbial community of tobacco rhizosphere soil in Yunnan laterite. Frontiers in Microbiology, 15. https://doi.org/10.3389/fmicb.2024.1458470
  34. Wang, T., Ma, Y., & Ji, R. (2021). Aging processes of polyethylene mulch films and preparation of microplastics with environmental characteristics. Bulletin of Environmental Contamination and Toxicology, 107(4), 736‑740. https://doi.org/10.1007/s00128-020-02975-x
  35. Wu, C., Ma, Y., Wang, D., Shan, Y., Song, X., Hu, H., …, & Ma, Y. (2022). Integrated microbiology and metabolomics analysis reveal plastic mulch film residue affects soil microorganisms and their metabolic functions. Journal of Hazardous Materials, 423(Pt B), 127258. https://doi.org/10.1016/j.jhazmat.2021.127258
  36. Xie, J., Yan, Y., Fan, S., Min, X., Wang, L., You, X., …, & Xu, J. (2022). Prediction Model of Photodegradation for PBAT/PLA Mulch Films: Strategy to Fast Evaluate Service Life. Environmental Science & Technology, 56(12), 9041‑9051. https://doi.org/10.1021/acs.est.2c01687
  37. Xu, Z., Zheng, B., Yang, Y., Yang, Y., Jiang, G., & Tian, Y. (2024). Effects of biodegradable (PBAT/PLA) and conventional (LDPE) mulch film residues on bacterial communities and metabolic functions in different agricultural soils. Journal of Hazardous Materials, 472, 134425. https://doi.org/10.1016/j.jhazmat.2024.134425
  38. Yan, W., Hu, Z., Wu, N., Xu, H., You, Z., & Zhou, X. (2017). Parameter optimization and experiment for plastic film transport mechanism of shovel screen type plastic film residue collector. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 33(1), 17‑24. https://doi.org/10.11975/j.issn.1002-6819.2017.01.003
  39. Yan, X., Kong, J., Wang, X., Wang, Y., & Li, Y. (2021). Changes in Planting Scale of Flue-cured Tobacco Production Regions in China in Recent 20 Years. Chinses Tobacco Science, 42(4), 92‑101. https://doi.org/10.13496/j.issn.1007-5119.2021.04.014
  40. Yu, X., Zhao, J., & Ma, M. (2021). Film of Different Thickness: Effect on Residual and Recovery of Waste Film and Selection. Journal of Agriculture, 11(1), 32. https://doi.org/10.11923/j.issn.2095-4050.cjas20190800157
  41. Zhang, C., Liu, X., Zhang, L., Chen, Q., & Xu, Q. (2024). Assessing the aging and environmental implications of polyethylene mulch films in agricultural land. Environmental Science : Processes & Impacts, 26(8), 1310‑1321. https://doi.org/10.1039/D4EM00102H
  42. Zhang, H., Miles, C., Gerdeman, B., LaHue, D. G., & DeVetter, L. (2021). Plastic mulch use in perennial fruit cropping systems – A review. Scientia Horticulturae, 281, 109975. https://doi.org/10.1016/j.scienta.2021.109975
  43. Zhao, H., Xiong, Y., Li, F., Wang, R., Qiang, S., Yao, T., & Mo, F. (2012). Plastic film mulch for half growing-season maximized WUE and yield of potato via moisture-temperature improvement in a semi-arid agroecosystem.
CAPTCHA Image