with the collaboration of Iranian Society of Mechanical Engineers (ISME)

Document Type : Research Article-en

Authors

Biosystems Engineering Department, School of Agriculture, Shiraz University, Shiraz, Iran

10.22067/jam.2025.92739.1358

Abstract

Drying is a vital preservation method in the food industry, reducing moisture content while maintaining product quality and extending shelf life. This process involves complex heat and mass transfer mechanisms, necessitating accurate predictive models. This study compares various modeling approaches, including regression models, semi-empirical, and artificial intelligence (AI)-based methods, to simulate the drying process of potato slices. Experimental drying trials were run at 40°C, 50°C, and 60°C, both with and without phase change materials (PCM) and infrared radiation (IR). AI models (ANN, SVM, and RF) were trained and validated using experimental data. Their performance was evaluated against conventional and semi-empirical models using R2, RMSE, MAE, and MBE. Results indicate that ANN achieved the highest predictive accuracy (R2= 0.998, RMSE= 0.0656 g water g-1 dry matter), outperforming other models. SVM also demonstrated strong predictive capability, while RF performed slightly lower. Among semi-empirical models, the Midilli model provided the best fit but was less accurate than AI-based models. These findings highlight the superiority of AI-driven approaches, particularly ANN, in optimizing drying processes for the food industry.

Keywords

Main Subjects

©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)

  1. AOAC (2000). AOAC Official Method 934.06: Moisture in dried fruits. In Official Methods of Analysis (17th ed.). Gaithersburg, MD: AOAC International.
  2. Atia, A., Teggar, M., & Laouer, A. (2024). Performance of various solar dryer types integrating latent heat storage for drying agricultural products: An up-to-date review. Journal of Energy Storage102, 114048.‏ https://doi.org/10.1016/j.est.2024.114048
  3. Azadbakht, M., Torshizi, M. V., Aghili, H., & Ziaratban, A. (2018). Application of artificial neural network (ANN) in drying kinetics analysis for potato cubes. Carpathian Journal of Food Science & Technology10(2), 96-106.‏
  4. Benseddik, A., Azzi, A., & Allaf, K. (2018). Mathematical empirical models of thin-layer airflow drying kinetics of pumpkin slice. Engineering in Agriculture, Environment and Food11(4), 220-231.‏ https://doi.org/10.1016/j.eaef.2018.07.003
  5. Chokphoemphun, S., Hongkong, S., & Chokphoemphun, S. (2024). Artificial neural network for drying behavior prediction of paddy in developed chamber fluidized–bed dryer. Computers and Electronics in Agriculture220, 108888.‏ https://doi.org/10.1016/j.compag.2024.108888
  6. Chukwunonye, C. D., Nnaemeka, N. R., Chijioke, O. V., & Obiora, N. C. (2016). Thin layer drying modelling for some selected Nigerian produce: a review. American Journal of Food Science and Nutrition Research3(1), 1-15.‏
  7. Duffie, J. A., Beckman, W. A., & Blair, N. (2020). Solar engineering of thermal processes, photovoltaics and wind. John Wiley & Sons.‏
  8. Ertekin, C., & Firat, M. Z. (2017). A comprehensive review of thin-layer drying models used in agricultural products. Critical Reviews in Food Science and Nutrition57(4), 701-717.‏ https://doi.org/10.1080/10408398.2014.910493
  9. Fartash Naeimi, E., Khoshtaghaza, M. H., Selvi, K. Ç., Ungureanu, N., & Abbasi, S. (2024). Optimization of the Drying Process for Gamma-Irradiated Mushroom Slices Using Mathematical Models and Machine Learning Algorithms. Agriculture14(12), 2351.‏https://doi.org/10.3390/agriculture14122351
  10. Fathi, M., Roshanak, S., Rahimmalek, M., & Goli, S. A. H. (2016). Thin-layer drying of tea leaves: Mass transfer modeling using semi-empirical and intelligent models. International Food Research Journal23(1), 40.
  11. Karaağaç, M. O., Ergün, A., Ağbulut, Ü., Gürel, A. E., & Ceylan, I. (2021). Experimental analysis of CPV/T solar dryer with nano-enhanced PCM and prediction of drying parameters using ANN and SVM algorithms. Solar Energy218, 57-67.‏ https://doi.org/10.1016/j.solener.2021.02.028
  12. Karakaplan, N., Goz, E., Tosun, E., & Yuceer, M. (2019). Kinetic and artificial neural network modeling techniques to predict the drying kinetics of Mentha spicataJournal of Food Processing and Preservation43(10), e14142.‏ https://doi.org/10.1111/jfpp.14142
  13. Kaveh, M., Abbaspour-Gilandeh, Y., & Emadi, B. (2020). Application of artificial intelligence methods for predicting drying kinetics of fruits and vegetables: A review. Journal of Food Process Engineering, 43(8), e13477. https://doi.org/10.1111/jfpe.13477
  14. Kelleher, J. D. (2019). Deep learning. MIT press.
  15. Kumar, R., Kumar, P., Hota, N. K., & Pandey, O. P. (2025). Semi-empirical thin-layer drying model for the agricultural products. Chemical Engineering Communications212(5), 728-738.‏ https://doi.org/10.1080/00986445.2024.2432672
  16. Kutlu, N., İșcİ, A., & Demİrkol, Ö. Ș. (2015). Thin layer drying models in food systems.‏
  17. Lee, H. J., Lee, S. K., Kim, H., Kim, W., & Han, J. W. (2016). Thin-layer Drying Characteristics of Rapeseed. Journal of Biosystems Engineering41(3), 232-239.‏
  18. Lopes, S., Santos, S., Rodrigues, N., Pinho, P., & Viegas, D. X. (2023). Modelling sorption processes of 10-h dead Pinus pinaster branches. International Journal of Wildland Fire32(6), 903-912.‏ https://doi.org/10.1071/WF22127
  19. Madhankumar, S., Viswanathan, K., Wu, W., & Taipabu, M. I. (2023). Analysis of indirect solar dryer with PCM energy storage material: Energy, economic, drying and optimization. Solar Energy249, 667-683. https://doi.org/10.1016/j.solener.2022.12.009
  20. Mahesh, J. S., Rengaraju, B., & Selvakumarasamy, S. (2024). Effect of ANN and semi-empirical models on dried Annona muricata leaves. Biomass Conversion and Biorefinery, 1-13.‏ https://doi.org/10.1007/s13399-024-05546-w
  21. Perazzini, H., Freire, F. B., & Freire, J. T. (2013). Drying kinetics prediction of solid waste using semi‐empirical and artificial neural network models. Chemical Engineering & Technology36(7), 1193-1201.‏ https://doi.org/10.1002/ceat.201200593
  22. Pham, Q. T., Shrivastava, A., & Karim, M. A. (2021). Numerical modeling of food drying processes using computational fluid dynamics (CFD): A review. Journal of Food Engineering, 301, 110565. https://doi.org/10.1016/j.jfoodeng.2021.110565
  23. Poonia, S., Singh, A. K., & Jain, D. (2022). Performance evaluation of phase change material (PCM) based hybrid photovoltaic/thermal solar dryer for drying arid fruits. Materials Today: Proceedings52, 1302-1308.‏ https://doi.org/10.1016/j.matpr.2021.11.058
  24. Rakshamuthu, S., Jegan, S., Benyameen, J. J., Selvakumar, V., Anandeeswaran, K., & Iyahraja, S. (2021). Experimental analysis of small size solar dryer with phase change materials for food preservation. Journal of Energy Storage33, 102095.‏ https://doi.org/10.1016/j.est.2020.102095
  25. Rasooli Sharabiani, V., Kaveh, M., Abdi, R., Szymanek, M., & Tanaś, W. (2021). Estimation of moisture ratio for apple drying by convective and microwave methods using artificial neural network modeling. Scientific Reports11(1), 9155.‏ https://doi.org/10.1038/s41598-021-88270-z
  26. Sabzevari, M., Behroozi‐Khazaei, N., & Darvishi, H. (2021). Real‐time evaluation of artificial neural network‐developed model of banana slice kinetics in microwave‐hot air dryer. Journal of Food Process Engineering44(9), e13796.‏ https://doi.org/10.1111/jfpe.13796
  27. Saleem, M., & Ali, I. (2017, September). Machine learning based prediction of pyrolytic conversion for red sea seaweed. In Proceedings of the 7th International Conference on Biological, Chemical & Environmental Sciences (BCES-2017), Budapest, Hungary(pp. 6-7).‏ https://doi.org/10.17758/EAP.C0917043
  28. Simpson, R., Ramírez, C., Nuñez, H., Jaques, A., & Almonacid, S. (2017). Understanding the success of Page's model and related empirical equations in fitting experimental data of diffusion phenomena in food matrices. Trends in Food Science & Technology62, 194-201.‏ https://doi.org/10.1016/j.tifs.2017.01.003
  29. Topal, M. E., Şahin, B., & Vela, S. (2024). Artificial Neural Network Modeling Techniques for Drying Kinetics of Citrus medica Fruit during the Freeze-Drying Process. Processes12(7), 1362.‏ https://doi.org/10.3390/pr12071362
  30. Zhang, Q., Wang, M., & Zhu, Z. (2019). Machine learning models for predicting drying kinetics in food processing: A case study on apple slices. Drying Technology, 37(11), 1367-1379. https://doi.org/10.1080/07373937.2018.1535158
CAPTCHA Image