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Abstract

The study of soil behaviour in wheel interaction is complex due to the wheel's geometry and the varying soil
conditions. Traditional measurements of soil parameters, such as the Bevameter and the cone penetrometer, are
time-consuming and labour-intensive. This research presents a machine learning-based approach to predict soil
sinkage in plate penetration tests, providing a suitable alternative to conventional methods. A soil bin with
controlled experimental conditions was used to collect data, which was measured by a load cell and a magnetic
encoder at a constant penetration rate of 4 mm s*. Two main machine learning models were selected; XGBoost
and CatBoost. Hybrid versions of these models were developed using the Shrike Bird Optimisation Algorithm
(SBOA). The results showed that the hybrid models outperformed the base models. The SBOA-CatBoost hybrid
model achieved the highest accuracy on the training data with a coefficient of determination of 0.99, a mean square
error of 2.81, and a mean absolute error of 0.79. The findings of this study highlight the potential of machine
learning as a cost-effective and efficient alternative to traditional methods for measuring soil parameters. Further
research is recommended to validate these models in different soil types and conditions.
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Introduction

The study of soil behaviour during
interaction with off-road vehicles is a complex
process. Several factors, including soil type,
wheel geometry, and soil density, significantly
influence the behaviour of the soil (Laughery,
Gerhart, & Muench, 2000). The most important
methods and equipment for measuring soil
properties are the cone penetrometer and the
Bevameter (Kim, Im, Choi, Oh, & Park, 2021,
Taghavifar & Mardani, 2014a; Van, Matsuo,
Koumoto, & Inaba, 2008). The Bevameter
measures multiple soil quantities for numerical
and analytical soil simulations to predict the
traction device's interaction with soil (Mason et
al., 2020). The Bevameter is the standard
method for scientific exploration, soil
engineering, and off-road vehicle design (De
Janosi, 1959). On the other hand, the Bevameter
technique provides the closest simulation of
vehicle loading conditions among the various
measurement techniques currently used (Wong,
1989).

Among the soil parameters, soil resistance to

penetration and shear stress are factors that
affect the machine's ability to move, limiting
both the terrain's potential and traction
(Taghavifar & Mardani, 2017). The soil
deformation parameters in the Bekker equation
(ke, ko, and n) are usually determined by several
penetration plate tests of different sizes (by, by,
and bz), which define the pressure-sinkage
relationship (Eg. 1). Normal loads are repeated
with a set of penetration plate tests (rectangular
or circular plate sizes) from 9.52 to 76.2 mm in
width or diameter (Bekker, 1969).

P =(l;—°+k¢)z” (1)

where P is the pressure on the plates, b is the
plate’s diameter, and Z is the soil sinkage.
Measuring soil parameters in both outdoor
and indoor conditions presents several
challenges, including the influence of
environmental factors, sampling errors, and the
associated costs and time requirements
(Mardani & Golanbari, 2024). Predicting soil
parameters for soil-vehicle interaction studies is
essential in  various aspects, including
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agriculture, industry, and the military. To
model soil-wheel interaction, it is necessary to
measure soil parameters such as soil resistance
and soil hardness, which affect the amount of
wheel sinkage and the traction force
(Golanbari,  Mardani,  Hosainpour, &
Taghavifar, 2023; Golanbari & Mardani, 2023).
On the other hand, predicting soil parameters
can be crucial in terms of cost and time.
Additionally, utilising these parameters is
crucial for optimising vehicle performance in
agriculture, transportation, and off-road
applications.

Mathematical, experimental, and numerical
models have been widely used to predict soil
parameters and tyre-soil interaction under
different conditions (Brunskill et al., 2011;
Carman, 2002; Chou, Zhu, Skelton, Wagner, &
Yang, 2011; Golanbari & Mardani, 2024).
These models are developed based on pressure-
sinkage and rolling resistance equations and
mainly depend on laboratory and field data.
However, mathematical models cannot
accurately represent the actual conditions of
wheel-soil interaction and often exhibit
significant errors due to oversimplification and
insufficient accuracy in modelling the soil's
nonlinear behaviour (Golanbari, Mardani,
Hosainpour, & Taghavifar, 2025). In recent
years, the use of machine learning models has
been introduced in various fields of
Terramechanical studies (Golanbari et al.,
2023; Golanbari, Mardani, Farhadi, & Nazari
Chamki, 2025; Huang, Zhang, & Xie, 2022;
Taghavifar & Mardani, 2014b; Taghavifar,
Mardani, & Karim-Maslak, 2014). These
methods have become a suitable alternative to
traditional mathematical and semi-empirical
methods due to their ability to model nonlinear
and complex relationships between input and
output variables (Golanbari, Mardani, Farhadi,
& Reina, 2024).

In a study by Rashidi and Gholami (2010),
the finite element method (FEM) was used to
predict soil sinkage under multiple loads. The
study showed that FEM can more accurately
model the soil behaviour under repeated loads.
The results of this study showed that the first
three loads have the most significant impact on

soil sinkage, accounting for approximately 89%
of the total soil sinkage. These findings
underscore the significance of employing
numerical methods in predicting soil behaviour
under off-road vehicle loads.

Thornton, Pesheck, and Jayakumar (2023)
have introduced a new method that predicts the
results of the Bevameter using a reduced model
(ROM). This method is integrated into a multi-
objective  optimisation  framework  for
optimising the properties of the discrete
element method (DEM). Negrut, Hu, Li,
Unjhawala, and Serban (2023) developed the
concept of virtual Bevameter tests using
computer simulations. This method uses a
continuous representation model to generate
accurate data for calibrating soil contact models
and has been proposed as an alternative to
traditional Bevameter tests. In a study by
Golanbari et al. (2023), a deep neural network
(DNN) was used to investigate the plate
penetration rate in determining soil parameters
using soil pressure-sinkage diagrams. By
varying the plate penetration rate, they
demonstrated that different parameters could be
obtained for the same soil type under the same
initial conditions.

According to previous studies, most research
has been conducted using traditional methods.
In contrast, few studies have employed artificial
intelligence-based models to enhance the
accuracy of predicting soil parameters and their
behaviour under various conditions. However,
among the studies based on machine learning
methods, there have been limited studies
conducted to predict soil response based on
multifactorial inputs without simplifying the
influential variables. This study aims to develop
a data-driven model to predict soil behaviour
under off-road vehicle loading conditions using
the results of plate penetration tests conducted
in a laboratory environment. Unlike
conventional  approaches, the proposed
framework preserves the complexity of the
experimental variables and utilises modern
machine learning techniques, including
CatBoost and XGBoost, to enhance prediction
accuracy. Additionally, the Shrike Bird
Optimisation Algorithm (SBOA), a meta-
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heuristic, is employed to optimise the
hyperparameters of machine learning models.
This combined strategy—employed for the first
time in the field of Terramechanics—
demonstrates suitable predictive performance
and model robustness when tested on a fully
independent experimental dataset, thereby
highlighting its  potential for  broader
applications in soils.

Materials and Methods
A soil bin is a laboratory environment that

allows for the precise control of experimental
factors used to study the interaction between a
machine and soil. A soil bin usually consists of
a soil channel with specific dimensions, a
carrier, a power transmission system, and
measurement equipment. The soil bin used in
this study is a fixed metal structure located on
the ground surface, and the soil bed is wholly
separated from the ground. The soil bin consists
of a 24 m long soil channel, a 2 m wide channel,
and a 1 m deep soil layer. Fig. 1 shows the
various components of a soil bin.

Fig. 1. Soil bin and its components: 1- Chassis, 2- Dead load location, 3- Traction device (wheel), 4- Data logger, 5-
Inverter, 6- Computer, and 7- Bevameter

The linear speed of the pneumatic wheel or
track wheel is equivalent to the carrier's forward
speed. A three-phase industrial electric motor
with a power of 22 kW (30 hp) was used to
provide the required power for the carrier. This
electric motor provides the driving force
required to move the carrier, which is
transmitted through the gear to the axle at the
edge of the channel.

Considering that the forward speed of the
wheel is one of the dynamic parameters studied
in this research, an inverter manufactured by the
LS brand (SV 220 1S5-2NO, 380V, South

Korea) was used to control the rotational speed
of the drive motor. This ultimately leads to the
linear speed of the driven carrier. In this study,
different forward speeds were used for the
movement of the carrier, including speeds of 1,
2,and 3 kmh?,

Considering the motor's rated speed of 1457
rpm, the inverter can apply a speed from zero to
about 21 km h, which can be controlled
precisely. The forward speed has a linear
relationship with the inverter's frequency,
which is shown in Fig. 2 as a calibration chart
for obtaining different speeds.
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Fig. 2. Inverter calibration diagram and its relationship with carrier forward speed

Furthermore, three vertical load levels of 2,
3, and 4 kN were applied as dead loads on the
wheel to consider the effect of vertical load on
soil parameters. For this purpose, the dead load
was placed on the carrier at predetermined
locations in each stage of the tests. The location
of the load was designed to apply it thoroughly
and balance it without creating lateral forces on
the wheel. On the other hand, the number of
passes was considered another parameter. Since
previous research has shown that the most
significant changes in soil texture and density
occur during the initial passes, seven pass

levels, including passes 1, 2, 3, 5, 7, 10, and 15,
were considered for this study. Also, the type of
traction device can affect the soil differently
due to variations in geometry and contact
surface, which alter the stress and load
distribution on the soil (Ani et al., 2018).
Therefore, two conventional traction factors,
including pneumatic wheels and track wheels,
were considered in this study. Table 1 shows
the experimental parameters and their
descriptive statistics. These parameters were
used as inputs to the machine learning models.

Table 1- Descriptive statistics of training data

Parameters Mean Std Dev. Min Max Skewness Kurtosis
Traction Device 1.474 04993 1z 2% 0.103363 -1.9896
Vertical load (kN) 3.492  0.770 2 4 -1.10244  -0.4277
Forward speed (km h?) 2.028  0.8056 1 3 -0.04987  -1.4574
Multiple pass 5.763  4.8439 1 15 0.886232 -0.6568
Plate diameter (mm) 64 15 50 80  0.073635 -1.9948
Pressure (kPa) 156.9 110.01 0 565  0.495656  -0.2336

#Note: Values ‘1’ and ‘2’ under the “Traction Device Type” column represent categorical codes for the two traction
systems used: 1 = pneumatic tire, and 2 = track.

Table 1 presents the distribution
characteristics of the experimental data. The
means indicate the centrality of the data, and the
standard deviation indicates the degree of

dispersion of the data around the mean. The
minimum and maximum values indicate the
range of the parameters. The skewness index
describes the shape of the data distribution, with
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positive values indicating a longer tail to the
right of the normal distribution and negative
values indicating a longer tail to the left of the
normal distribution. The Kkurtosis value
indicates the degree of concentration of the data
around the mean, with negative values
indicating a flatter distribution and positive
values indicating a more peaked distribution.
The parameters of the traction device type and
the test plate’s diameter show an almost
symmetrical  distribution  with  negative
skewness, indicating that the data are
concentrated around the middle values.

In contrast, the parameter of the number of
passes with positive skewness exhibits an
asymmetrical distribution, with the data
concentrated at lower values. The selection of

more test levels in the initial traffic can justify
this. The vertical load and forward speed have
symmetrical distributions. Vertical pressure
also has a relatively balanced distribution with
a slight tendency toward lower values.

The channel was filled with clay loam soil
that had been sieved through a 50 mm sieve.
This soil was randomly selected and collected
from a single location in the region's
agricultural soils. A 50 mm sieve was used to
remove stones and large clods. This procedure
ensured that the soil was approximately
homogeneous throughout the soil channel,
thereby preventing measurement errors caused
by large particles. Table 2 shows the
characteristics of the soil used.

Table 2- Characteristics of the soil bin soil

Parameter Value
Sand 35%
Silt 26%
Clay 39%
Moisture content 8%
Bulk density 1460 kg m
Young's modulus 0.3 MPa
Poisson's ratio 0.29
Angle of internal friction 32

Data acquisition

A portable Bevameter is mounted on the
carrier. It can be used to measure the triple
parameters of the Bekker equation of the soil

immediately after the wheel passes. Fig. 3
schematically shows the different components
of the Bevameter.
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Fig. 3. Schematic of the Bevameter and its attachments: 1- Power supply, 2- Inverter, 3- Electric motor, 4- Bevameter,
5- linear magnetic encoder, 6- S-shaped load cell, 7- Infiltration plates, 8- Data logger

The Bevameter operates by measuring two
parameters. One is the vertical force applied to
the plates, which is measured by S-type load
cells. The other is the linear movement of the
plates, which is measured by a linear magnetic
encoder. In this study, two circular plates with
diameters of 50 and 80 mm were used.

After installing the plates on the Bevameter,
the plates penetrated the soil at a constant speed
of 4 mm s to a depth of 70 mm. A load cell
and a magnetic encoder measure the vertical
force required for penetration and the
penetration  depth,  respectively.  The
measurements should be such that each load
cell's data corresponds to the magnetic encoder
data. On the other hand, to perform statistical
analyses and examine the effect of variables on
the experimental results, the measured data in
each experiment should be stored in a non-
volatile memory. The digital data logger can
connect 10 parallel channels for different
sensors and provide cumulative output. This
ensures that the corresponding data from the
load cell and magnetic encoder are accurately
recorded at a given time. This system is capable
of recording data at a frequency of 60 Hz.

Due to the constant speed, the amount of
data in each experimental treatment was almost
equal. However, there were some differences,
S0 using a program written in Python 3.10, the
number of experimental data points for all
treatments was equalised without changing the
trend. After removing noise and pre-processing,
a total of 15,620 data points remained and were
used for model training and validation.
Additionally, an independent experimental trial
was conducted using a combination of vertical
load, forward speed, and the number of passes,
which were not included in the training dataset.
From this trial, 100 data points were selected as
an entirely separate test set to evaluate the
model’s generalisation ability. Of the 15,620
training data points, 80% were used for
training, and 20% were used for validation.

In this study, to reduce the sensitivity of
machine learning models to the scale of the
input data, the data were normalised using the
Standardisation method. This method is one of
the most common normalisation methods in
data pre-processing. Data normalisation aims to
convert the data into values with a mean of zero
and a standard deviation of one. This ensures
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that the data is on the same scale and enables
machine learning algorithms to perform more

effectively. Standardisation is performed
according to Eq. 2.
Xij = M
Zij = f (2

i

where xij is the value of the i-th sample in the j-
th feature, 1 is the mean of the j™ feature, and
aij is the standard deviation of the j™ feature.

Machine learning methods representation

This section introduces machine learning
models for predicting soil sinkage in the Bekker
method based on the independent variables

used in this research. Machine learning models,
including XGBoost and CatBoost as basic
models, as well as hybrid versions of these
models optimised with the SBOA algorithm,
are examined. The SBOA algorithm is used to
fine-tune each model by minimising the root
mean square error (RMSE) on the validation
data through iterative optimisation. A summary
of the hyperparameters subjected to
optimisation, along with their respective types
and ranges, is presented in Table 3. In addition,
details of the data preparation process and
model evaluation metrics are also provided in
this section.

Table 3- Optimised hyperparameters and their value ranges for XGBoost and CatBoost models using the SBOA

algorithm
XGBoost CatBoost

Hyperparameter Range Hyperparameter Range
“n”_estimators 100 — 1000 Iterations 100 — 1000
Max_depth 3-10 Depth 3-10
Learning_rate 0.01-0.3 Learning_rate 0.01-0.3
Reg_lambda 1-10 L2 leaf reg 1-10
Reg_alpha 0-10 Subsample 05-1
Subsample 05-1 Colsample_bylevel 05-1
Colsample_bytree 05-1 Min_data_in_leaf 1-10
Colsample_bylevel 05-1 Border_count 1-255
Min_child_weight 1-10 Random_strength 0-10
Gamma 0-1 Bagging_temperature 0-1

Scale_pos_weight

0-1
Max_delta_step 0-1

Early_stopping_rounds

Od_type Iter / IncToDec

10250

The selection of XGBoost and CatBoost
models as the base models is due to their better
performance in previous studies compared to
other boosting-based methods (Bentéjac,
Csorg6, & Martinez-Mufioz, 2021; Golanbari et
al., 2025). These models were selected as
suitable bases for this research due to their
ability to handle complex data, deal with
nonlinear features, and reduce the problem of
overfitting. On the other hand, hybrid models of
SBOA-XGBoost and SBOA-CatBoost were
utilised to enhance the performance of the basic
models and optimise the model
hyperparameters. The SBOA algorithm was
chosen because it performed better than other
optimisation algorithms, such as the GWA and
PSO, which were used as efficient optimisation
methods in the study to adjust the

hyperparameters of similar models (Golanbari
et al., 2025).

XGBoost is a gradient-boosting method that
has been extended to optimise decision tree
models using additive trees. This method's
advantages include avoiding overfitting using
pruning, regularisation, and parallel computing.
CatBoost is an optimised version of the gradient
boosting algorithm specifically developed for
data with categorical features. It also supports
GPU processing and reduces the effect of
overfitting. This study uses XGBoost and
CATBoost without optimisation to compare the
initial model performance.

Hybrid models of the base models were
developed to enhance their performance,
utilising the SBOA algorithm to fine-tune the
hyperparameters of the models. SBOA is a new
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meta-heuristic optimisation algorithm inspired
by the hunting behaviour of the shrike bird.
This algorithm has two main stages for
optimisation: Exploration and Exploitation. In
the Exploration stage, the shrike bird first
searches a large area for potential prey
(different solutions). This stage is equivalent to
random sampling in the search space. In the
local optimisation stage (Exploitation), the
algorithm selects and improves the best solution
after finding suitable positions. In this research,
this stage involves adjusting the optimal values
of hyperparameters in machine learning
models. These two models are optimised
versions, and their performances are compared
to that of the base models. The hyperparameters
selected for optimisation were to avoid
excessive  model  complexity, prevent
overfitting, and increase model accuracy and
convergence.

Six evaluation metrics, including coefficient
of determination (R?), mean square error
(MSE), root mean square error (RMSE), mean
absolute error (MAE), maximum Error, and
symmetric mean absolute percentage error
(SMAPE), were used to measure the accuracy
of the predictions. The calculations for these
metrics are shown in Equations 3 to 8.

2 Z(Yu _YAi )2
R S vy 3)

MSE =%_Zn:(Yi Y’ 4)

(5)
(6)
Max Error = rTi12alx(Yi -V ()
Symmetric MAPE = li %Y (8)

N |Y|+M

Result and Discussion

In this study, the sinkage value in pressure-
sinkage tests under the influence of six
parameters was predicted using machine
learning methods. The results of the first part of
this study are a sensitivity analysis examining
the effect of changes in input parameters on
model predictions. The sensitivity and
Probability-based Hybrid Analysis (SPHA)
method is used to systematically evaluate the
effect of input parameters on the model output.
By assigning probability distributions to each
parameter and performing systematic sampling,
SPHA simultaneously calculates both first-
order sensitivity indices, which represent the
independent contribution of each parameter,
and overall sensitivity indices that account for
interactive and nonlinear effects. Fig. 4 shows
the sensitivity analysis graph of parameters on
the sinkage output.
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Fig. 4. Sensitivity analysis chart

The diagram in Fig. 4 shows that the most
influential variable in the model is the pressure
on the plates. The number of passes variable is
also of considerable importance. The plate’s
diameter is also of third importance. The
subsequent influential factors are forward
speed, type of traction agent, and vertical load
on the wheel, respectively.

Machine Learning models Performance

This study evaluated the performance of
several machine learning models, including
CATBoost, XGBoost, SBOA-CATBoost, and
SBOA-XGBoost hybrid models for sinkage
prediction. After training, metrics for the
models were calculated based on the difference
between the predicted and actual values. Table
4 compares the performance of the models with
the training data.

Table 4- Performance of machine learning models

Model MSE RMSE MAE S-MAPE R?

SBOA-CATBoost 2.81
SBOA-XGBoost 2.77
CATBoost Base 14.89
XGBoost Base 31.16

0.79 9.26 0.99
0.80 9.48 0.99
2.61 22.6 0.95
3.90 28.1 0.89

Comparing the performance of CATBoost
and XGBoost models in two base model and
optimised with the SBOA algorithm on the
training data show that the evaluation criteria
on the optimised models have improved.

A comparison of the MSE, RMSE, MAE,
and S-MAPE criteria reveals that the hybrid
models outperform the basic models, indicating
a better fit with the experimental data.
However, in studies between the vehicle and the
soil, due to the high complexity of the
interactions and the large number of influential
parameters, the performance of all models can

be considered appropriate
conventional methods.

On the other hand, comparing the two hybrid
models reveals that their performance is
remarkably similar. SBOA-XGBoost performs
slightly better in the MSE and RMSE criteria,
while SBOA-CATBoost performs more
appropriately in the MAE and SMAPE criteria.
These results show that the SBOA algorithm
has significantly improved the performance of
the models.

Since the performance of the models on the
training metrics is very close, the performance

compared to
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of the models on unseen test data is significant
for the final selection between the two
optimised models, thereby achieving the
stability and generalisability of the models.
Therefore, the developed machine learning
models were evaluated on new and unseen data.
Despite the favourable performance of the
models on the training data, the primary test for
selecting a suitable model for sinkage

70
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©  XGBoost
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. @  Hybrid XGBoost
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454 —== ldeal Fit
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Predicted Values

prediction is the model performance under
actual conditions.

In this section, we will analyse the prediction
results of the test data. Fig. 5 shows the
regression plots of the models on unseen data,
along with the experimental data. This plot
compares the fit of the predicted values with the
experimental values, using the Rz metric.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

Actual Values

Fig. 5. Regression diagram of machine learning models

The graph in Fig. 5 shows that hybrid models
with higher R? values perform better than the
base models, indicating the positive effect of
the hybridisation technique on model
optimisation with the algorithm. The prediction
points of hybrid models, especially Hybrid
CATBoost, are closer to the Ideal Fit line,
whereas pure XGBoost exhibits more
dispersion in its extreme values. These results
demonstrate that hybrid models are more stable
in the face of actual data and yield better

predictions. In general, when comparing the
regression graphs, the Hybrid CATBoost model
performed best.

The residuals graph illustrates the difference
between the predicted values and the actual
values in both quantitative and qualitative
terms. Fig. 6 presents the analysis of the
residual graphs of the four models: CATBoost,
XGBoost, Hybrid XGBoost, and Hybrid
CATBoost.
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Analysis of the residual plots shows that the
hybrid models have errors closer to the zero line
and less dispersion than the basic CATBoost
and XGBoost models. The SBOA-CATBoost
model has the lowest error rate and the most
stable performance. However, errors above
zero in most data ranges indicate that the model
overpredicts slightly more than the actual

values. In contrast, XGBoost has the highest
errors and dispersion.

Metrics including MSE, RMSE, MAE, Max
Error, and SMAPE were also used to evaluate
the models utilising the unseen data. Fig. 7
shows the evaluation metrics graph for each
model.
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Fig. 7. Graph of model metrlcs on unseen data

The comparison chart of the evaluation
criteria shows that the CATBoost hybrid model
performed better than the others in all criteria
(MSE, RMSE, MAE, Max Error, and SMAPE).
Although the difference between the CATBoost
hybrid model and the XGBoost hybrid model is
minor, both models performed well. However,
the basic XGBoost model has the lowest values
in all criteria, indicating its high accuracy and

low prediction error. In contrast, the basic
XGBoost has reached the highest error values
in all criteria except for the maximum error,
indicating its weakness in prediction compared
to other models. However, it can still provide
acceptable prediction accuracy. The hybrid
models have performed better, especially in
terms of MSE and SMAPE, which indicates the
optimisation algorithm's ability to reduce
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significant errors. These results confirm the
superiority of hybridisation techniques in
improving the performance of models.

Taylor plot was also used to evaluate the
forecasting models in this study. This plot
facilitates the comparison of  model
performance by combining three metrics:

(5]
=
|
|

Reference

10—

Standard Deviation

correlation coefficient, normalised standard
deviation, and normalised RMSE. In this plot,
the reference curve represents the actual data,
and models closer to this curve have a higher
correlation, a more appropriate standard
deviation, and lower error. Fig. 8 shows the
Taylor plot of the models.
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XGBoost
Hybrid XGBoost

Hybrid CATBoost

<

Standard Deviation

L
=]

Fig. 8. Taylor diagram for the performance of machine learning models

The Taylor diagram indicates that the
Hybrid CATBoost model performed best, with
the highest correlation, an ideal normalised
standard deviation, and the lowest normalised
error. The Hybrid XGBoost model performed
worse than the Hybrid CATBoost model, but
performed well overall. The hybrid models'
good performance indicates the positive effect
of hybridisation in improving both base models.
In contrast, the base CATBoost model,
although showing an acceptable correlation,
exhibits a higher standard deviation, indicating

that its predictions have more fluctuations than
those of the hybrid models. The base XGBoost
model, with the lowest correlation and the
highest standard deviation, performed the worst
among the models. These results underscore the
need for hybrid approaches to strike a desired
balance between accuracy, stability, and
generalisability.

The graph in Fig. 9 shows the trend of
changes in the actual syncing and predictions of
four machine learning models on unseen data.
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Fig. 9. The prediction trend of machine learning models compared to actual data

The analysis of sinkage trends indicates that
all models can somewhat predict changes in
sinkage with pressure variations. However, the
hybrid models outperform the basic models.
SBOA-CATBoost also has the most stable
forecast trend in all pressure ranges. The basic
models exhibit more fluctuations in their
predictions, indicating the effect of SBOA
optimisation in reducing the variance of the
forecasts.

It can also be seen from the trend diagram
that the SBOA-XGBoost model has followed
the trend of the experimental data well, except
in parts of the middle. However, its forecast
fluctuation is greater than that of the CATBoost
hybrid model. The basic CATBoost model has
also recognised the trend well, but has more
fluctuation than the two hybrid models.
Additionally, despite minimal fluctuation in the
forecast, the XGBoost model has predicted the
trend with a greater distance from the
experimental data and exhibits a more
significant error than the other models, which
confirms the results of the previous sections.

On the other hand, it can be observed that the
models tend to predict values lower than the
actual ones, and this trend is visible in all
models except for a portion of the XGBoost
model. This type of prediction can be attributed
to the asymmetry in the training data related to
traffic, as most of the data were from low-traffic

ranges, where the soil is looser than in higher-
traffic areas. In this case, the pressure-sinkage
diagram has a lower slope. Therefore, the
models tend to predict lower values than the
actual ones, as they learn more from this data to
predict higher traffic. The results of this study
demonstrate that machine learning models
achieve sufficient accuracy in predicting soil
sinkage using a Bevameter, making these
models a viable alternative to time-consuming
and costly laboratory and field methods for
predicting soil parameters, provided they are
appropriately calibrated across different soils.
In real-time applications, recognising the soil
type can help the vehicle perform better by
adjusting its characteristics.

Conclusion

The present study investigates the
application of machine learning models to
predict soil indentation from plate penetration
tests performed using a Bevameter. This
approach aims to overcome the limitations of
conventional methods, which often involve
time-intensive laboratory and field procedures.
To optimise model performance, the Shrike
Bird Optimisation Algorithm (SBOA) was
integrated with CatBoost and XGBoost
algorithms. This hybridisation enabled the
improved prediction of nonlinear behaviour and
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complex interactions between the wheel and
soil. While these hybrid models significantly
enhance accuracy, robustness, and
generalisability, they also introduce increased
computational complexity and longer training
times due to the additional optimisation steps.
The results indicate that the optimised models
exhibit superior performance compared to their
standalone counterparts, particularly in terms of
prediction  accuracy,  robustness, and
generalisability.

Sensitivity analysis revealed that the vertical
pressure on the plates, the number of passes,
and the plate diameter were the most significant
factors influencing the rut depth. Furthermore,
comparative analysis of the models using
unseen data showed the superior performance
of the hybrid approaches over the baseline
models. Among them, the SBOA-CATBoost
model achieved the highest correlation, the
lowest prediction error, and the most consistent
outputs on unseen data. However, the present
study had certain limitations. Although the
models showed promising performance, the
experimental set used for evaluation was
relatively small, which may affect the
robustness of the generalisation assessment.
Furthermore, given the homogeneity of the
dataset, which consisted solely of clay loam
soil, the generalisability of the models to other
soil types and environmental conditions still
needs to be validated. In particular, the lack of
environmental diversity (variations in soil
moisture, temperature, and initial compaction
state) limits the applicability of the results to
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