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Abstract 

The study of soil behaviour in wheel interaction is complex due to the wheel's geometry and the varying soil 
conditions. Traditional measurements of soil parameters, such as the Bevameter and the cone penetrometer, are 
time-consuming and labour-intensive. This research presents a machine learning-based approach to predict soil 
sinkage in plate penetration tests, providing a suitable alternative to conventional methods. A soil bin with 
controlled experimental conditions was used to collect data, which was measured by a load cell and a magnetic 
encoder at a constant penetration rate of 4 mm s-1. Two main machine learning models were selected; XGBoost 
and CatBoost. Hybrid versions of these models were developed using the Shrike Bird Optimisation Algorithm 
(SBOA). The results showed that the hybrid models outperformed the base models. The SBOA-CatBoost hybrid 
model achieved the highest accuracy on the training data with a coefficient of determination of 0.99, a mean square 
error of 2.81, and a mean absolute error of 0.79. The findings of this study highlight the potential of machine 
learning as a cost-effective and efficient alternative to traditional methods for measuring soil parameters. Further 
research is recommended to validate these models in different soil types and conditions. 

 
Keywords: Bevameter, CatBoost, SBOA, Soil bin, Terramechanics, XGBoost 
 
 

Introduction 

The study of soil behaviour during 
interaction with off-road vehicles is a complex 
process. Several factors, including soil type, 
wheel geometry, and soil density, significantly 
influence the behaviour of the soil (Laughery, 
Gerhart, & Muench, 2000). The most important 
methods and equipment for measuring soil 
properties are the cone penetrometer and the 
Bevameter (Kim, Im, Choi, Oh, & Park, 2021; 
Taghavifar & Mardani, 2014a; Van, Matsuo, 
Koumoto, & Inaba, 2008). The Bevameter 
measures multiple soil quantities for numerical 
and analytical soil simulations to predict the 
traction device's interaction with soil (Mason et 
al., 2020). The Bevameter is the standard 
method for scientific exploration, soil 
engineering, and off-road vehicle design (De 
Janosi, 1959). On the other hand, the Bevameter 
technique provides the closest simulation of 
vehicle loading conditions among the various 
measurement techniques currently used (Wong, 
1989). 

Among the soil parameters, soil resistance to 

penetration and shear stress are factors that 
affect the machine's ability to move, limiting 
both the terrain's potential and traction 
(Taghavifar & Mardani, 2017). The soil 
deformation parameters in the Bekker equation 
(kc, kφ, and n) are usually determined by several 
penetration plate tests of different sizes (b1, b2, 
and b3), which define the pressure-sinkage 
relationship (Eq. 1). Normal loads are repeated 
with a set of penetration plate tests (rectangular 
or circular plate sizes) from 9.52 to 76.2 mm in 
width or diameter (Bekker, 1969). 

( ) nck
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(1) 

where P is the pressure on the plates, b is the 
plate’s diameter, and Z is the soil sinkage. 

Measuring soil parameters in both outdoor 
and indoor conditions presents several 
challenges, including the influence of 
environmental factors, sampling errors, and the 
associated costs and time requirements  
(Mardani & Golanbari, 2024). Predicting soil 
parameters for soil-vehicle interaction studies is 
essential in various aspects, including 
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agriculture, industry, and the military. To 
model soil-wheel interaction, it is necessary to 
measure soil parameters such as soil resistance 
and soil hardness, which affect the amount of 
wheel sinkage and the traction force 
(Golanbari, Mardani, Hosainpour, & 
Taghavifar, 2023; Golanbari & Mardani, 2023). 
On the other hand, predicting soil parameters 
can be crucial in terms of cost and time. 
Additionally, utilising these parameters is 
crucial for optimising vehicle performance in 
agriculture, transportation, and off-road 
applications. 

Mathematical, experimental, and numerical 
models have been widely used to predict soil 
parameters and tyre-soil interaction under 
different conditions (Brunskill et al., 2011; 
Carman, 2002; Chou, Zhu, Skelton, Wagner, & 
Yang, 2011; Golanbari & Mardani, 2024). 
These models are developed based on pressure-
sinkage and rolling resistance equations and 
mainly depend on laboratory and field data. 
However, mathematical models cannot 
accurately represent the actual conditions of 
wheel-soil interaction and often exhibit 
significant errors due to oversimplification and 
insufficient accuracy in modelling the soil's 
nonlinear behaviour  (Golanbari, Mardani, 
Hosainpour, & Taghavifar, 2025). In recent 
years, the use of machine learning models has 
been introduced in various fields of 
Terramechanical studies (Golanbari et al., 
2023; Golanbari, Mardani, Farhadi, & Nazari 
Chamki, 2025; Huang, Zhang, & Xie, 2022; 
Taghavifar & Mardani, 2014b; Taghavifar, 
Mardani, & Karim-Maslak, 2014). These 
methods have become a suitable alternative to 
traditional mathematical and semi-empirical 
methods due to their ability to model nonlinear 
and complex relationships between input and 
output variables (Golanbari, Mardani, Farhadi, 
& Reina, 2024). 

In a study by Rashidi and Gholami (2010), 
the finite element method (FEM) was used to 
predict soil sinkage under multiple loads. The 
study showed that FEM can more accurately 
model the soil behaviour under repeated loads. 
The results of this study showed that the first 
three loads have the most significant impact on 

soil sinkage, accounting for approximately 89% 
of the total soil sinkage. These findings 
underscore the significance of employing 
numerical methods in predicting soil behaviour 
under off-road vehicle loads. 

Thornton, Pesheck, and Jayakumar (2023) 
have introduced a new method that predicts the 
results of the Bevameter using a reduced model 
(ROM). This method is integrated into a multi-
objective optimisation framework for 
optimising the properties of the discrete 
element method (DEM).  Negrut, Hu, Li, 
Unjhawala, and Serban (2023) developed the 
concept of virtual Bevameter tests using 
computer simulations. This method uses a 
continuous representation model to generate 
accurate data for calibrating soil contact models 
and has been proposed as an alternative to 
traditional Bevameter tests. In a study by 
Golanbari et al. (2023), a deep neural network 
(DNN) was used to investigate the plate 
penetration rate in determining soil parameters 
using soil pressure-sinkage diagrams. By 
varying the plate penetration rate, they 
demonstrated that different parameters could be 
obtained for the same soil type under the same 
initial conditions. 

According to previous studies, most research 
has been conducted using traditional methods. 
In contrast, few studies have employed artificial 
intelligence-based models to enhance the 
accuracy of predicting soil parameters and their 
behaviour under various conditions. However, 
among the studies based on machine learning 
methods, there have been limited studies 
conducted to predict soil response based on 
multifactorial inputs without simplifying the 
influential variables. This study aims to develop 
a data-driven model to predict soil behaviour 
under off-road vehicle loading conditions using 
the results of plate penetration tests conducted 
in a laboratory environment. Unlike 
conventional approaches, the proposed 
framework preserves the complexity of the 
experimental variables and utilises modern 
machine learning techniques, including 
CatBoost and XGBoost, to enhance prediction 
accuracy. Additionally, the Shrike Bird 
Optimisation Algorithm (SBOA), a meta-
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heuristic, is employed to optimise the 
hyperparameters of machine learning models. 
This combined strategy—employed for the first 
time in the field of Terramechanics—
demonstrates suitable predictive performance 
and model robustness when tested on a fully 
independent experimental dataset, thereby 
highlighting its potential for broader 
applications in soils. 

 
Materials and Methods 

A soil bin is a laboratory environment that 

allows for the precise control of experimental 
factors used to study the interaction between a 
machine and soil. A soil bin usually consists of 
a soil channel with specific dimensions, a 
carrier, a power transmission system, and 
measurement equipment. The soil bin used in 
this study is a fixed metal structure located on 
the ground surface, and the soil bed is wholly 
separated from the ground. The soil bin consists 
of a 24 m long soil channel, a 2 m wide channel, 
and a 1 m deep soil layer. Fig. 1 shows the 
various components of a soil bin. 

 
 

 
Fig. 1. Soil bin and its components: 1- Chassis, 2- Dead load location, 3- Traction device (wheel), 4- Data logger, 5- 

Inverter, 6- Computer, and 7- Bevameter 

 
The linear speed of the pneumatic wheel or 

track wheel is equivalent to the carrier's forward 
speed. A three-phase industrial electric motor 
with a power of 22 kW (30 hp) was used to 
provide the required power for the carrier. This 
electric motor provides the driving force 
required to move the carrier, which is 
transmitted through the gear to the axle at the 
edge of the channel. 

Considering that the forward speed of the 
wheel is one of the dynamic parameters studied 
in this research, an inverter manufactured by the 
LS brand (SV 220 IS5-2NO, 380V, South 

Korea) was used to control the rotational speed 
of the drive motor. This ultimately leads to the 
linear speed of the driven carrier. In this study, 
different forward speeds were used for the 
movement of the carrier, including speeds of 1, 
2, and 3 km h-1. 

Considering the motor's rated speed of 1457 
rpm, the inverter can apply a speed from zero to 
about 21 km h-1, which can be controlled 
precisely. The forward speed has a linear 
relationship with the inverter's frequency, 
which is shown in Fig. 2 as a calibration chart 
for obtaining different speeds. 
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Fig. 2. Inverter calibration diagram and its relationship with carrier forward speed 

 
Furthermore, three vertical load levels of 2, 

3, and 4 kN were applied as dead loads on the 
wheel to consider the effect of vertical load on 
soil parameters. For this purpose, the dead load 
was placed on the carrier at predetermined 
locations in each stage of the tests. The location 
of the load was designed to apply it thoroughly 
and balance it without creating lateral forces on 
the wheel. On the other hand, the number of 
passes was considered another parameter. Since 
previous research has shown that the most 
significant changes in soil texture and density 
occur during the initial passes, seven pass 

levels, including passes 1, 2, 3, 5, 7, 10, and 15, 
were considered for this study. Also, the type of 
traction device can affect the soil differently 
due to variations in geometry and contact 
surface, which alter the stress and load 
distribution on the soil  (Ani et al., 2018). 
Therefore, two conventional traction factors, 
including pneumatic wheels and track wheels, 
were considered in this study. Table 1 shows 
the experimental parameters and their 
descriptive statistics. These parameters were 
used as inputs to the machine learning models. 

 
Table 1- Descriptive statistics of training data 

Parameters Mean Std Dev Min Max Skewness Kurtosis 

Traction Device 1.474 0.4993 1* 2* 0.103363 -1.9896 

Vertical load (kN) 3.492 0.770 2 4 -1.10244 -0.4277 

Forward speed (km h-1) 2.028 0.8056 1 3 -0.04987 -1.4574 

Multiple pass 5.763 4.8439 1 15 0.886232 -0.6568 

Plate diameter (mm) 64 15 50 80 0.073635 -1.9948 
Pressure (kPa) 156.9 110.01 0 565 0.495656 -0.2336 

*Note: Values ‘1’ and ‘2’ under the “Traction Device Type” column represent categorical codes for the two traction 

systems used: 1 = pneumatic tire, and 2 = track. 

 
Table 1 presents the distribution 

characteristics of the experimental data. The 
means indicate the centrality of the data, and the 
standard deviation indicates the degree of 

dispersion of the data around the mean. The 
minimum and maximum values indicate the 
range of the parameters. The skewness index 
describes the shape of the data distribution, with 
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positive values indicating a longer tail to the 
right of the normal distribution and negative 
values indicating a longer tail to the left of the 
normal distribution. The kurtosis value 
indicates the degree of concentration of the data 
around the mean, with negative values 
indicating a flatter distribution and positive 
values indicating a more peaked distribution. 
The parameters of the traction device type and 
the test plate's diameter show an almost 
symmetrical distribution with negative 
skewness, indicating that the data are 
concentrated around the middle values. 

In contrast, the parameter of the number of 
passes with positive skewness exhibits an 
asymmetrical distribution, with the data 
concentrated at lower values. The selection of 

more test levels in the initial traffic can justify 
this. The vertical load and forward speed have 
symmetrical distributions. Vertical pressure 
also has a relatively balanced distribution with 
a slight tendency toward lower values. 

The channel was filled with clay loam soil 
that had been sieved through a 50 mm sieve. 
This soil was randomly selected and collected 
from a single location in the region's 
agricultural soils. A 50 mm sieve was used to 
remove stones and large clods. This procedure 
ensured that the soil was approximately 
homogeneous throughout the soil channel, 
thereby preventing measurement errors caused 
by large particles. Table 2 shows the 
characteristics of the soil used. 

 
Table 2- Characteristics of the soil bin soil 

Parameter Value 

Sand 35% 

Silt 26% 

Clay 39% 

Moisture content 8% 

Bulk density 1460 kg m-3 

Young's modulus 0.3 MPa 

Poisson's ratio 0.29 

Angle of internal friction 32 
 

Data acquisition 

A portable Bevameter is mounted on the 
carrier. It can be used to measure the triple 
parameters of the Bekker equation of the soil 

immediately after the wheel passes. Fig. 3 
schematically shows the different components 
of the Bevameter. 
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Fig. 3. Schematic of the Bevameter and its attachments: 1- Power supply, 2- Inverter, 3- Electric motor, 4- Bevameter, 

5- linear magnetic encoder, 6- S-shaped load cell, 7- Infiltration plates, 8- Data logger 

 

The Bevameter operates by measuring two 
parameters. One is the vertical force applied to 
the plates, which is measured by S-type load 
cells. The other is the linear movement of the 
plates, which is measured by a linear magnetic 
encoder. In this study, two circular plates with 
diameters of 50 and 80 mm were used. 

After installing the plates on the Bevameter, 
the plates penetrated the soil at a constant speed 
of 4 mm s-1 to a depth of 70 mm. A load cell 
and a magnetic encoder measure the vertical 
force required for penetration and the 
penetration depth, respectively. The 
measurements should be such that each load 
cell's data corresponds to the magnetic encoder 
data. On the other hand, to perform statistical 
analyses and examine the effect of variables on 
the experimental results, the measured data in 
each experiment should be stored in a non-
volatile memory. The digital data logger can 
connect 10 parallel channels for different 
sensors and provide cumulative output. This 
ensures that the corresponding data from the 
load cell and magnetic encoder are accurately 
recorded at a given time. This system is capable 
of recording data at a frequency of 60 Hz. 

Due to the constant speed, the amount of 
data in each experimental treatment was almost 
equal. However, there were some differences, 
so using a program written in Python 3.10, the 
number of experimental data points for all 
treatments was equalised without changing the 
trend. After removing noise and pre-processing, 
a total of 15,620 data points remained and were 
used for model training and validation. 
Additionally, an independent experimental trial 
was conducted using a combination of vertical 
load, forward speed, and the number of passes, 
which were not included in the training dataset. 
From this trial, 100 data points were selected as 
an entirely separate test set to evaluate the 
model’s generalisation ability. Of the 15,620 
training data points, 80% were used for 
training, and 20% were used for validation. 

In this study, to reduce the sensitivity of 
machine learning models to the scale of the 
input data, the data were normalised using the 
Standardisation method. This method is one of 
the most common normalisation methods in 
data pre-processing. Data normalisation aims to 
convert the data into values with a mean of zero 
and a standard deviation of one. This ensures 
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that the data is on the same scale and enables 
machine learning algorithms to perform more 
effectively. Standardisation is performed 
according to Eq. 2. 

ij ij

ij

ij

z
x 


=

−

 
(2) 

where xij is the value of the i-th sample in the j-
th feature, μij is the mean of the jth feature, and 
σij is the standard deviation of the jth feature. 

 
Machine learning methods representation 

This section introduces machine learning 
models for predicting soil sinkage in the Bekker 
method based on the independent variables 

used in this research. Machine learning models, 
including XGBoost and CatBoost as basic 
models, as well as hybrid versions of these 
models optimised with the SBOA algorithm, 
are examined. The SBOA algorithm is used to 
fine-tune each model by minimising the root 
mean square error (RMSE) on the validation 
data through iterative optimisation. A summary 
of the hyperparameters subjected to 
optimisation, along with their respective types 
and ranges, is presented in Table 3. In addition, 
details of the data preparation process and 
model evaluation metrics are also provided in 
this section. 

 
Table 3- Optimised hyperparameters and their value ranges for XGBoost and CatBoost models using the SBOA 

algorithm 
XGBoost  CatBoost 

Hyperparameter Range  Hyperparameter Range 

“n”_estimators 100 – 1000  Iterations 100 – 1000 

Max_depth 3 – 10  Depth 3 – 10 

Learning_rate 0.01 – 0.3  Learning_rate 0.01 – 0.3 

Reg_lambda 1 – 10  L2_leaf_reg 1 – 10 

Reg_alpha 0 – 10  Subsample 0.5 – 1 

Subsample 0.5 – 1  Colsample_bylevel 0.5 – 1 

Colsample_bytree 0.5 – 1  Min_data_in_leaf 1 – 10 

Colsample_bylevel 0.5 – 1  Border_count 1 – 255 

Min_child_weight 1 – 10  Random_strength 0 – 10 

Gamma 0 – 1  Bagging_temperature 0 – 1 

Scale_pos_weight 0 – 1  Od_type Iter / IncToDec 

Max_delta_step 0 – 1  Early_stopping_rounds 10 – 250 

 
The selection of XGBoost and CatBoost 

models as the base models is due to their better 
performance in previous studies compared to 
other boosting-based methods  (Bentéjac, 
Csörgő, & Martínez-Muñoz, 2021; Golanbari et 
al., 2025). These models were selected as 
suitable bases for this research due to their 
ability to handle complex data, deal with 
nonlinear features, and reduce the problem of 
overfitting. On the other hand, hybrid models of 
SBOA-XGBoost and SBOA-CatBoost were 
utilised to enhance the performance of the basic 
models and optimise the model 
hyperparameters. The SBOA algorithm was 
chosen because it performed better than other 
optimisation algorithms, such as the GWA and 
PSO, which were used as efficient optimisation 
methods in the study to adjust the 

hyperparameters of similar models  (Golanbari 
et al., 2025).  

XGBoost is a gradient-boosting method that 
has been extended to optimise decision tree 
models using additive trees. This method's 
advantages include avoiding overfitting using 
pruning, regularisation, and parallel computing. 
CatBoost is an optimised version of the gradient 
boosting algorithm specifically developed for 
data with categorical features. It also supports 
GPU processing and reduces the effect of 
overfitting. This study uses XGBoost and 
CATBoost without optimisation to compare the 
initial model performance. 

Hybrid models of the base models were 
developed to enhance their performance, 
utilising the SBOA algorithm to fine-tune the 
hyperparameters of the models. SBOA is a new 
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meta-heuristic optimisation algorithm inspired 
by the hunting behaviour of the shrike bird. 
This algorithm has two main stages for 
optimisation: Exploration and Exploitation. In 
the Exploration stage, the shrike bird first 
searches a large area for potential prey 
(different solutions). This stage is equivalent to 
random sampling in the search space. In the 
local optimisation stage (Exploitation), the 
algorithm selects and improves the best solution 
after finding suitable positions. In this research, 
this stage involves adjusting the optimal values 
of hyperparameters in machine learning 
models. These two models are optimised 
versions, and their performances are compared 
to that of the base models. The hyperparameters 
selected for optimisation were to avoid 
excessive model complexity, prevent 
overfitting, and increase model accuracy and 
convergence. 

Six evaluation metrics, including coefficient 
of determination (R2), mean square error 
(MSE), root mean square error (RMSE), mean 
absolute error (MAE), maximum Error, and 
symmetric mean absolute percentage error 
(SMAPE), were used to measure the accuracy 
of the predictions. The calculations for these 
metrics are shown in Equations 3 to 8. 
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Result and Discussion 

In this study, the sinkage value in pressure-
sinkage tests under the influence of six 
parameters was predicted using machine 
learning methods. The results of the first part of 
this study are a sensitivity analysis examining 
the effect of changes in input parameters on 
model predictions. The sensitivity and 
Probability-based Hybrid Analysis (SPHA) 
method is used to systematically evaluate the 
effect of input parameters on the model output. 
By assigning probability distributions to each 
parameter and performing systematic sampling, 
SPHA simultaneously calculates both first-
order sensitivity indices, which represent the 
independent contribution of each parameter, 
and overall sensitivity indices that account for 
interactive and nonlinear effects. Fig. 4 shows 
the sensitivity analysis graph of parameters on 
the sinkage output. 
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Fig. 4. Sensitivity analysis chart 

 
The diagram in Fig. 4 shows that the most 

influential variable in the model is the pressure 
on the plates. The number of passes variable is 
also of considerable importance. The plate’s 
diameter is also of third importance. The 
subsequent influential factors are forward 
speed, type of traction agent, and vertical load 
on the wheel, respectively. 

 
Machine Learning models Performance 

This study evaluated the performance of 
several machine learning models, including 
CATBoost, XGBoost, SBOA-CATBoost, and 
SBOA-XGBoost hybrid models for sinkage 
prediction. After training, metrics for the 
models were calculated based on the difference 
between the predicted and actual values. Table 
4 compares the performance of the models with 
the training data. 

 
Table 4- Performance of machine learning models 

Model MSE RMSE MAE S-MAPE R² 

SBOA-CATBoost 2.81 1.67 0.79 9.26 0.99 

SBOA-XGBoost 2.77 1.66 0.80 9.48 0.99 

CATBoost Base 14.89 3.86 2.61 22.6 0.95 

XGBoost Base 31.16 5.58 3.90 28.1 0.89 

 
Comparing the performance of CATBoost 

and XGBoost models in two base model and 
optimised with the SBOA algorithm on the 
training data show that the evaluation criteria 
on the optimised models have improved. 

A comparison of the MSE, RMSE, MAE, 
and S-MAPE criteria reveals that the hybrid 
models outperform the basic models, indicating 
a better fit with the experimental data. 
However, in studies between the vehicle and the 
soil, due to the high complexity of the 
interactions and the large number of influential 
parameters, the performance of all models can 

be considered appropriate compared to 
conventional methods. 

On the other hand, comparing the two hybrid 
models reveals that their performance is 
remarkably similar. SBOA-XGBoost performs 
slightly better in the MSE and RMSE criteria, 
while SBOA-CATBoost performs more 
appropriately in the MAE and SMAPE criteria. 
These results show that the SBOA algorithm 
has significantly improved the performance of 
the models. 

Since the performance of the models on the 
training metrics is very close, the performance 
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of the models on unseen test data is significant 
for the final selection between the two 
optimised models, thereby achieving the 
stability and generalisability of the models. 
Therefore, the developed machine learning 
models were evaluated on new and unseen data. 
Despite the favourable performance of the 
models on the training data, the primary test for 
selecting a suitable model for sinkage 

prediction is the model performance under 
actual conditions. 

In this section, we will analyse the prediction 
results of the test data. Fig. 5 shows the 
regression plots of the models on unseen data, 
along with the experimental data. This plot 
compares the fit of the predicted values with the 
experimental values, using the R² metric. 

 

 
Fig. 5. Regression diagram of machine learning models 

 

The graph in Fig. 5 shows that hybrid models 
with higher R² values perform better than the 
base models, indicating the positive effect of 
the hybridisation technique on model 
optimisation with the algorithm. The prediction 
points of hybrid models, especially Hybrid 
CATBoost, are closer to the Ideal Fit line, 
whereas pure XGBoost exhibits more 
dispersion in its extreme values. These results 
demonstrate that hybrid models are more stable 
in the face of actual data and yield better 

predictions. In general, when comparing the 
regression graphs, the Hybrid CATBoost model 
performed best.  

The residuals graph illustrates the difference 
between the predicted values and the actual 
values in both quantitative and qualitative 
terms. Fig. 6 presents the analysis of the 
residual graphs of the four models: CATBoost, 
XGBoost, Hybrid XGBoost, and Hybrid 
CATBoost. 
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Fig. 6. Residuals plot analysis for machine learning models 

 

Analysis of the residual plots shows that the 
hybrid models have errors closer to the zero line 
and less dispersion than the basic CATBoost 
and XGBoost models. The SBOA-CATBoost 
model has the lowest error rate and the most 
stable performance. However, errors above 
zero in most data ranges indicate that the model 
overpredicts slightly more than the actual 

values. In contrast, XGBoost has the highest 
errors and dispersion. 

Metrics including MSE, RMSE, MAE, Max 
Error, and SMAPE were also used to evaluate 
the models utilising the unseen data. Fig. 7 
shows the evaluation metrics graph for each 
model. 

 

 
Fig. 7. Graph of model metrics on unseen data 

 
The comparison chart of the evaluation 

criteria shows that the CATBoost hybrid model 
performed better than the others in all criteria 
(MSE, RMSE, MAE, Max Error, and SMAPE). 
Although the difference between the CATBoost 
hybrid model and the XGBoost hybrid model is 
minor, both models performed well. However, 
the basic XGBoost model has the lowest values 
in all criteria, indicating its high accuracy and 

low prediction error. In contrast, the basic 
XGBoost has reached the highest error values 
in all criteria except for the maximum error, 
indicating its weakness in prediction compared 
to other models. However, it can still provide 
acceptable prediction accuracy. The hybrid 
models have performed better, especially in 
terms of MSE and SMAPE, which indicates the 
optimisation algorithm's ability to reduce 
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significant errors. These results confirm the 
superiority of hybridisation techniques in 
improving the performance of models. 

Taylor plot was also used to evaluate the 
forecasting models in this study. This plot 
facilitates the comparison of model 
performance by combining three metrics: 

correlation coefficient, normalised standard 
deviation, and normalised RMSE. In this plot, 
the reference curve represents the actual data, 
and models closer to this curve have a higher 
correlation, a more appropriate standard 
deviation, and lower error. Fig. 8 shows the 
Taylor plot of the models. 

 

 
Fig. 8. Taylor diagram for the performance of machine learning models 

 
The Taylor diagram indicates that the 

Hybrid CATBoost model performed best, with 
the highest correlation, an ideal normalised 
standard deviation, and the lowest normalised 
error. The Hybrid XGBoost model performed 
worse than the Hybrid CATBoost model, but 
performed well overall. The hybrid models' 
good performance indicates the positive effect 
of hybridisation in improving both base models. 
In contrast, the base CATBoost model, 
although showing an acceptable correlation, 
exhibits a higher standard deviation, indicating 

that its predictions have more fluctuations than 
those of the hybrid models. The base XGBoost 
model, with the lowest correlation and the 
highest standard deviation, performed the worst 
among the models. These results underscore the 
need for hybrid approaches to strike a desired 
balance between accuracy, stability, and 
generalisability. 

The graph in Fig. 9 shows the trend of 
changes in the actual syncing and predictions of 
four machine learning models on unseen data. 
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Fig. 9. The prediction trend of machine learning models compared to actual data 

 

The analysis of sinkage trends indicates that 
all models can somewhat predict changes in 
sinkage with pressure variations. However, the 
hybrid models outperform the basic models. 
SBOA-CATBoost also has the most stable 
forecast trend in all pressure ranges. The basic 
models exhibit more fluctuations in their 
predictions, indicating the effect of SBOA 
optimisation in reducing the variance of the 
forecasts. 

It can also be seen from the trend diagram 
that the SBOA-XGBoost model has followed 
the trend of the experimental data well, except 
in parts of the middle. However, its forecast 
fluctuation is greater than that of the CATBoost 
hybrid model. The basic CATBoost model has 
also recognised the trend well, but has more 
fluctuation than the two hybrid models. 
Additionally, despite minimal fluctuation in the 
forecast, the XGBoost model has predicted the 
trend with a greater distance from the 
experimental data and exhibits a more 
significant error than the other models, which 
confirms the results of the previous sections. 

On the other hand, it can be observed that the 
models tend to predict values lower than the 
actual ones, and this trend is visible in all 
models except for a portion of the XGBoost 
model. This type of prediction can be attributed 
to the asymmetry in the training data related to 
traffic, as most of the data were from low-traffic 

ranges, where the soil is looser than in higher-
traffic areas. In this case, the pressure-sinkage 
diagram has a lower slope. Therefore, the 
models tend to predict lower values than the 
actual ones, as they learn more from this data to 
predict higher traffic. The results of this study 
demonstrate that machine learning models 
achieve sufficient accuracy in predicting soil 
sinkage using a Bevameter, making these 
models a viable alternative to time-consuming 
and costly laboratory and field methods for 
predicting soil parameters, provided they are 
appropriately calibrated across different soils. 
In real-time applications, recognising the soil 
type can help the vehicle perform better by 
adjusting its characteristics. 

 
Conclusion 

The present study investigates the 
application of machine learning models to 
predict soil indentation from plate penetration 
tests performed using a Bevameter. This 
approach aims to overcome the limitations of 
conventional methods, which often involve 
time-intensive laboratory and field procedures. 
To optimise model performance, the Shrike 
Bird Optimisation Algorithm (SBOA) was 
integrated with CatBoost and XGBoost 
algorithms. This hybridisation enabled the 
improved prediction of nonlinear behaviour and 
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complex interactions between the wheel and 
soil. While these hybrid models significantly 
enhance accuracy, robustness, and 
generalisability, they also introduce increased 
computational complexity and longer training 
times due to the additional optimisation steps. 
The results indicate that the optimised models 
exhibit superior performance compared to their 
standalone counterparts, particularly in terms of 
prediction accuracy, robustness, and 
generalisability. 

Sensitivity analysis revealed that the vertical 
pressure on the plates, the number of passes, 
and the plate diameter were the most significant 
factors influencing the rut depth. Furthermore, 
comparative analysis of the models using 
unseen data showed the superior performance 
of the hybrid approaches over the baseline 
models. Among them, the SBOA-CATBoost 
model achieved the highest correlation, the 
lowest prediction error, and the most consistent 
outputs on unseen data. However, the present 
study had certain limitations. Although the 
models showed promising performance, the 
experimental set used for evaluation was 
relatively small, which may affect the 
robustness of the generalisation assessment. 
Furthermore, given the homogeneity of the 
dataset, which consisted solely of clay loam 
soil, the generalisability of the models to other 
soil types and environmental conditions still 
needs to be validated. In particular, the lack of 
environmental diversity (variations in soil 
moisture, temperature, and initial compaction 
state) limits the applicability of the results to 

real-world off-road scenarios where such 
factors play a critical role in soil response. 

Future research could expand the dataset to 
include a broader range of soil compositions 
and environmental scenarios, apply more 
rigorous validation techniques, such as cross-
validation, and explore alternative or hybrid 
optimisation algorithms to further improve 
prediction accuracy and model robustness. As 
machine learning models evolve, their 
integration with soil mechanics will 
undoubtedly open up new avenues for 
optimising vehicle performance and 
minimising environmental impacts in off-road 
applications. Moreover, since the current study 
did not involve real-time implementation on 
actual vehicles, future efforts should also aim to 
assess the computational efficiency and 
hardware requirements of the proposed models 
in operational environments. Such 
investigations will be essential for evaluating 
the feasibility of integrating these models into 
real-world off-road vehicle systems. 
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خارج   هینقل لیوسا یبرا نیماش یریادگی نفوذ صفحه در مدل خاک بکر با استفاده از  یسازمدل

 از جاده 

 1، عادل حسین پور*1، عارف مردانی1اکبر نظری چمکی 

 09/03/1404  تاریخ دریافت:
 05/1404/ 28 تاریخ پذیرش:

 چکیده

های سهنت  پارطمترهای خاک  مازند  گیریرفتار خاک در تعامل چرخ با خاک به دلیل هندسهه چرخ   رهرطیم متریر خاک پیدیدا طسهت. طزدط امطالعه  
بین  فر زشهههسهههت خاک در بر   پر حمت هسهههتند. طیح تق یک یو ر ی رد میتن  بر یادگیری مارهههیح برطی پی بوطمتر   زفوذسهههنخ مطر      ما 

ردا برطی دهد. ط  یو طزیارا خاک با ررطیم آ مایشگاه  کنترلهای مرسوم طرطئه م دهد   جایگزیح مناسی  برطی ر شهای زفوذ صفقه طرطئه م آ مای 
ک  دیجیتال با سهرتت زفوذ گیری بار   میزط  فر رفتگ  توسهم یو خمها طسهتفادا رهد. م دطر زیر  در هر لق ه توسهم یو حسهگر طزدط اآ ری دطداجمع
ها با طستفادا ط  های ترکیی  طیح مدل  طزتطاب ردزد. زسطهXGBoost    CatBoostمتر بر ثازیه ثیت رد. د  مدل طصل  یادگیری ماریح   میل  4بت  ثا

کنند. مدل ترکیی  های پایه بهتر تمل م های ترکیی  ط  مدلتوسهعه دطدا رهدزد. زتایخ زشها  دطد که مدل (SBOA)سها ی پرزدا رهرطیو طلگوریتم بهینه
SBOA-CatBoost    دسههت های آمو رهه  به  بالاتریح دقت رط در دطدا79/0  میازگیح مطلک خطا   81/2  میازگیح مربعات خطا  99/0با ضههریت تعییح

ری پارطمترهای خاک گیهای سهنت  طزدط اصهرفه   کارآمد برطی ر شتنوط  جایگزین  م ر   بههای طیح مطالعه  پتازسهیل یادگیری مارهیح رط بهآ رد. یافته
 رود.ها در طزوطع   ررطیم مطتلف خاک توصیه م کند. تق ی ات بیشتر برطی طتتیارسنج  طیح مدلبرجسته م 

 
 CatBoost  GBoostمطز  خاک  ترطم ازیو  بوطمتر  سا ی پرزدا ررطیو  طلگوریتم بهینه کلیدی:  هایواژه
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