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Abstract

Amid escalating pressures on global food systems, driven by resource constraints, climatic variability, and
rural labour shortages, agricultural mechanisation has become a strategic lever for enhancing productivity and
sustainability. This study develops and applies a system dynamics model to examine the long-term effects of
mechanisation on wheat cultivated area and yield in fragmented farming systems. The research begins by
constructing a causal loop diagram (CLD) to conceptualise the key feedback structures governing mechanisation
dynamics. Building on this framework, a stock-and-flow simulation model is formulated and empirically
validated using provincial-level data from Khuzestan, Iran (2011-2022). Validation results demonstrate strong
alignment between simulated and observed trends across major indicators, including power availability,
mechanisation level, cultivated area, and yield. The model is subsequently used to simulate alternative policy
scenarios targeting machinery fleet modernisation, water availability, and precipitation variability. In Scenario 3,
a 30% increase in the machinery replacement rate leads to a 7% rise in yield and a 1% expansion in the
cultivated area, relative to baseline projections. When mechanisation improvements coincide with enhanced
water availability, the marginal impact of mechanisation on land expansion becomes negligible (less than 1%
increase), indicating a behavioural shift among farmers toward higher-value crops under favourable hydrological
conditions. In contrast, under water-scarce scenarios, wheat area expands by approximately 1-1.5%, while yield
improvements remain below 3%, reflecting both the crop’s adaptability and the compensating efficiency gains
enabled by mechanisation. These findings underscore the importance of accounting for water—mechanisation
interactions in policy design, particularly in arid and semi-arid regions. The model offers a flexible and
empirically grounded decision-support tool for policymakers seeking to improve climate resilience, optimise
resource use, and foster sustainable intensification in agricultural ecosystems facing structural and environmental
challenges.
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Introduction

The fundamental human need for food, as a
cornerstone of survival, has consistently driven
global efforts to enhance agricultural
production. Despite more than a twofold
increase in global food output over the past six
decades (Wittwer et al., 2021) and the
implementation of numerous international
initiatives aimed at reducing hunger, food
insecurity, and malnutrition, these challenges
remain persistent in many parts of the
world (Sibhatu & Qaim, 2017). These

challenges are now exacerbated by increasing
constraints such as limited availability of
arable land and water, adverse impacts of
climate change (Araujo, Chavez-Santoscoy,
Parra-Saldivar, Melchor-Martinez, & Igbal,
2023; Khatri, Kumar, Shakya, Kirlas, &
Tiwari, 2024), ageing rural populations, and
acute labour shortages (Bissadu, Sonko, &
Hossain, 2024). In this context, enhancing
agricultural productivity is not merely an
option but a necessary strategy to ensure food
security and support sustainable
development (Smith et al., 2020).
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Among the many drivers of productivity
growth, agricultural  mechanisation  has
emerged as a transformative force (Chisadza et
al., 2025; Zhu, Zhang, & Piao, 2022). The
evolution from traditional hand tools to
modern machinery, digital technologies,
automation, and artificial intelligence has
generated  tangible  benefits, including
increased crop yields (Van den Berg et al.,
2007; Yang, Huang, Zhang, & Reardon,
2013), improved labour efficiency (Paudel, Kc,
Khanal, Justice, & McDonald, 2019), higher
economic returns (Peng, Zhao, & Liu, 2022),
and reductions in production costs (Chaudhary,
Pandit, & Burton, 2022; Hamilton, Richards,
Shafran, & Vasilaky, 2022; Rahman et al.,
2021, Sarkar, 2020). Furthermore,
mechanisation optimises input use, reduces
post-harvest losses (Yan, Sun, Chen, & Dai,
2024), and contributes to environmental
sustainability ~ through  better  resource
management and reduced greenhouse gas
emissions (Belton, Win, Zhang, & Filipski,
2021; Emami, Almassi, Bakhoda, & Kalantari,
2018; Manida, 2022).

While the benefits of mechanisation are
well documented, the underlying dynamics
governing its interaction  with  other
agricultural inputs and constraints remain
insufficiently  understood, particularly in
systems  characterised by  fragmented
landholdings, resource scarcity, and climatic
variability. Most previous studies in this
domain have relied on static, linear, or
simplified analytical frameworks, which often
fail to capture the complex feedback
structures, time delays, and non-linear
relationships inherent in agricultural systems.
This modelling gap hinders our ability to
effectively evaluate long-term impacts and
policy trade-offs. In response to this
deficiency, the present study employs a system
dynamics modelling approach to explore the
feedback-rich, time-dependent interactions
among mechanisation, cultivated area, yield,
and key resource constraints. Using wheat
production in Khuzestan Province (lran) as a
case study, the research integrates empirical
data and policy scenarios to simulate system

behaviour under different conditions. The
model aims to provide both conceptual
insights and  practical guidance  for
policymakers and stakeholders operating in
arid and semi-arid agro ecosystems, where
mechanisation and resource limitations are
critical factors shaping agricultural
performance.

Literature review

Mechanisation is widely recognised as a
pivotal lever in transforming agricultural
systems and an effective catalyst for
sustainable rural development. Amid growing
food demand driven by population growth and
economic expansion, mechanisation plays a
vital role in enhancing production efficiency
and reducing operational costs. It also
facilitates the scalability of farming operations
and the optimal utilisation of agricultural
resources. Empirical evidence highlights the
significant impact of mechanisation on
agricultural productivity and rural economic
development (Chaudhary et al., 2022;
Hamilton et al., 2022). In response, many
countries, including Bangladesh, Nepal, India,
and China, have prioritised mechanisation as a
key strategy to increase agricultural output
(Daum et al., 2020; Daum & Birner, 2020;
Qiao, 2017; Rahman et al., 2021). In China,
the rising share of machinery in agricultural
inputs is considered a major structural shift in
the national food production system. Several
studies (Dedewanou & Kpekou Tossou, 2022;
Wu, Dang, Pang, & Xu, 2021) have
demonstrated the positive impact of
mechanisation on crop yields. Recent policy
initiatives, such as government subsidies for
the acquisition of agricultural machinery, have
aimed to promote modernisation, boost
farmers' income, and foster rural development
(Sun, Liu, Yao, Shen, & Bian, 2023; Zhou, L1,
Lin, & Cheng, 2022; Zhou & Ma, 2022). In
Pakistan, evidence suggests that complete
mechanisation across all production stages can
increase farm income by up to 55% (Yasar et
al., 2024). In Malaysia, Isaak, Yahya, Razif,
and Mat (2020) used indices of machinery and
labour use to assess the mechanisation status,
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concluding that productivity gains are strongly
linked to mechanisation advancement. In
India, despite notable progress in recent years,
the national mechanisation rate remains low
(45%) compared to China (57%), Brazil
(75%), and the United States (95%)
(Anonymous, 2018; Round & Conference,
2017). Mechanisation patterns in India are
influenced by factors such as landholding size
and topographical diversity. Reports indicate
that small and fragmented landholdings,
particularly among smallholder farmers,
constitute a major barrier to mechanisation.
This challenge is further exacerbated by
increasing land fragmentation due to
urbanisation and land-use change (Rath et al.,
2024).

Iran  exhibits comparable conditions.
Studies have shown that both net return
indices and benefit-cost ratios for fully
mechanised wheat production surpass those of
semi-mechanised systems (Amoozad-Khalili,
Rostamian, Esmaeilpour-Troujeni, & Kosari-
Moghaddam, 2020). Furthermore, analyses of
rice production data reveal a significant
positive correlation between mechanisation
indices and technical efficiency (Hormozi,
Asoodar, & Abdeshahi, 2012). Another study
on post-harvest losses reports that the
alignment of mechanisation with regional
cropping patterns can substantially reduce
losses, especially for staple crops such as
wheat, rice, and maize (Emami et al., 2018).
These findings underscore the need for
targeted investments to upgrade mechanisation
levels and modernise agricultural machinery
fleets in countries like Iran.

Despite this substantial body of literature
on the impacts of mechanisation on
agricultural productivity, most existing studies
are confined to static, sectoral, and short-term
analyses. These approaches often fail to
capture  causal relationships,  dynamic
interactions, and feedback mechanisms that
characterise agricultural production systems.
For example, Kienzle, Ashburner, and Sims
(2013), in an FAO report, emphasised that
most prevailing analyses are descriptive and
lack feedback-based modelling. Biggs and

Justice (2015) highlighted the limited attention
to mechanisation dynamics in South Asia.
Similarly, Diao, Silver, and Takeshima (2016)
argued that partial equilibrium models used in
African mechanisation studies are insufficient
for representing feedback structures and long-
term effects. Turner, Menendez, Gates,
Tedeschi, and Atzori (2016), in a systematic
review of natural resource modelling, pointed
out that many agricultural studies neglect
system feedbacks and dynamic features, which
are integral to understanding complex systems.
A study by the Conforti (2001) also
demonstrated the limitations of partial
equilibrium models in evaluating long-term
impacts of policy on agricultural pricing and
producer behaviour. Additionally, studies by
Takeshima, Edeh, Lawal, and Isiaka (2015);
Peng et al. (2022); Wang, Liu, and Wang
(2025), while affirming the positive influence
of mechanisation on output, rely primarily on
statistical or cross-sectional data analysis and
do not incorporate structural feedback
modelling or dynamic simulation.
Accordingly, there is a clear research gap
calling for analytical approaches that can
systematically capture time delays, nonlinear
relationships, and endogenous feedback
interactions. In this context, system dynamics
modelling serves as a powerful tool to analyse
complex structures and support evidence-
based policymaking. A synthesis of the
reviewed studies, their methodological
approaches, key limitations, and the specific
contribution of the present research is
summarised in Table 1.

Methodology

General framework of the study

In this study, a causal model was first
created by examining the influencing factors in
a production system. Then, its flow-stock
model was developed to quantify the causal
relationships drawn. To validate the model's
accuracy, historical data from a case study of
wheat production in Khuzestan province from
2011 to 2031 were used. Khuzestan province
is the hub of wheat production in Iran, and
changes in its production process have a
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significant impact on the production of the variables in the future were predicted in the
entire country. Finally, using different policies horizon of 2031.
and scenarios, the conditions of important

Table 1- Summary of reviewed studies, research gaps, and the contribution of the present study

Author(s) / Year Focus of Study XA ethod / Ma}ln_Gap or This Study’s Contribution
pproach Limitation
Kienzle et al. Overview of agricultural Descriptive Lacked dynamic and r:org:alll ﬁﬁs ?‘ri)é:]:vr\rl](;(r:k
(2013, FAO mechanisation in Pt feedback-based . Hing o
. . analysis . integrating mechanisation
Report) developing countries modelling
and resource flows
Biggs & Justice  Mechanisation trends in Policy and I_gnored _dynamlc nghllghts_mgchan!satlon
. : - interactions and feedbacks within agricultural
(2015) South Asia economic review .
systemic feedbacks systems
L . Partial Static representation;
Diao et al. (2016) Mechanlsa-tlon in African equilibrium no feedback or long- Introduces I_ong-term system
agriculture . . dynamics approach
modelling term dynamics
Identified lack of Applies system dynamics
Turner et al. (2016) Review of ”a‘”fa' . Systematlg feedbagk . (SD) to capture feedback and
resource modelling literature review representation in ;
' time-delay effects
agricultural models
... Economic performance of - No system-level Extends mechanisation
Amoozad-Khalili - Empirical cost— . " - . .
mechanised wheat - . interaction with water modelling to include
et al. (2020) - benefit analysis - .
systems in Iran or land resource interactions
. Mechanisation index and - Focused on technical  Incorporates mechanisation
Hormozi et al. - .. Statistical S L. . .
technical efficiency - efficiency, not efficiency in dynamic
(2012) L correlation . ; .
(Iranian rice) dynamic relationships structure
Emami et al Post-harvest loss Descriptive Ignored causal and Models mechanisation as an
(2018) reduction via analysis feedback mechanisms endogenous driver in the

mechanisation system

(;gl;se)s.h;?r?gegf z!l Effects of mechanisation Cross-sectional ~ Static analysis without Integrates behavioural

(2022); Wang et al on oroductivit and regression  feedback or adaptive adaptation and feedback
(,2025)9 . P y models behaviour processes

Daum et al. (2020);
Wu et al. (2021);

Limited quantitative ~ Embeds policy levers into a

Policy measures for Policy analysis modelling of systemic feedback-based SD

mechanisation promotion  and field data

Sun et al. (2023) impacts framework
Mechanisation-water—  System Dynamics Develops an integrated SD

. land dynamics in wheat ~ modelling and model capturing
This Study (2025) production (Khuzestan, sensitivity o mechanisation, water, and
Iran) analysis farmer adaptation feedbacks
Model development this context, agricultural mechanisation is
Problem definition _ _ increasingly —acknowledged as a major
In the face of accelerating population contributor to productivity gains and a
growth, mounting constraints on essential cornerstone  of  sustainable  agricultural
production resources, namely water and arable development (Winarno, Sustiyo, Aziz, &
land, and the escalating impacts of climate Permani, 2025). Nevertheless, the
change, the imperative to maximise input advancement of mechanisation remains
efficiency ~ and  enhance  agricultural hindered by a range of structural and

productivity has intensified markedly. Within institutional barriers, including the prevalence
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of fragmented landholdings, the obsolescence
of existing machinery fleets, deficiencies in
farmer training and technical capacity, and
misalignments across institutional frameworks
(Huo, Ye, Wu, Zhang, & Mi, 2022,
Ravikishore, Supriya, & Subbaiah, 2022;
Sanaullah & Ullah, 2021). Furthermore, the
interplay among mechanisation levels, crop
yields, and cultivated area is characterised by
inherently complex and dynamic relationships.
On the one hand, increased mechanisation may
lead to productivity improvements that reduce
reliance on extensive land use; on the other
hand, it may lower production costs, thereby
incentivising the expansion of cultivated areas.
These dualistic outcomes are often mediated
by  time lags, nonlinearities, and
interdependent feedback mechanisms,
rendering them resistant to analysis through
conventional static or linear models. As such,
there is a critical need to adopt a more
integrated and dynamic  systems-based
approach to holistically examine and simulate
these multifaceted interactions over time.

Dynamic hypothesis and conceptual model

Within an agricultural production system,
the disparity between the actual and the
desired level of mechanization, commonly
referred to as the "mechanisation gap”, is
fundamentally shaped by the availability and
growth rate of tractor power. This gap exerts
complex, nonlinear, and indirect influences on
both cultivated area and crop vyield. An
increase in available tractor and combine
power toward the desired threshold facilitates
higher ~ mechanisation  levels,  thereby
enhancing the efficiency of input and
contributing to vyield improvements. In
contrast, insufficient tractor and combine
power relative to agronomic requirements
constrains the timely execution of critical field
operations, such as sowing, crop management,
and harvesting, resulting in diminished input
productivity, intensified land-use pressure, and
reduced vyields. Figure 1 presents the
conceptual model outlining these
interrelationships.

In response to the research problem and
grounded in the formulated dynamic
hypothesis, a causal loop diagram (CLD) was
developed and is presented in Figure 2.

Providing the required

Effect of mechanisation on

POWEr resources

yield
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power resources

Providing the required

PpOWer resources

Fig. 1. Conceptual model of the effects of mechanisation on cultivated area and yield
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Fig. 2. CLD model of the effects of mechanisation on cultivated area and yield

This diagram highlights two principal
feedback loops, each representing a distinct
dynamic mechanism influencing agricultural
mechanisation and its systemic interactions.
The first loop is detailed as follows:

Loop 1: Reinforcing Loop (R1) — Cultivated Area
Expansion Induced by Mechanization

In many agricultural systems where
landholding structures are characterised by
small-scale and fragmented plots, such as
those commonly found in developing countries
or regions with unequal distribution of land
and resources, an increase in cultivated area
introduces complex dynamics in the demand
for and access to mechanisation power. In such
contexts, expanding the cultivated area often
entails a rise in the number of land parcels,
greater physical distances between them, and
consequently, more complex  machine
operations within limited agricultural time
windows. This situation directly leads to an

increased demand for desirable tractor power,
as timely operations across small and scattered
plots require higher operational capacity per
unit area.

At a broader scale, this increased demand
translates into a rise in total desirable power.
In other words, to complete timely,
mechanised field operations across all
cultivated land, the system as a whole must
operate at a higher power level. This
requirement is typically represented by the
index of desirable mechanisation level
(horsepower per hectare), which follows an
upward trend under such conditions.
Meanwhile, the availability of mechanical
power (i.e., total tractor horsepower) typically
does not change significantly in the short term,
as scaling up mechanisation requires time,
capital investment, and infrastructure support.
Consequently, when the cultivated area
expands, the existing mechanisation level (i.e.,
horsepower per hectare) tends to decline
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because the same amount of available power is
now distributed over a larger area of land. The
simultaneous decrease in existing
mechanisation and increase in desirable
mechanisation  results in a growing
mechanisation gap, that is, the difference
between required and available power per
hectare. This widening gap imposes increasing
pressure on the agricultural system and
intensifies demand for mechanised resources,
such as tractors. If this demand is met, fully or
partially, by public or private investment, the
number of tractors and total available power in
the system will rise. However, it is important
to note that if the cultivated area continues to
expand faster than power availability, the ratio
of power to land area (i.e., the existing
mechanisation level) may continue to decline.
In other words, an increase in total available
power does not necessarily translate into
higher mechanisation levels, since the power
requirements generated by land expansion may
outpace the system's capacity to respond.
Nevertheless, in cases where a relative
balance is achieved between the rate of land
expansion and the provision of mechanised
power, increased availability of tractors and
power can enhance the existing mechanisation
level and, in turn, enable or incentivise further
land cultivation. Farmers with improved
access to mechanised services are more likely
to bring idle land into production or expand
their cropping activities. This chain of
relationships forms a reinforcing feedback
loop, in which an initial increase in cultivated
area activates a set of systemic dynamics that
ultimately leads to further expansion. A crucial
insight in this context is that, in smallholder-
based systems, unlike consolidated large-scale
farms, an increase in desirable mechanisation
level is not necessarily associated with
economies of scale. On the contrary,
fragmented landholdings typically reduce
machine efficiency, increasing the power
requirement per unit area to maintain
timeliness and quality of operations.
Therefore, in the absence of policy
intervention and resource management, this
reinforcing loop may intensify demand,

destabilise mechanisation supply chains, and
exert pressure on both technical and financial
infrastructure within the agricultural system.
Although this structure describes a reinforcing
dynamic capable of driving continual growth
in cultivated area and mechanisation demand,
it must be recognised that land expansion is
constrained by physical, economic, and
ecological limitations.  Accordingly, the
present model defines an exogenous upper
threshold for cultivated area to prevent infinite
growth and to ensure a more realistic system
behaviour. While this cap is not part of the
internal feedback loop, it plays a critical role
in curbing endogenous dynamics and ensuring
the long-term stability of the system.

Loop 2: Balancing Loop (B1)- Mechanization Gap
Adjustment through Power Supply Expansion
Alongside the primary reinforcing feedback
loop that links the expansion of cultivated
area, the mechanisation gap, and rising
demand for tractor power in a growth-oriented
trajectory, the model also incorporates a
balancing feedback loop, designated as Loop
B1, that emerges from the corrective
mechanisms addressing mechanisation
imbalances. In this loop, the existing
mechanisation level (measured as horsepower
per hectare) serves as the initial trigger. A
decline in this index widens the mechanisation
gap, thereby increasing demand for additional
power resources (e.g., tractors). If this demand
is met, total available power in the system
increases, subsequently improving the existing
mechanisation level. This adjustment process
can potentially reduce the gap and steer the
system toward rebalancing the power-to-land
ratio. Thus, this loop operates with a corrective
logic and offers a stabilising mechanism in
response to  negative fluctuations in
mechanisation capacity. Although it shares
several variables with the main reinforcing
loop and interacts with similar components of
the system, its feedback direction is distinct.
Loop B1 functions as a balancing feedback
structure, helping the system  resist
destabilising trends and supporting temporary
recovery, especially in the face of short-term
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shocks or partial policy interventions aimed at
mechanisation support. However, while Loop
B1 introduces a corrective mechanism, its
balancing effect alone may not be sufficient to
counteract the reinforcing  momentum
generated by Loop R1. Thus, external
constraints and systemic interventions remain
crucial to ensure sustainable long-term
behaviour.

Stock-Flow Model and Parameterisation

After identifying the key feedback loops
and influential variables, the stock—flow (SF)
model was developed based on the conceptual
framework derived from the causal loop
diagram (CLD) (Figure 3). This model not
only enables the quantification of feedback
relationships among mechanisation, inputs,
price, and vyield, but also facilitates the
transformation of conceptual structures into
accumulative variables and functional flows,
thereby allowing for the analysis of dynamic

system behaviour over time. In contrast to
static or partial equilibrium approaches, which
are often incapable of capturing endogenous
dynamics, time delays, and nonlinear
interactions, the SF model provides a robust
analytical foundation for simulating scenarios,
evaluating policy impacts, and systematically
understanding the long-term behaviour of
agricultural production systems. Some of the
variables used in the stock-flow model are
explained in Table 2. All variables were
parameterised using empirical data from
Khuzestan Province (2011-2022). Technical
coefficients, such as field and irrigation
efficiencies, were adapted from national
studies (Keshvari & Marzban, 2018;
Jalalzadeh, Borghei, & Almassi, 2016), while
crop-water  parameters  followed FAO
guidelines (Allen, Pereira, Raes, & Smith,
1998).
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Initialisation of Power Resource Stocks

The foundational step in model formulation
involved estimating the number of agricultural
power resources, specifically disaggregated
into tractors and combines. These were
represented as stock variables within the
system dynamics framework (Egs. 1 and 2).

t

Nirac(t) =f [Addtrac(s)
K (1)

— Retireirq-(s)]ds

+ Ntrac (tO)
t

Neomp (8) =f [Add comp (5)
fo (2)

— Retire omp(s)]ds
+ Ncomb (tO)

where Ntac and Ncomp are the number of
available tractors and combines, respectively,
Addtrac and Addcomb denote the rates of addition
(e.g., purchases), and Retirewac and Retirecomn
represent the rates of retirement (e.g.,
decommissioning) for tractors and combines,
respectively.

To allocate these power resources to wheat
cultivation, the current mechanisation level
was calculated as the ratio of total available
tractor power (including tractors and
combines) to the cultivated area. This required
an initial estimation of the province’s autumn-
sown crop area. By dividing the aggregate
tractor power by this area, the mechanisation
level (expressed as power per hectare) was
derived, facilitating the estimation of the
number of power sources (primarily tractors)
assigned to wheat production as the initial
stock.

Estimation of Desired Mechanisation Level
To estimate the desired level of

mechanisation, a  multi-step  approach
integrating  climatic, ~ agronomic,  and
operational  parameters was employed.

Meteorological data were first obtained from
the  Iranian  National Meteorological
Organisation. The number of feasible working
days (D) for field operations was then
estimated using Equation (3), as recommended

by the Food and Agriculture Organisation
(FAO) (Keshvari & Marzban, 2018; Rabet,
Bahrami, & Sheikhdavoodi, 2014):

D =dg+5dn +5d, (3)

where D represents the number of workable
days in a given period, ds denotes the number
of sunny days, dn shows the number of
partially sunny days, and d; is the number of
overcast days.

Subsequently, drawing on the operational
calendar of major field crops, specifically the
work conducted by Keshvari and Marzban
(2018), the type and frequency of mechanised
field operations per hectare were identified.
These data, coupled with the estimated number
of workable days during peak agricultural
periods, enabled the determination of the
minimum field capacity required to ensure the
timely completion of farm tasks. This was
calculated using Equation (4), adapted from
(Jalalzadeh et al., 2016; Keshvari & Marzban,

2019; Mitiku Degu, Nageswara, Moges
Ketsela, & Workneh Fanta, 2025):

A
Ca = exTpma )

where C,, denotes the effective required
field capacity (hectares per hour), A is the
target operational area (hectares), ta is the
number of workable days available within the
specified time window, T is the number of
working hours per day (assumed to be 10), and
pwd IS the probability of a workable day
(calculated as the ratio of feasible working
days to the total days in the target month).

This procedure enables a realistic estimate
of mechanisation demand under region-
specific climatic constraints and agronomic
calendars, thereby informing investment
decisions in  machinery planning and
mechanisation policy.

Determination of implementation requirements and
power resources demand

To estimate the peak operational demand
for each type of agricultural implement, the
monthly distribution of field operations was
analysed, and the month with the highest
operational density for each implement type
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was identified. It was assumed that meeting
the operational capacity required during the
peak month would ensure sufficient machinery
availability throughout the rest of the
agricultural calendar, thereby preventing
delays in critical field activities and
minimising the economic losses associated
with untimely interventions.

The required working width for each
implement was calculated using Equation (5),
adapted from (Jalalzadeh et al., 2016;
Keshvari & Marzban, 2019):

w =0 )
Vxng

where:

W = required working width (m),

Ca = effective field capacity (ha ht),

V = operational speed (km hl), and

ne = field efficiency (dimensionless).

Field efficiency values were adjusted based
on the average parcel size and prevailing field
conditions in the study area, reflecting the
operational  constraints  encountered in
smallholder farming systems. Once the
required working width (W) was obtained, it
was divided by the mean working width of
standard implements commonly used in the
province to determine the number of units
required per implement type. Subsequently,
the power resources demand for each
implement was estimated based on technical
specifications and matched to available tractor
horsepower classes. Aggregating the monthly
power requirements across all operations
enabled the estimation of the total peak power
demand. This, in turn, facilitated the
calculation of the number of equivalent
tractors necessary to fulfil the mechanisation
requirements during the critical operational
window.

Estimation of key agricultural indicators, cultivated
area, crop yield, and price

In this modelling framework, the temporal
evolution of key agricultural indicators,
specifically, cultivated area and crop vyield,
was  endogenously  captured  through
empirically derived functional relationships.
These relationships were formulated using
econometric  estimations and production

function theory to better reflect real-world
input-output dynamics under varying agro-
ecological and policy conditions.

The cultivated area (A) was modelled as a
multivariate function of available mechanical
power (APS), the volume of irrigation water
allocated to non-target crops (OAU), total
precipitation (TPrec), and commodity price
levels (P), as expressed in Equation (6):

A; = f(APS;, 0AU,, TPrec,, P;) (6)

This formulation reflects the notion that
both biophysical constraints (e.g., water
availability and rainfall) and economic
incentives (e.g., price) jointly shape farmers'
decisions to allocate land to specific crops
under mechanised conditions. Crop yield (Y)
was specified as a function of key agricultural
inputs and environmental variables, including
fertiliser consumption (FC), pesticide usage
(PC), irrigation water usage (WU), average
precipitation (AP), and mechanisation level
(ML), as presented in Equation (7):

Y; = f(FC:, PC,, WU, AP;, ML) (7)

This function captures the multidimensional
interaction among chemical, hydrological, and
technological inputs in determining on-farm
productivity, with mechanisation level (ML)
explicitly introduced to reflect its contribution
to operational timeliness, labour efficiency,
and input effectiveness. Total agricultural
production (TP) was then determined as the
product of cultivated area and yield (Eg. 8):
TP, = A; X Y, (8)

The price dynamic was conceptualised
using a stock-and-flow approach, in which the
rate of price change was formulated as a stock
variable representing cumulative deviations
driven by macroeconomic factors. The price
was represented as an auxiliary variable,
computed by exponentiating the base-year
price with respect to the accumulated rate of
change, thereby capturing the compound
effects of temporal fluctuations on market
valuation (Egs. 9 and 10).

P, = Py x e’ (9)
d(AP
AP, =22 (10)

Estimation of Irrigation water requirement and
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water use (Per-Hectare)

Given the lack of reliable field-level data on
actual water consumption, primarily due to the
absence of systematic measurement protocols
by farmers and responsible institutions, this
study employs an estimation-based modelling
approach to quantify irrigation water use per
hectare. Following the proposed methodology
(Hoekstra et al., 2009), crop water requirement
(CWR) was calculated based on reference
evapotranspiration (ETo) and crop-specific
coefficients (K¢), while accounting for
effective precipitation (Perf) and irrigation
efficiency. The crop water requirement refers
to the volume of water needed to meet a crop’s
total evapotranspiration demand under optimal
agronomic conditions from planting to harvest
(Hoekstra et al., 2009). Under these ideal
conditions, water availability is assumed to be
non-limiting throughout the growth period,
either through rainfall or supplementary
irrigation. CWR is determined using Equation
(12):

CWR = Kc X ETo (11)

Under this assumption, the actual crop
evapotranspiration (ETc) is considered equal to
the crop water requirement (Eq. 12).

ET: = CWR (12)

The ET, represents the climatic evaporative
demand of a standardised surface, typically a
hypothetical grass surface with specific
biophysical attributes. It is driven solely by
meteorological variables, such as temperature,
solar radiation, humidity, and wind speed. The
K. adjusts ET, to reflect the water use
characteristics of specific crops and varies
throughout the phenological stages. Standard
K. values for various crops and climatic
conditions were adopted from the guidelines of
Allen et al. (1998). The Pes is defined as the

fraction of total rainfall that is stored in the
root zone and available for plant uptake
(Hoekstra et al., 2009). Not all rainfall
contributes to crop water use due to losses
from surface runoff and deep percolation. In
this study, Pefr was estimated using the USDA
Soil Conservation Service (SCS) empirical
method (Eq. 13), as recommended by Hoekstra
et al. (2009):

Per= (P X (125—(0.2 X P))) /125 (13)

where Pesf is the effective rainfall and P is
the average rainfall. Subsequently, the net
irrigation requirement (IR) was calculated as
the difference between crop water requirement
and effective precipitation. When Pesr exceeds
CWR, irrigation demand is assumed to be zero,
based on the assumption that rainfall fully
meets the crop’s water requirement (Eq. 14).
IR = max (0, CWR — Perr) (14)

Finally, the gross irrigation water use per
hectare was estimated by adjusting the
irrigation  requirement for the irrigation
system's efficiency factor (IE). This reflects
actual field-level water use, considering

conveyance and application losses (Eq. 15).

Water use (7:—:) = g (15)

Model Validation

To validate the model, both structure-based
and behaviour-based tests were applied. For
behaviour  validation, coefficient of
determination (R?) (Eg. 16), mean absolute
percentage error (MAPE) (Eq. 17), and root
mean square error (RMSE) (Eq. 18) were
used, as proposed by Taheri, Jahani, and
Pishvaee (2024).

R2 = %Z (Xd;:i)n(xm) (16)
— 1 |Xm_X |
RMSE = \/% Y (X — %g)? (18)

The R? value indicates the probability and
strength of correlation between the simulated
and actual data (Wang, Dong, & Susnik,
2023), while MAPE is employed to evaluate
the model’s precision in estimating real-world
behaviour and trends. RMSE was selected as
the primary evaluation metric since it
quantifies the average magnitude of prediction
errors in the same units as the target variable
and places a higher penalty on larger
deviations, providing a more sensitive and
reliable measure of model performance. These
metrics together provide a comprehensive
basis for assessing the credibility and
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predictive power of the model.

Results

Validation

Data on wheat production in Khuzestan
Province from 2011 to 2022 were used to
validate the model results. The data were
obtained from the Agricultural Research,
Education and Extension Organisation and the
statistics of the Ministry of Agriculture Jihad.
The coefficient of determination (R?)
exceeding 0.8, alongside a mean absolute
percentage error (MAPE) below 0.15,
indicates a robust level of model accuracy and
predictive validity (Figures 4-7). Thereby, the
model structure demonstrates a strong capacity
to represent the causal relationships and key
dynamics of the agricultural production
system. The high accuracy observed in the
prediction of available power resources and
cultivated area reinforces the model’s
credibility for use in policy analysis and future
scenario development. In the case of the
mechanisation level index, the model achieves
an Rz of 0.67 and a MAPE of 0.27, indicating

1400000
1200000
1000000
800000

o
600000
400000

200000

an acceptable level of predictive accuracy.
Although slight deviations are observed during
peak years, particularly 2018-2019, the model
adequately reproduces the overall temporal
dynamics. These deviations likely stem from
simplifications in the model. For instance, it
excludes short-term operational constraints,
fails to address policy volatility, and does not
capture how agricultural stakeholders adapt
nonlinearly to changes.

Designing policies and scenarios

Following model validation, a set of
targeted policy interventions was formulated
and operationalised through a series of
dynamic simulation scenarios. These scenarios
were designed with the primary objective of
evaluating the long-term systemic implications
of policy actions under varying conditions of
selected external drivers, thereby enabling the
extraction of evidence-based managerial and
strategic insights. The policy levers, treated as
exogenous and controllable parameters within
the model, included the following:

0

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

=@ Available powe resources(simulated) ==@=Available powe resources (actual)

R?=0.93, MAPE = 0.15, and RMSE = 140260
Fig. 4. Comparison of historical trends of variables and their simulated values of available power resources
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2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

==@=—"Total mechanization level index (simulated)

==@==Total mechanization level index (actual)

R?=0.67, MAPE =0.27, and RMSE = 0.4
Fig. 5. Comparison of historical trends of variables and their simulated values of the mechanisation level index
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0

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
== Area under wheat cultivatin (simulated) ==@==Area under wheat cultivatin (actual)

R?=0.86, MAPE = 0.12, and RMSE = 82225
Fig. 6. Comparison of historical trends of variables and their simulated values of area under cultivation
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2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

=@=—\Nheat yield (simulated)

=—@=—\Nheat yield (actual)

R? =0.80, MAPE = 0.11, and RMSE = 0.49
Fig. 7. Comparison of historical trends of variables and their simulated values of yield

Table 3- Suggested scenarios for examining system changes

Rate of replacement and modernisation

Annual precipitation

Availability of water resources

Scenario (%) (%) (%)
Base-

line ) ) )
S: +10 - -
S, +20 - -
Ss3 +30 - -
Sy +10 +10 +10
Ss +20 +10 +10
Se +10 -10 -10
Sy +20 -10 -10

« The rate of replacement and
modernisation of agricultural power resources
(e.g., tractors and combines),

* Annual precipitation (as a proxy for
climate variability), and

« Auvailability of water resources for
irrigation.

To ensure analytical clarity and isolate the
marginal effect of each policy variable,
scenario simulations were initially conducted
separately for each exogenous factor. This
modular approach enabled a more robust
understanding of the individual contribution of
each policy measure to system behaviour.
Subsequently, composite scenarios were
constructed by integrating multiple policy
levers, enabling exploration of synergies and
trade-offs. The complete configuration of

scenario designs is presented in Table 3.

Analysis of results

In Scenarios 1, 2, and 3, the regional
mechanisation ~ development  coefficient,
reflecting investment in the agricultural tractor
fleet, was incrementally increased by 10%,
20%, and 30%, respectively. This policy
intervention led to a sequential increase in the
number of tractors and combines (Figs. 8 and
9), thereby enhancing the total stock of
mechanical power available to the agricultural
system (Figure 10). The resulting enhancement
in  operational capacity facilitated the
expansion of the cultivated area (Figure 11).
However, this expansion, in turn, induced a
relative decline in the mechanisation level
(Figure 12), thereby widening the gap between
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actual and desired mechanisation intensity. In
response to this shortfall, the system activated
reinforcing  feedback  mechanisms  that
stimulated effective demand for additional
power resources, prompting further capital
inflows and equipment acquisition within the
sector (Figs. 8 and 9). Among these three
scenarios, Scenario 3, which featured the most
aggressive rate of mechanisation development
(Figure 12), demonstrated the most substantial
positive impacts, including greater expansion
of cultivated land (Figure 11), more
pronounced improvements in the
mechanisation index (Figure 12), and a notable
enhancement in crop vyield (Figure 13).
Despite these interventions, the overall
increase in cultivated area relative to the
baseline scenario remained limited
(approximately 1%), reflecting the influence of
balancing feedback loops embedded within the
system dynamics structure that restrict
unbounded expansion (Figure 11). Moreover,
inter-scenario variability in cultivated area
growth was minimal, with differences
remaining below 1%. With respect to yield,
Scenario 3 vyielded the most significant
improvement, exhibiting an approximate 7%
increase over the baseline (Figure 13). The
average yield growth differential across all
three scenarios was about 2.5%, highlighting
the influence of mechanisation intensity on
production efficiency. Given the simultaneous,
albeit moderate, improvements in both
cultivated area and vyield, a cumulative
increase in total wheat production was not
only expected but also consistent with system
feedback behaviour (Figure 14). In the
combined Scenarios 4 and 5, a 10% increase in
both precipitation and water availability was
introduced alongside a parallel improvement
in  mechanisation development. However,
contrary to expectations, these combined
interventions led to a smaller expansion in the
wheat-cultivated area relative to the
mechanisation-only scenarios (Figure 11).
This result is attributed to shifting farmer
preferences toward higher-value or export-
oriented crops, such as vegetables and
horticultural products, especially in the context

of improved water availability and regional
agroecological diversity. As a result, while
wheat cultivation still experienced growth
relative to the baseline (approximately 1-
1.5%), the rate of expansion was less than that
observed in Scenarios 1 through 3. This
relatively slower land expansion translated
into a more modest increase in demand for
new power resources, thereby moderating the
growth in mechanisation levels (Figure 12).
Since mechanisation is a principal determinant
of yield enhancement, the deceleration in its
growth (approximately 4% lower than the
mechanisation-only scenarios) led to a smaller
yield increase  (1-3%) (Figure  13).
Consequently, the reduced growth rates in
both cultivated area and yield resulted in a
modest increase in total wheat production,
reflecting the inherent constraints and
feedback captured by the system dynamics
model (Figure 14). Scenarios 6 and 7
introduced a 10% reduction in both
precipitation and irrigation water availability,
while  maintaining the trajectory  of
mechanisation expansion. Interestingly, these
adverse water conditions, in conjunction with
increased tractor availability, resulted in the
largest increase in wheat-cultivated area
among all scenarios (Figure 11). This dynamic
was driven by two reinforcing mechanisms:
(1) the operational advantages  of
mechanisation, and (2) a policy and
behavioural shift among farmers, who, faced
with declining water security, strategically
reallocated land to wheat, a relatively water-
efficient and stable crop. The resulting
expansion in the cultivated area triggered
increased demand for mechanical power,
leading to a further increase in the stock of
available tractors and combines (Figs. 8 and
9). Although the relative growth rate of the
mechanisation index was suppressed due to
rapid land  expansion, the absolute
mechanisation level remained comparable to
Scenarios 4 and 5 due to continuous inflows of
power resources (Figure 12). In terms of yield,
gains in efficiency and timeliness from
mechanisation were partially offset by
irrigation  constraints, which limited the
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realisation of yield potential. Nevertheless,
improved precision in field operations,
particularly during critical growth stages (e.g.,
flowering), mitigated climatic stresses such as
heat waves and high evapotranspiration. This
stabilisation-maintained yields close to pre-
experiment baseline levels (Figure 13).
Overall, total wheat production in Scenarios 6

25000
20000

15000

Number

10000

5000

and 7 increased modestly relative to the
baseline, with the expansion in cultivated area
compensating for stagnation in per-hectare
yields (Figure 14). These results highlight the

complex interplay  between  resource
constraints, mechanisation, and adaptive
farmer behaviour, as represented in the

model's integrated feedback structure.

2011
2012
2013
2014
2015
2016
2017
2018

base-line S1 ——S2

2019

2020

S3

o N M T WO~ DO o
NN NN NN NN O oM
S O 0 OO0 oo oo o d
N N AN NCNANA

S4 S5 S6 S7

Fig. 8. Trends of simulated values of the number of available tractors
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Fig. 9. Trends of simulated values of the number of available combines
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Fig. 11. Trends of simulated values of the area under wheat cultivation
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Fig. 14. Trends of simulated values of production

In summary, Scenarios S1-S3 and S6-S7
are dominated by the reinforcing loop R1
(power—area expansion), whereas scenarios
S4-S5 are primarily governed by the balancing
loop Bl that constrains excessive growth.
These causal linkages correspond directly to
the feedback structure in Figure 2. The above
behavioural patterns can be mechanistically
explained by the interaction of the reinforcing
loop (R1) and the balancing loop (B1) in the
causal loop diagram (Figure 2). In scenarios
S1-S3 and S6-S7, the R1 loop dominates,
driving  expansion  through  power—area
feedback, while under S4-S5 the Bl loop
counteracts this process by reducing the
mechanisation gap and moderating land
expansion.

The analysis of guaranteed wheat price and
cultivated area from 2011 to 2031 reveals a
dynamic and policy-dependent behaviour
between price movements and land allocation
(Figure 15). In the early years, increases in the
guaranteed price directly stimulated the
expansion of the wheat -cultivated area.
Specifically, the stock variable defined in Egs.
9-10 feeds into the land-allocation loop,
capturing delayed farmer responses to price
fluctuations. This growth reflects the rise in
expected profit and farmers’ willingness to
allocate more land to wheat production,
thereby activating reinforcing feedback (R1).

At this stage, the price signal serves as a key
market driver, justifying higher investment in
inputs and mechanisation. However, after the
guaranteed price exceeds approximately
20,000 Rials per kilogram, the rate of area
expansion declines, and its sensitivity to
further price increases weakens (Figure 16).
This pattern indicates the emergence of
balancing feedback (B1) in which structural
and policy constraints become dominant. From
an economic perspective, two factors explain
this behaviour. First, the government’s
procurement capacity and budget constraints
limit the total quantity of wheat that can be
purchased at the guaranteed rate. Hence, price
increases beyond that threshold do not
necessarily translate into higher net profits for

farmers. Second, rising production costs,
including inputs, labour, and energy, partially
offset the price incentive, leading to a

moderated real growth in cultivated area and
movement toward a new equilibrium.
Therefore, the guaranteed price policy in Iran
performs a dual economic function: in the
short term, it acts as an instrument to stimulate
production (Figure 15), while in the long term,
it serves as a control mechanism to prevent
excessive or unsustainable expansion of
cultivated land (Figure 16). This dual dynamic
demonstrates that the guaranteed price is not a
static economic variable but a policy-driven
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dynamic factor that simultaneously shapes
farmers’  behaviour and  governmental
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Fig. 16. Nonlinear relationship between guaranteed price and cultivated wheat area

Sensitivity Analysis

The sensitivity analysis was performed to
examine the behavioural stability of the model
under variations in its key structural
parameters, rather than to introduce new
policy scenarios. Two parameters closely
related to the scenario framework were
selected for this test: the total inflow of
agricultural power resources, representing the
overall mechanisation capacity entering the
sector, and the available irrigation water for

wheat cultivation. A +20% variation in the
total inflow of power resources produced a
proportional and consistent response in wheat
yield, with higher inflows improving yield by
approximately 5-7%, and lower inflows
resulting in a moderate decline (Figure 17).
This finding confirms the central role of
mechanisation development and equipment
availability in sustaining operational efficiency
and enhancing productivity over time.
Similarly, varying the available irrigation
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water for wheat within a £20-40% range led to
only minor adjustments in the cultivated area
(less than 1%), with a slight expansion
observed under reduced water availability
(Figure 18). This reaction aligns with the
model’s internal logic and the adaptive
behaviour reflected in the scenario analysis:
under water stress, wheat, being a relatively
water-efficient and policy-supported crop,
occupies a slightly larger share of arable land,

whereas under favourable water conditions,
farmers tend to diversify toward high-value
crops.

Overall, the sensitivity tests demonstrate that
the model maintains logical, proportional, and
stable responses to variations in both structural
and resource-related parameters, thereby
confirming the robustness and behavioural
validity of its feedback structure.

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031

= \\/heat yield-base line

Wheat yield-Replacement rate=base line+(0.2*base line)

Wheat yield-Replacement rate=base line+(-0.2*base line)

Fig. 17. Sensitivity of wheat yield to replacement rate of power resources
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Fig. 18. Sensitivity of cultivated area to available irrigation water for wheat
Discussion landholdings, the adoption and diffusion of

A comprehensive review of the existing
literature identifies agricultural mechanisation
as a fundamental driver of agricultural
development in  numerous  developed
countries. Broadly defined, mechanisation
entails the use of mechanical power to execute
various farm operations. Nonetheless, in many
developed nations, the comprehensive and
seamless implementation of mechanisation has
yet to be fully realised, largely due to
prevailing economic, social, and cultural
constraints. In recent years, however, there has
been notable progress in this domain. While
beyond conventional mechanisation, modern
mechanisation, characterised by the integration
of artificial intelligence and robotics, is
increasingly being adopted and advanced in
developed countries.

Empirical evidence suggests that despite
substantial systemic challenges, primarily
stemming from the predominance of
smallholder ~ farming and  fragmented

mechanisation  technologies in  several
developing  countries, including India,
Bangladesh, Nepal, and South Africa, as well
as in China, have garnered significant farmer
engagement (Ahmed & Ahmed, 2023; Aryal,
Rahut, Thapa, & Simtowe, 2021, Huo et al.,
2022; Mohammed, Batung, Saaka, Kansanga,
& Luginaah, 2023; Aryal et al., 2021). The
attractiveness of mechanisation in these
contexts is not predicated on a singular,
transformative innovation, but rather on the
aggregate effect of its decreased post-harvest
losses, particularly in grain crops (Belton et
al., 2021). Quantitative studies, such as those
by Liu and Li (2023), have established that the
elasticity of agricultural machinery utilisation
with respect to rice production, wheat, and
maize is positive and statistically significant,
estimated at 0.0059, 0.0148, and 0.0607,
respectively. Moreover, findings by Peng et al.
(2022) indicate that a 1% increase in the
mechanisation index corresponds to vyield
improvements of 1.2151% across all crops and
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1.5941% for cereals. Similarly, Sun et al.
(2024)  demonstrate that mechanisation
expansion increases cultivated land area, and,
ceteris paribus, each 1% rise in mechanisation
results in a 0.467% increase in the benefit-cost
ratio for maize production. Regional
assessments across small, medium, and large-
scale farms in South Asia and the Pacific
coastline further corroborate the significant
and positive impact of mechanisation on crop
productivity, with particularly pronounced
effects observed in rice cultivation (Rath et al.,
2024). In Pakistan, mechanisation has
facilitated the reclamation and productive use
of fallow lands, thereby augmenting the
cultivated area and yield of key staples, wheat,
rice, and maize, by 0.4%, 10.4%, and 27.3%,
respectively (Yamin, Tahir, Awan, & Yaseen,
2011). Comparative analyses also reveal that
full mechanisation across all stages of crop
production enhances food security by up to
125% compared to semi-mechanised systems
(Yasar et al., 2024). Additionally, panel data
analysis of 30 Chinese provinces spanning the
period of 2000 to 2021 reveals that
mechanisation positively influences green total
factor productivity in agriculture. This occurs
through three primary  transmission
mechanisms: enhanced managerial capacity in
farm systems, improved input use efficiency,
and increased diversification within the
agricultural industrial structure (Lu, Meng, &
Cheng, 2024). Accordingly, mechanisation not
only drives productivity but also facilitates the
transition toward environmentally sustainable
and climate-smart agricultural systems (Fang,
Chen, Wang, & Chen, 2024; Lu et al., 2024).
Further, findings by Fang et al. (2024) indicate
that mechanisation, by boosting food
production and reducing vulnerability to
natural disasters, generates both direct and
spatial spillover effects that enhance the
climate resilience of agricultural production.
Specifically, each 1% increase in
mechanisation is associated with a 0.012-unit
improvement in local food system resilience.
The capacity of mechanisation to ensure the
timeliness of field operations positions it as a
critical lever for safeguarding food security

and adapting to climatic shifts (Daum, 2023;
Liu, Yasir, Tahir, & Awan, 2025; Rahman et
al., 2021; Yamin et al., 2011). Conversely,
certain studies, such as those by Zou, Chen,
Mishra and Hirsch (2024), report a negative
correlation between mechanisation and local
GDP in China. These findings attribute the
decline to the disproportionate concentration
of mechanisation efforts in cereal production,
which has skewed cropping patterns toward
lower value-added commodities.  This
reallocation of resources is posited to have
constrained the cultivation of high-value crops,
thereby exerting downward pressure on
regional economies. Additionally, Min and
Paudel (2021) argue that suboptimal farm
scale, particularly in rice cultivation below the
economically efficient threshold, has led to
allocative inefficiencies and underutilisation of
mechanised assets.

In sum, the reviewed body of evidence
affirms the internal consistency and logical
coherence of the present study’s findings. The
results highlight the synergistic potential of
integrated  mechanisation  strategies in
enhancing incremental, overlapping, and
complementary benefits. These advantages
include reductions in labour requirements,
alleviation of manual drudgery, operational
convenience, improved timeliness and
efficiency of field operations, enhanced
adaptive capacity to climate variability, and
agricultural ~ performance  metrics  and
underscore the critical importance of targeted,
evidence-based policy interventions.
Ultimately, the strategic advancement of
agricultural mechanisation offers a viable
pathway to long-term productivity gains and
the sustainable intensification of land use.
Despite the positive impacts demonstrated in
this study, the findings should be interpreted in
the light of potential challenges associated
with  agricultural ~ mechanisation. ~ While
improved access to machinery can enhance
productivity, it may also lead to increased
energy  consumption,  greenhouse  gas
emissions, and potential soil degradation if not
managed sustainably (Lu et al., 2024; Yan et
al., 2024; Zhu et al.,, 2022). Furthermore,
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mechanisation can unintentionally widen
socio-economic disparities between large-scale
and smallholder farmers, since resource-rich
farmers are typically better positioned to adopt
modern technologies and benefit from
economies of scale (Liu & Li, 2023,
Mohammed et al., 2023; Peng et al., 2022).
From a policy perspective, these findings
highlight the need for balanced mechanisation
strategies.  Investments in  agricultural
machinery should be complemented by
capacity-building programs, credit access for
smallholders, and environmentally sustainable
practices (Aryal et al., 2021; Emami et al.,
2018; Lu et al., 2024). Future studies could
integrate broader environmental, social, and
economic dimensions into the modelling
framework to better capture potential trade-
offs and synergies between mechanisation,
resource efficiency, and sustainability (Daum,
2023; Fang et al., 2024; Lu et al.,, 2024).
Incorporating these aspects would enhance the
relevance of simulation results for policy
design, particularly in regions facing resource
constraints and climate variability (Rahman et
al., 2021; Winarno et al., 2025).

Conclusion

The findings of this study demonstrate that
the development of agricultural mechanisation
can play a significant role in enhancing crop
yield, optimising resource utilisation, and
strengthening the resilience of agricultural
production systems in the face of climatic
challenges and structural constraints. The
results of the system dynamics-based
simulations indicate that a 30% increase in the
development of power sources results in a 7%
improvement  in  wheat yield and
approximately a 1% increase in the cultivated
area compared to the baseline scenario. These
outcomes underscore the potential of
mechanisation to enhance agricultural
productivity and profitability. Moreover, the
integrated analysis of mechanisation scenarios
in conjunction with water resource variability
reveals that under conditions of resource
abundance, farmers tend to shift toward the
cultivation of higher value-added crops. This

behavioural shift diminishes the direct impact
of mechanisation on the expansion of wheat
cultivation. In contrast, under water-scarce
conditions, the area under wheat cultivation
increases significantly, an outcome attributed
to wheat’s agro-climatic suitability and the
operational efficiencies enabled by
mechanisation under water-stressed
environments. However, yield gains under
such conditions remain comparatively limited
due to irrigation constraints.

Overall, the study underscores the critical
importance of employing dynamic, simulation-
based analytical frameworks in the design of
mechanisation policies. It further demonstrates
that well-targeted mechanisation strategies,
beyond enhancing productivity and food
security, can act as a pivotal tool for climate
adaptation and the long-term sustainable
development of the agricultural sector. To
enhance the model’s utility across broader
contexts, future work could explore integrating
socio-economic and behavioural dynamics,
thereby expanding its scope for regional and
national decision-making.

Limitations and Future Research Directions

While this study provides valuable insights
into the dynamic interactions between
agricultural mechanisation, cultivated area,
and vyield, several limitations should be
acknowledged.
First, the model was calibrated using data from
Khuzestan Province, Iran, which may
constrain the generalisability of the findings to
other agroecological contexts. Nevertheless,
the overall framework and methodological
approach are transferable to regions with
similar ~ climatic,  socio-economic, and
technological conditions. Second, the model
primarily  captures long-term  structural
feedback and does not explicitly incorporate
short-term policy fluctuations, market shocks,
or farmers’ behavioural responses, which
could influence real-world outcomes. Third,
potential environmental and social
consequences of mechanisation, such as soil
degradation, shifts in rural employment,
energy use, and equity concerns, were not
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explicitly modelled and merit  further
investigation.  Furthermore, the  policy
scenarios examined in this study were

intentionally narrow in scope to ensure
conceptual clarity. Future research should
consider a broader range of interventions,
including institutional mechanisms, credit
accessibility, technology diffusion, and
integration with multi-crop systems. Finally,
although the forecasts up to 2031 provide
meaningful directional insights, they should be
interpreted cautiously due to inherent
uncertainties arising from climate variability,
technological advancements, and socio-
economic  dynamics.  Addressing  these
limitations in future studies will improve
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