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Abstract 

Amid escalating pressures on global food systems, driven by resource constraints, climatic variability, and 
rural labour shortages, agricultural mechanisation has become a strategic lever for enhancing productivity and 
sustainability. This study develops and applies a system dynamics model to examine the long-term effects of 
mechanisation on wheat cultivated area and yield in fragmented farming systems. The research begins by 
constructing a causal loop diagram (CLD) to conceptualise the key feedback structures governing mechanisation 
dynamics. Building on this framework, a stock-and-flow simulation model is formulated and empirically 
validated using provincial-level data from Khuzestan, Iran (2011-2022). Validation results demonstrate strong 
alignment between simulated and observed trends across major indicators, including power availability, 
mechanisation level, cultivated area, and yield. The model is subsequently used to simulate alternative policy 
scenarios targeting machinery fleet modernisation, water availability, and precipitation variability. In Scenario 3, 
a 30% increase in the machinery replacement rate leads to a 7% rise in yield and a 1% expansion in the 
cultivated area, relative to baseline projections. When mechanisation improvements coincide with enhanced 
water availability, the marginal impact of mechanisation on land expansion becomes negligible (less than 1% 
increase), indicating a behavioural shift among farmers toward higher-value crops under favourable hydrological 
conditions. In contrast, under water-scarce scenarios, wheat area expands by approximately 1-1.5%, while yield 
improvements remain below 3%, reflecting both the crop’s adaptability and the compensating efficiency gains 
enabled by mechanisation. These findings underscore the importance of accounting for water–mechanisation 
interactions in policy design, particularly in arid and semi-arid regions. The model offers a flexible and 
empirically grounded decision-support tool for policymakers seeking to improve climate resilience, optimise 
resource use, and foster sustainable intensification in agricultural ecosystems facing structural and environmental 
challenges. 
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Introduction 

The fundamental human need for food, as a 
cornerstone of survival, has consistently driven 
global efforts to enhance agricultural 
production. Despite more than a twofold 
increase in global food output over the past six 
decades (Wittwer et al., 2021) and the 
implementation of numerous international 
initiatives aimed at reducing hunger, food 
insecurity, and malnutrition, these challenges 
remain persistent in many parts of the 
world (Sibhatu & Qaim, 2017). These 

challenges are now exacerbated by increasing 
constraints such as limited availability of 
arable land and water, adverse impacts of 
climate change (Araújo, Chavez-Santoscoy, 
Parra-Saldívar, Melchor-Martínez, & Iqbal, 
2023; Khatri, Kumar, Shakya, Kirlas, & 
Tiwari, 2024), ageing rural populations, and 
acute labour shortages (Bissadu, Sonko, & 
Hossain, 2024). In this context, enhancing 
agricultural productivity is not merely an 
option but a necessary strategy to ensure food 
security and support sustainable 
development (Smith et al., 2020). 
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Among the many drivers of productivity 
growth, agricultural mechanisation has 
emerged as a transformative force (Chisadza et 
al., 2025; Zhu, Zhang, & Piao, 2022). The 
evolution from traditional hand tools to 
modern machinery, digital technologies, 
automation, and artificial intelligence has 
generated tangible benefits, including 
increased crop yields (Van den Berg et al., 
2007; Yang, Huang, Zhang, & Reardon, 
2013), improved labour efficiency (Paudel, Kc, 
Khanal, Justice, & McDonald, 2019), higher 
economic returns (Peng, Zhao, & Liu, 2022), 
and reductions in production costs (Chaudhary, 
Pandit, & Burton, 2022; Hamilton, Richards, 
Shafran, & Vasilaky, 2022; Rahman et al., 
2021; Sarkar, 2020). Furthermore, 
mechanisation optimises input use, reduces 
post-harvest losses (Yan, Sun, Chen, & Dai, 
2024), and contributes to environmental 
sustainability through better resource 
management and reduced greenhouse gas 
emissions (Belton, Win, Zhang, & Filipski, 
2021; Emami, Almassi, Bakhoda, & Kalantari, 
2018; Manida, 2022). 

While the benefits of mechanisation are 
well documented, the underlying dynamics 
governing its interaction with other 
agricultural inputs and constraints remain 
insufficiently understood, particularly in 
systems characterised by fragmented 
landholdings, resource scarcity, and climatic 
variability. Most previous studies in this 
domain have relied on static, linear, or 
simplified analytical frameworks, which often 
fail to capture the complex feedback 
structures, time delays, and non-linear 
relationships inherent in agricultural systems. 
This modelling gap hinders our ability to 
effectively evaluate long-term impacts and 
policy trade-offs. In response to this 
deficiency, the present study employs a system 
dynamics modelling approach to explore the 
feedback-rich, time-dependent interactions 
among mechanisation, cultivated area, yield, 
and key resource constraints. Using wheat 
production in Khuzestan Province (Iran) as a 
case study, the research integrates empirical 
data and policy scenarios to simulate system 

behaviour under different conditions. The 
model aims to provide both conceptual 
insights and practical guidance for 
policymakers and stakeholders operating in 
arid and semi-arid agro ecosystems, where 
mechanisation and resource limitations are 
critical factors shaping agricultural 
performance. 

 
Literature review 

Mechanisation is widely recognised as a 
pivotal lever in transforming agricultural 
systems and an effective catalyst for 
sustainable rural development. Amid growing 
food demand driven by population growth and 
economic expansion, mechanisation plays a 
vital role in enhancing production efficiency 
and reducing operational costs. It also 
facilitates the scalability of farming operations 
and the optimal utilisation of agricultural 
resources. Empirical evidence highlights the 
significant impact of mechanisation on 
agricultural productivity and rural economic 
development (Chaudhary et al., 2022; 
Hamilton et al., 2022). In response, many 
countries, including Bangladesh, Nepal, India, 
and China, have prioritised mechanisation as a 
key strategy to increase agricultural output 
(Daum et al., 2020; Daum & Birner, 2020; 
Qiao, 2017; Rahman et al., 2021). In China, 
the rising share of machinery in agricultural 
inputs is considered a major structural shift in 
the national food production system. Several 
studies (Dedewanou & Kpekou Tossou, 2022; 
Wu, Dang, Pang, & Xu, 2021) have 
demonstrated the positive impact of 
mechanisation on crop yields. Recent policy 
initiatives, such as government subsidies for 
the acquisition of agricultural machinery, have 
aimed to promote modernisation, boost 
farmers' income, and foster rural development 
(Sun, Liu, Yao, Shen, & Bian, 2023; Zhou, Li, 
Lin, & Cheng, 2022; Zhou & Ma, 2022). In 
Pakistan, evidence suggests that complete 
mechanisation across all production stages can 
increase farm income by up to 55% (Yasar et 
al., 2024). In Malaysia, Isaak, Yahya, Razif, 
and Mat (2020) used indices of machinery and 
labour use to assess the mechanisation status, 
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concluding that productivity gains are strongly 
linked to mechanisation advancement. In 
India, despite notable progress in recent years, 
the national mechanisation rate remains low 
(45%) compared to China (57%), Brazil 
(75%), and the United States (95%) 
(Anonymous, 2018; Round & Conference, 
2017). Mechanisation patterns in India are 
influenced by factors such as landholding size 
and topographical diversity. Reports indicate 
that small and fragmented landholdings, 
particularly among smallholder farmers, 
constitute a major barrier to mechanisation. 
This challenge is further exacerbated by 
increasing land fragmentation due to 
urbanisation and land-use change (Rath et al., 
2024). 

Iran exhibits comparable conditions. 
Studies have shown that both net return 
indices and benefit–cost ratios for fully 
mechanised wheat production surpass those of 
semi-mechanised systems (Amoozad-Khalili, 
Rostamian, Esmaeilpour-Troujeni, & Kosari-
Moghaddam, 2020). Furthermore, analyses of 
rice production data reveal a significant 
positive correlation between mechanisation 
indices and technical efficiency (Hormozi, 
Asoodar, & Abdeshahi, 2012). Another study 
on post-harvest losses reports that the 
alignment of mechanisation with regional 
cropping patterns can substantially reduce 
losses, especially for staple crops such as 
wheat, rice, and maize (Emami et al., 2018). 
These findings underscore the need for 
targeted investments to upgrade mechanisation 
levels and modernise agricultural machinery 
fleets in countries like Iran. 

Despite this substantial body of literature 
on the impacts of mechanisation on 
agricultural productivity, most existing studies 
are confined to static, sectoral, and short-term 
analyses. These approaches often fail to 
capture causal relationships, dynamic 
interactions, and feedback mechanisms that 
characterise agricultural production systems. 
For example, Kienzle, Ashburner, and Sims 
(2013), in an FAO report, emphasised that 
most prevailing analyses are descriptive and 
lack feedback-based modelling. Biggs and 

Justice (2015) highlighted the limited attention 
to mechanisation dynamics in South Asia. 
Similarly, Diao, Silver, and Takeshima (2016) 
argued that partial equilibrium models used in 
African mechanisation studies are insufficient 
for representing feedback structures and long-
term effects. Turner, Menendez, Gates, 
Tedeschi, and Atzori (2016), in a systematic 
review of natural resource modelling, pointed 
out that many agricultural studies neglect 
system feedbacks and dynamic features, which 
are integral to understanding complex systems. 
A study by the Conforti (2001) also 
demonstrated the limitations of partial 
equilibrium models in evaluating long-term 
impacts of policy on agricultural pricing and 
producer behaviour. Additionally, studies by 
Takeshima, Edeh, Lawal, and Isiaka (2015); 
Peng et al. (2022); Wang, Liu, and Wang 
(2025), while affirming the positive influence 
of mechanisation on output, rely primarily on 
statistical or cross-sectional data analysis and 
do not incorporate structural feedback 
modelling or dynamic simulation. 
Accordingly, there is a clear research gap 
calling for analytical approaches that can 
systematically capture time delays, nonlinear 
relationships, and endogenous feedback 
interactions. In this context, system dynamics 
modelling serves as a powerful tool to analyse 
complex structures and support evidence-
based policymaking. A synthesis of the 
reviewed studies, their methodological 
approaches, key limitations, and the specific 
contribution of the present research is 
summarised in Table 1. 

 

Methodology 

General framework of the study 

In this study, a causal model was first 
created by examining the influencing factors in 
a production system. Then, its flow-stock 
model was developed to quantify the causal 
relationships drawn. To validate the model's 
accuracy, historical data from a case study of 
wheat production in Khuzestan province from 
2011 to 2031 were used. Khuzestan province 
is the hub of wheat production in Iran, and 
changes in its production process have a 
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significant impact on the production of the 
entire country. Finally, using different policies 
and scenarios, the conditions of important 

variables in the future were predicted in the 
horizon of 2031. 

 
 

Table 1- Summary of reviewed studies, research gaps, and the contribution of the present study 

Author(s) / Year Focus of Study 
Method / 

Approach 

Main Gap or 

Limitation 
This Study’s Contribution 

Kienzle et al. 

(2013, FAO 

Report) 

Overview of agricultural 

mechanisation in 

developing countries 

Descriptive 

analysis 

Lacked dynamic and 

feedback-based 

modelling 

Provides a dynamic 

modelling framework 

integrating mechanisation 

and resource flows 

Biggs & Justice 

(2015) 

Mechanisation trends in 

South Asia 

Policy and 

economic review 

Ignored dynamic 

interactions and 

systemic feedbacks 

Highlights mechanisation 

feedbacks within agricultural 

systems 

Diao et al. (2016) 

Mechanisation in African 

agriculture 

Partial 

equilibrium 

modelling 

Static representation; 

no feedback or long-

term dynamics 

Introduces long-term system 

dynamics approach 

Turner et al. (2016) 

Review of natural 

resource modelling 

Systematic 

literature review 

Identified lack of 

feedback 

representation in 

agricultural models 

Applies system dynamics 

(SD) to capture feedback and 

time-delay effects 

Amoozad-Khalili 

et al. (2020) 

Economic performance of 

mechanised wheat 

systems in Iran 

Empirical cost–

benefit analysis 

No system-level 

interaction with water 

or land 

Extends mechanisation 

modelling to include 

resource interactions 

Hormozi et al. 

(2012) 

Mechanisation index and 

technical efficiency 

(Iranian rice) 

Statistical 

correlation 

Focused on technical 

efficiency, not 

dynamic relationships 

Incorporates mechanisation 

efficiency in dynamic 

structure 

Emami et al. 

(2018) 

Post-harvest loss 

reduction via 

mechanisation 

Descriptive 

analysis 

Ignored causal and 

feedback mechanisms 

Models mechanisation as an 

endogenous driver in the 

system 

Takeshima et al. 

(2015); Peng et al. 

(2022); Wang et al. 

(2025) 

Effects of mechanisation 

on productivity 

Cross-sectional 

and regression 

models 

Static analysis without 

feedback or adaptive 

behaviour 

Integrates behavioural 

adaptation and feedback 

processes 

Daum et al. (2020); 

Wu et al. (2021); 

Sun et al. (2023) 

Policy measures for 

mechanisation promotion 

Policy analysis 

and field data 

Limited quantitative 

modelling of systemic 

impacts 

Embeds policy levers into a 

feedback-based SD 

framework 

This Study (2025) 

Mechanisation–water–

land dynamics in wheat 

production (Khuzestan, 

Iran) 

System Dynamics 

modelling and 

sensitivity 

analysis 

— 

Develops an integrated SD 

model capturing 

mechanisation, water, and 

farmer adaptation feedbacks 

 
Model development 

Problem definition 

In the face of accelerating population 
growth, mounting constraints on essential 
production resources, namely water and arable 
land, and the escalating impacts of climate 
change, the imperative to maximise input 
efficiency and enhance agricultural 
productivity has intensified markedly. Within 

this context, agricultural mechanisation is 
increasingly acknowledged as a major 
contributor to productivity gains and a 
cornerstone of sustainable agricultural 
development (Winarno, Sustiyo, Aziz, & 
Permani, 2025). Nevertheless, the 
advancement of mechanisation remains 
hindered by a range of structural and 
institutional barriers, including the prevalence 
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of fragmented landholdings, the obsolescence 
of existing machinery fleets, deficiencies in 
farmer training and technical capacity, and 
misalignments across institutional frameworks 
(Huo, Ye, Wu, Zhang, & Mi, 2022; 
Ravikishore, Supriya, & Subbaiah, 2022; 
Sanaullah & Ullah, 2021). Furthermore, the 
interplay among mechanisation levels, crop 
yields, and cultivated area is characterised by 
inherently complex and dynamic relationships. 
On the one hand, increased mechanisation may 
lead to productivity improvements that reduce 
reliance on extensive land use; on the other 
hand, it may lower production costs, thereby 
incentivising the expansion of cultivated areas. 
These dualistic outcomes are often mediated 
by time lags, nonlinearities, and 
interdependent feedback mechanisms, 
rendering them resistant to analysis through 
conventional static or linear models. As such, 
there is a critical need to adopt a more 
integrated and dynamic systems-based 
approach to holistically examine and simulate 
these multifaceted interactions over time. 

 
Dynamic hypothesis and conceptual model  

Within an agricultural production system, 
the disparity between the actual and the 
desired level of mechanization, commonly 
referred to as the "mechanisation gap", is 
fundamentally shaped by the availability and 
growth rate of tractor power. This gap exerts 
complex, nonlinear, and indirect influences on 
both cultivated area and crop yield. An 
increase in available tractor and combine 
power toward the desired threshold facilitates 
higher mechanisation levels, thereby 
enhancing the efficiency of input and 
contributing to yield improvements. In 
contrast, insufficient tractor and combine 
power relative to agronomic requirements 
constrains the timely execution of critical field 
operations, such as sowing, crop management, 
and harvesting, resulting in diminished input 
productivity, intensified land-use pressure, and 
reduced yields. Figure 1 presents the 
conceptual model outlining these 
interrelationships. 

In response to the research problem and 
grounded in the formulated dynamic 
hypothesis, a causal loop diagram (CLD) was 
developed and is presented in Figure 2.  

 

 
Fig. 1. Conceptual model of the effects of mechanisation on cultivated area and yield 
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Fig. 2. CLD model of the effects of mechanisation on cultivated area and yield 

 

This diagram highlights two principal 
feedback loops, each representing a distinct 
dynamic mechanism influencing agricultural 
mechanisation and its systemic interactions. 
The first loop is detailed as follows: 

 
Loop 1: Reinforcing Loop (R1) – Cultivated Area 

Expansion Induced by Mechanization 

In many agricultural systems where 
landholding structures are characterised by 
small-scale and fragmented plots, such as 
those commonly found in developing countries 
or regions with unequal distribution of land 
and resources, an increase in cultivated area 
introduces complex dynamics in the demand 
for and access to mechanisation power. In such 
contexts, expanding the cultivated area often 
entails a rise in the number of land parcels, 
greater physical distances between them, and 
consequently, more complex machine 
operations within limited agricultural time 
windows. This situation directly leads to an 

increased demand for desirable tractor power, 
as timely operations across small and scattered 
plots require higher operational capacity per 
unit area. 

At a broader scale, this increased demand 
translates into a rise in total desirable power. 
In other words, to complete timely, 
mechanised field operations across all 
cultivated land, the system as a whole must 
operate at a higher power level. This 
requirement is typically represented by the 
index of desirable mechanisation level 
(horsepower per hectare), which follows an 
upward trend under such conditions. 
Meanwhile, the availability of mechanical 
power (i.e., total tractor horsepower) typically 
does not change significantly in the short term, 
as scaling up mechanisation requires time, 
capital investment, and infrastructure support. 
Consequently, when the cultivated area 
expands, the existing mechanisation level (i.e., 
horsepower per hectare) tends to decline 
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because the same amount of available power is 
now distributed over a larger area of land. The 
simultaneous decrease in existing 
mechanisation and increase in desirable 
mechanisation results in a growing 
mechanisation gap, that is, the difference 
between required and available power per 
hectare. This widening gap imposes increasing 
pressure on the agricultural system and 
intensifies demand for mechanised resources, 
such as tractors. If this demand is met, fully or 
partially, by public or private investment, the 
number of tractors and total available power in 
the system will rise. However, it is important 
to note that if the cultivated area continues to 
expand faster than power availability, the ratio 
of power to land area (i.e., the existing 
mechanisation level) may continue to decline. 
In other words, an increase in total available 
power does not necessarily translate into 
higher mechanisation levels, since the power 
requirements generated by land expansion may 
outpace the system's capacity to respond.  

Nevertheless, in cases where a relative 
balance is achieved between the rate of land 
expansion and the provision of mechanised 
power, increased availability of tractors and 
power can enhance the existing mechanisation 
level and, in turn, enable or incentivise further 
land cultivation. Farmers with improved 
access to mechanised services are more likely 
to bring idle land into production or expand 
their cropping activities. This chain of 
relationships forms a reinforcing feedback 
loop, in which an initial increase in cultivated 
area activates a set of systemic dynamics that 
ultimately leads to further expansion. A crucial 
insight in this context is that, in smallholder-
based systems, unlike consolidated large-scale 
farms, an increase in desirable mechanisation 
level is not necessarily associated with 
economies of scale. On the contrary, 
fragmented landholdings typically reduce 
machine efficiency, increasing the power 
requirement per unit area to maintain 
timeliness and quality of operations. 
Therefore, in the absence of policy 
intervention and resource management, this 
reinforcing loop may intensify demand, 

destabilise mechanisation supply chains, and 
exert pressure on both technical and financial 
infrastructure within the agricultural system. 
Although this structure describes a reinforcing 
dynamic capable of driving continual growth 
in cultivated area and mechanisation demand, 
it must be recognised that land expansion is 
constrained by physical, economic, and 
ecological limitations. Accordingly, the 
present model defines an exogenous upper 
threshold for cultivated area to prevent infinite 
growth and to ensure a more realistic system 
behaviour. While this cap is not part of the 
internal feedback loop, it plays a critical role 
in curbing endogenous dynamics and ensuring 
the long-term stability of the system. 

 
Loop 2: Balancing Loop (B1)– Mechanization Gap 

Adjustment through Power Supply Expansion 

Alongside the primary reinforcing feedback 
loop that links the expansion of cultivated 
area, the mechanisation gap, and rising 
demand for tractor power in a growth-oriented 
trajectory, the model also incorporates a 
balancing feedback loop, designated as Loop 
B1, that emerges from the corrective 
mechanisms addressing mechanisation 
imbalances. In this loop, the existing 
mechanisation level (measured as horsepower 
per hectare) serves as the initial trigger. A 
decline in this index widens the mechanisation 
gap, thereby increasing demand for additional 
power resources (e.g., tractors). If this demand 
is met, total available power in the system 
increases, subsequently improving the existing 
mechanisation level. This adjustment process 
can potentially reduce the gap and steer the 
system toward rebalancing the power-to-land 
ratio. Thus, this loop operates with a corrective 
logic and offers a stabilising mechanism in 
response to negative fluctuations in 
mechanisation capacity. Although it shares 
several variables with the main reinforcing 
loop and interacts with similar components of 
the system, its feedback direction is distinct. 
Loop B1 functions as a balancing feedback 
structure, helping the system resist 
destabilising trends and supporting temporary 
recovery, especially in the face of short-term 
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shocks or partial policy interventions aimed at 
mechanisation support. However, while Loop 
B1 introduces a corrective mechanism, its 
balancing effect alone may not be sufficient to 
counteract the reinforcing momentum 
generated by Loop R1. Thus, external 
constraints and systemic interventions remain 
crucial to ensure sustainable long-term 
behaviour. 

 
Stock-Flow Model and Parameterisation 

After identifying the key feedback loops 
and influential variables, the stock–flow (SF) 
model was developed based on the conceptual 
framework derived from the causal loop 
diagram (CLD) (Figure 3). This model not 
only enables the quantification of feedback 
relationships among mechanisation, inputs, 
price, and yield, but also facilitates the 
transformation of conceptual structures into 
accumulative variables and functional flows, 
thereby allowing for the analysis of dynamic 

system behaviour over time. In contrast to 
static or partial equilibrium approaches, which 
are often incapable of capturing endogenous 
dynamics, time delays, and nonlinear 
interactions, the SF model provides a robust 
analytical foundation for simulating scenarios, 
evaluating policy impacts, and systematically 
understanding the long-term behaviour of 
agricultural production systems. Some of the 
variables used in the stock-flow model are 
explained in Table 2. All variables were 
parameterised using empirical data from 
Khuzestan Province (2011-2022). Technical 
coefficients, such as field and irrigation 
efficiencies, were adapted from national 
studies (Keshvari & Marzban, 2018; 
Jalalzadeh, Borghei, & Almassi, 2016), while 
crop-water parameters followed FAO 
guidelines (Allen, Pereira, Raes, & Smith, 
1998). 
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Initialisation of Power Resource Stocks 

The foundational step in model formulation 
involved estimating the number of agricultural 
power resources, specifically disaggregated 
into tractors and combines. These were 
represented as stock variables within the 
system dynamics framework (Eqs. 1 and 2). 

𝑁𝑡𝑟𝑎𝑐(𝑡) = ∫ [𝐴𝑑𝑑𝑡𝑟𝑎𝑐(𝑠)
𝑡

𝑡0

− 𝑅𝑒𝑡𝑖𝑟𝑒𝑡𝑟𝑎𝑐(𝑠)]𝑑𝑠

+ 𝑁𝑡𝑟𝑎𝑐(𝑡0) 

(1) 

𝑁𝑐𝑜𝑚𝑏(𝑡) = ∫ [𝐴𝑑𝑑𝑐𝑜𝑚𝑏(𝑠)
𝑡

𝑡0

− 𝑅𝑒𝑡𝑖𝑟𝑒𝑐𝑜𝑚𝑏(𝑠)]𝑑𝑠

+ 𝑁𝑐𝑜𝑚𝑏(𝑡0) 

(2) 

where Ntrac and Ncomb are the number of 
available tractors and combines, respectively, 
Addtrac and Addcomb denote the rates of addition 
(e.g., purchases), and Retiretrac and Retirecomb 

represent the rates of retirement (e.g., 
decommissioning) for tractors and combines, 
respectively. 

To allocate these power resources to wheat 
cultivation, the current mechanisation level 
was calculated as the ratio of total available 
tractor power (including tractors and 
combines) to the cultivated area. This required 
an initial estimation of the province’s autumn-
sown crop area. By dividing the aggregate 
tractor power by this area, the mechanisation 
level (expressed as power per hectare) was 
derived, facilitating the estimation of the 
number of power sources (primarily tractors) 
assigned to wheat production as the initial 
stock. 

 
Estimation of Desired Mechanisation Level 

To estimate the desired level of 
mechanisation, a multi-step approach 
integrating climatic, agronomic, and 
operational parameters was employed. 
Meteorological data were first obtained from 
the Iranian National Meteorological 
Organisation. The number of feasible working 
days (D) for field operations was then 
estimated using Equation (3), as recommended 

by the Food and Agriculture Organisation 
(FAO) (Keshvari & Marzban, 2018; Rabet, 
Bahrami, & Sheikhdavoodi, 2014): 

𝐷 = 𝑑𝑠 +
1

8
𝑑𝑛 +

1

2
𝑑𝑡                                    (3) 

where D represents the number of workable 
days in a given period, ds denotes the number 
of sunny days, dn shows the number of 
partially sunny days, and dt is the number of 
overcast days. 

Subsequently, drawing on the operational 
calendar of major field crops, specifically the 
work conducted by Keshvari and Marzban 
(2018), the type and frequency of mechanised 
field operations per hectare were identified. 
These data, coupled with the estimated number 
of workable days during peak agricultural 
periods, enabled the determination of the 
minimum field capacity required to ensure the 
timely completion of farm tasks. This was 
calculated using Equation (4), adapted from 
(Jalalzadeh et al., 2016; Keshvari & Marzban, 
2019; Mitiku Degu, Nageswara, Moges 
Ketsela, & Workneh Fanta, 2025): 

𝐶𝑎 =
𝐴

𝑡𝑎𝑑×𝑇×𝑝𝑤𝑑
                                             (4) 

where Ca, denotes the effective required 
field capacity (hectares per hour), A is the 
target operational area (hectares), ta is the 
number of workable days available within the 
specified time window, T is the number of 
working hours per day (assumed to be 10), and 
pwd is the probability of a workable day 
(calculated as the ratio of feasible working 
days to the total days in the target month). 

This procedure enables a realistic estimate 
of mechanisation demand under region-
specific climatic constraints and agronomic 
calendars, thereby informing investment 
decisions in machinery planning and 
mechanisation policy. 

 
Determination of implementation requirements and 

power resources demand 

To estimate the peak operational demand 
for each type of agricultural implement, the 
monthly distribution of field operations was 
analysed, and the month with the highest 
operational density for each implement type 
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was identified. It was assumed that meeting 
the operational capacity required during the 
peak month would ensure sufficient machinery 
availability throughout the rest of the 
agricultural calendar, thereby preventing 
delays in critical field activities and 
minimising the economic losses associated 
with untimely interventions. 

The required working width for each 
implement was calculated using Equation (5), 
adapted from (Jalalzadeh et al., 2016; 
Keshvari & Marzban, 2019): 

𝑊 =
𝐶𝑎×10

𝑉×𝜂𝑓
                                                     (5) 

where: 
W = required working width (m), 
Ca = effective field capacity (ha  h-1), 
V = operational speed (km h-1), and 
ηf = field efficiency (dimensionless). 
Field efficiency values were adjusted based 

on the average parcel size and prevailing field 
conditions in the study area, reflecting the 
operational constraints encountered in 
smallholder farming systems. Once the 
required working width (W) was obtained, it 
was divided by the mean working width of 
standard implements commonly used in the 
province to determine the number of units 
required per implement type. Subsequently, 
the power resources demand for each 
implement was estimated based on technical 
specifications and matched to available tractor 
horsepower classes. Aggregating the monthly 
power requirements across all operations 
enabled the estimation of the total peak power 
demand. This, in turn, facilitated the 
calculation of the number of equivalent 
tractors necessary to fulfil the mechanisation 
requirements during the critical operational 
window. 

 
Estimation of key agricultural indicators, cultivated 

area, crop yield, and price 

In this modelling framework, the temporal 
evolution of key agricultural indicators, 
specifically, cultivated area and crop yield, 
was endogenously captured through 
empirically derived functional relationships. 
These relationships were formulated using 
econometric estimations and production 

function theory to better reflect real-world 
input-output dynamics under varying agro-
ecological and policy conditions. 

The cultivated area (A) was modelled as a 
multivariate function of available mechanical 
power (APS), the volume of irrigation water 
allocated to non-target crops (OAU), total 
precipitation (TPrec), and commodity price 
levels (P), as expressed in Equation (6): 

𝐴𝑡 = 𝑓(𝐴𝑃𝑆𝑡, 𝑂𝐴𝑈𝑡, 𝑇𝑃𝑟𝑒𝑐𝑡, 𝑃𝑡)                  (6) 
This formulation reflects the notion that 

both biophysical constraints (e.g., water 
availability and rainfall) and economic 
incentives (e.g., price) jointly shape farmers' 
decisions to allocate land to specific crops 
under mechanised conditions. Crop yield (Y) 
was specified as a function of key agricultural 
inputs and environmental variables, including 
fertiliser consumption (FC), pesticide usage 
(PC), irrigation water usage (WU), average 
precipitation (AP), and mechanisation level 
(ML), as presented in Equation (7): 

𝑌𝑡 = 𝑓(𝐹𝐶𝑡, 𝑃𝐶𝑡, 𝑊𝑈𝑡, 𝐴𝑃𝑡, 𝑀𝐿𝑡)                   (7) 

This function captures the multidimensional 
interaction among chemical, hydrological, and 
technological inputs in determining on-farm 
productivity, with mechanisation level (ML) 
explicitly introduced to reflect its contribution 
to operational timeliness, labour efficiency, 
and input effectiveness. Total agricultural 
production (TP) was then determined as the 
product of cultivated area and yield (Eq. 8): 

𝑇𝑃𝑡 = 𝐴𝑡 × 𝑌𝑡                                               (8) 

The price dynamic was conceptualised 
using a stock-and-flow approach, in which the 
rate of price change was formulated as a stock 
variable representing cumulative deviations 
driven by macroeconomic factors. The price 
was represented as an auxiliary variable, 
computed by exponentiating the base-year 
price with respect to the accumulated rate of 
change, thereby capturing the compound 
effects of temporal fluctuations on market 
valuation (Eqs. 9 and 10). 

𝑃𝑡 = 𝑃0 × 𝑒∆𝑃𝑡                                             (9) 

∆𝑃𝑡 =
𝑑(∆𝑃)

𝑑𝑡
                                                (10) 

 
Estimation of Irrigation water requirement and 
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water use (Per-Hectare) 

Given the lack of reliable field-level data on 
actual water consumption, primarily due to the 
absence of systematic measurement protocols 
by farmers and responsible institutions, this 
study employs an estimation-based modelling 
approach to quantify irrigation water use per 
hectare. Following the proposed methodology 
(Hoekstra et al., 2009), crop water requirement 
(CWR) was calculated based on reference 
evapotranspiration (ETo) and crop-specific 
coefficients (Kc), while accounting for 
effective precipitation (Peff) and irrigation 
efficiency. The crop water requirement refers 
to the volume of water needed to meet a crop’s 
total evapotranspiration demand under optimal 
agronomic conditions from planting to harvest 
(Hoekstra et al., 2009). Under these ideal 
conditions, water availability is assumed to be 
non-limiting throughout the growth period, 
either through rainfall or supplementary 
irrigation. CWR is determined using Equation 
(11): 

CWR = Kc × ETo                                        (11) 
Under this assumption, the actual crop 

evapotranspiration (ETc) is considered equal to 
the crop water requirement (Eq. 12). 

ETc = CWR                                              (12) 
The ETo represents the climatic evaporative 

demand of a standardised surface, typically a 
hypothetical grass surface with specific 
biophysical attributes. It is driven solely by 
meteorological variables, such as temperature, 
solar radiation, humidity, and wind speed. The 
𝐾𝑐 adjusts ETo to reflect the water use 
characteristics of specific crops and varies 
throughout the phenological stages. Standard 
𝐾𝑐 values for various crops and climatic 
conditions were adopted from the guidelines of 
Allen et al. (1998). The Peff is defined as the 

fraction of total rainfall that is stored in the 
root zone and available for plant uptake 
(Hoekstra et al., 2009). Not all rainfall 
contributes to crop water use due to losses 
from surface runoff and deep percolation. In 
this study, Peff was estimated using the USDA 
Soil Conservation Service (SCS) empirical 
method (Eq. 13), as recommended by Hoekstra 
et al. (2009): 

Peff = (P × (125−(0.2 × P))) / 125      (13) 

where Peff is the effective rainfall and P is 
the average rainfall. Subsequently, the net 
irrigation requirement (IR) was calculated as 
the difference between crop water requirement 
and effective precipitation. When Peff exceeds 
CWR, irrigation demand is assumed to be zero, 
based on the assumption that rainfall fully 
meets the crop’s water requirement (Eq. 14). 

IR = max (0, CWR − Peff)                       (14) 
Finally, the gross irrigation water use per 

hectare was estimated by adjusting the 
irrigation requirement for the irrigation 
system's efficiency factor (IE). This reflects 
actual field-level water use, considering 
conveyance and application losses (Eq. 15). 

𝑊𝑎𝑡𝑒𝑟 𝑢𝑠𝑒 (
𝑚3

ℎ𝑎
) =

𝐼𝑅

𝐼𝐸
                               (15) 

 
Model Validation 

To validate the model, both structure-based 
and behaviour-based tests were applied. For 
behaviour validation, coefficient of 
determination (R²) (Eq. 16), mean absolute 
percentage error (MAPE) (Eq. 17), and root 
mean square error (RMSE) (Eq. 18) were 
used, as proposed by Taheri, Jahani, and 
Pishvaee (2024). 

R² = 
1

𝑛
∑

(𝑋𝑑−𝑋𝑑̅̅ ̅̅ )(𝑋𝑚̅̅ ̅̅ ̅)

𝑠𝑑𝑠𝑚
  (16) 

MAPE = 
1

𝑛
∑

|𝑋𝑚−𝑋𝑑|

𝑋𝑑
  (17) 

RMSE = √
1

𝑛
∑ (𝑥𝑚 − 𝑥𝑑)2𝑛

𝑖=1  (18) 

The R² value indicates the probability and 
strength of correlation between the simulated 
and actual data (Wang, Dong, & Sušnik, 
2023), while MAPE is employed to evaluate 
the model’s precision in estimating real-world 
behaviour and trends. RMSE was selected as 
the primary evaluation metric since it 
quantifies the average magnitude of prediction 
errors in the same units as the target variable 
and places a higher penalty on larger 
deviations, providing a more sensitive and 
reliable measure of model performance. These 
metrics together provide a comprehensive 
basis for assessing the credibility and 
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predictive power of the model. 
 

Results 

Validation 

Data on wheat production in Khuzestan 
Province from 2011 to 2022 were used to 
validate the model results. The data were 
obtained from the Agricultural Research, 
Education and Extension Organisation and the 
statistics of the Ministry of Agriculture Jihad. 
The coefficient of determination (R²) 
exceeding 0.8, alongside a mean absolute 
percentage error (MAPE) below 0.15, 
indicates a robust level of model accuracy and 
predictive validity (Figures 4–7). Thereby, the 
model structure demonstrates a strong capacity 
to represent the causal relationships and key 
dynamics of the agricultural production 
system. The high accuracy observed in the 
prediction of available power resources and 
cultivated area reinforces the model’s 
credibility for use in policy analysis and future 
scenario development. In the case of the 
mechanisation level index, the model achieves 
an R² of 0.67 and a MAPE of 0.27, indicating 

an acceptable level of predictive accuracy. 
Although slight deviations are observed during 
peak years, particularly 2018-2019, the model 
adequately reproduces the overall temporal 
dynamics. These deviations likely stem from 
simplifications in the model. For instance, it 
excludes short-term operational constraints, 
fails to address policy volatility, and does not 
capture how agricultural stakeholders adapt 
nonlinearly to changes. 

 
Designing policies and scenarios  

Following model validation, a set of 
targeted policy interventions was formulated 
and operationalised through a series of 
dynamic simulation scenarios. These scenarios 
were designed with the primary objective of 
evaluating the long-term systemic implications 
of policy actions under varying conditions of 
selected external drivers, thereby enabling the 
extraction of evidence-based managerial and 
strategic insights. The policy levers, treated as 
exogenous and controllable parameters within 
the model, included the following: 

 

 

 
R2 = 0.93, MAPE = 0.15, and RMSE = 140260 

Fig. 4. Comparison of historical trends of variables and their simulated values of available power resources 
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R2 = 0.67, MAPE = 0.27, and RMSE = 0.4 

Fig. 5. Comparison of historical trends of variables and their simulated values of the mechanisation level index 

 
R2 = 0.86, MAPE = 0.12, and RMSE = 82225 

Fig. 6. Comparison of historical trends of variables and their simulated values of area under cultivation 
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R2 = 0.80, MAPE = 0.11, and RMSE = 0.49 

Fig. 7. Comparison of historical trends of variables and their simulated values of yield 
 

Table 3- Suggested scenarios for examining system changes 
Availability of water resources 

(%) 

Annual precipitation 

(%) 
Rate of replacement and modernisation 

(%) Scenario 

- - - Base-

line 
- - +10 S1 

- - +20 S2 

- - +30 S3 

+10 +10 +10 S4 

+10 +10 +20 S5 

-10 -10 +10 S6 

-10 -10 +20 S7 

 
• The rate of replacement and 

modernisation of agricultural power resources 
(e.g., tractors and combines), 

• Annual precipitation (as a proxy for 
climate variability), and 

• Availability of water resources for 
irrigation. 

To ensure analytical clarity and isolate the 
marginal effect of each policy variable, 
scenario simulations were initially conducted 
separately for each exogenous factor. This 
modular approach enabled a more robust 
understanding of the individual contribution of 
each policy measure to system behaviour. 
Subsequently, composite scenarios were 
constructed by integrating multiple policy 
levers, enabling exploration of synergies and 
trade-offs. The complete configuration of 

scenario designs is presented in Table 3. 
 

Analysis of results 

In Scenarios 1, 2, and 3, the regional 
mechanisation development coefficient, 
reflecting investment in the agricultural tractor 
fleet, was incrementally increased by 10%, 
20%, and 30%, respectively. This policy 
intervention led to a sequential increase in the 
number of tractors and combines (Figs. 8 and 
9), thereby enhancing the total stock of 
mechanical power available to the agricultural 
system (Figure 10). The resulting enhancement 
in operational capacity facilitated the 
expansion of the cultivated area (Figure 11). 
However, this expansion, in turn, induced a 
relative decline in the mechanisation level 
(Figure 12), thereby widening the gap between 
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actual and desired mechanisation intensity. In 
response to this shortfall, the system activated 
reinforcing feedback mechanisms that 
stimulated effective demand for additional 
power resources, prompting further capital 
inflows and equipment acquisition within the 
sector (Figs. 8 and 9). Among these three 
scenarios, Scenario 3, which featured the most 
aggressive rate of mechanisation development 
(Figure 12), demonstrated the most substantial 
positive impacts, including greater expansion 
of cultivated land (Figure 11), more 
pronounced improvements in the 
mechanisation index (Figure 12), and a notable 
enhancement in crop yield (Figure 13). 
Despite these interventions, the overall 
increase in cultivated area relative to the 
baseline scenario remained limited 
(approximately 1%), reflecting the influence of 
balancing feedback loops embedded within the 
system dynamics structure that restrict 
unbounded expansion (Figure 11). Moreover, 
inter-scenario variability in cultivated area 
growth was minimal, with differences 
remaining below 1%. With respect to yield, 
Scenario 3 yielded the most significant 
improvement, exhibiting an approximate 7% 
increase over the baseline (Figure 13). The 
average yield growth differential across all 
three scenarios was about 2.5%, highlighting 
the influence of mechanisation intensity on 
production efficiency. Given the simultaneous, 
albeit moderate, improvements in both 
cultivated area and yield, a cumulative 
increase in total wheat production was not 
only expected but also consistent with system 
feedback behaviour (Figure 14). In the 
combined Scenarios 4 and 5, a 10% increase in 
both precipitation and water availability was 
introduced alongside a parallel improvement 
in mechanisation development. However, 
contrary to expectations, these combined 
interventions led to a smaller expansion in the 
wheat-cultivated area relative to the 
mechanisation-only scenarios (Figure 11). 
This result is attributed to shifting farmer 
preferences toward higher-value or export-
oriented crops, such as vegetables and 
horticultural products, especially in the context 

of improved water availability and regional 
agroecological diversity. As a result, while 
wheat cultivation still experienced growth 
relative to the baseline (approximately 1–
1.5%), the rate of expansion was less than that 
observed in Scenarios 1 through 3. This 
relatively slower land expansion translated 
into a more modest increase in demand for 
new power resources, thereby moderating the 
growth in mechanisation levels (Figure 12). 
Since mechanisation is a principal determinant 
of yield enhancement, the deceleration in its 
growth (approximately 4% lower than the 
mechanisation-only scenarios) led to a smaller 
yield increase (1–3%) (Figure 13). 
Consequently, the reduced growth rates in 
both cultivated area and yield resulted in a 
modest increase in total wheat production, 
reflecting the inherent constraints and 
feedback captured by the system dynamics 
model (Figure 14). Scenarios 6 and 7 
introduced a 10% reduction in both 
precipitation and irrigation water availability, 
while maintaining the trajectory of 
mechanisation expansion. Interestingly, these 
adverse water conditions, in conjunction with 
increased tractor availability, resulted in the 
largest increase in wheat-cultivated area 
among all scenarios (Figure 11). This dynamic 
was driven by two reinforcing mechanisms: 
(1) the operational advantages of 
mechanisation, and (2) a policy and 
behavioural shift among farmers, who, faced 
with declining water security, strategically 
reallocated land to wheat, a relatively water-
efficient and stable crop. The resulting 
expansion in the cultivated area triggered 
increased demand for mechanical power, 
leading to a further increase in the stock of 
available tractors and combines (Figs. 8 and 
9). Although the relative growth rate of the 
mechanisation index was suppressed due to 
rapid land expansion, the absolute 
mechanisation level remained comparable to 
Scenarios 4 and 5 due to continuous inflows of 
power resources (Figure 12). In terms of yield, 
gains in efficiency and timeliness from 
mechanisation were partially offset by 
irrigation constraints, which limited the 
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realisation of yield potential. Nevertheless, 
improved precision in field operations, 
particularly during critical growth stages (e.g., 
flowering), mitigated climatic stresses such as 
heat waves and high evapotranspiration. This 
stabilisation-maintained yields close to pre-
experiment baseline levels (Figure 13). 
Overall, total wheat production in Scenarios 6 

and 7 increased modestly relative to the 
baseline, with the expansion in cultivated area 
compensating for stagnation in per-hectare 
yields (Figure 14). These results highlight the 
complex interplay between resource 
constraints, mechanisation, and adaptive 
farmer behaviour, as represented in the 
model's integrated feedback structure.  

 

 
Fig. 8. Trends of simulated values of the number of available tractors 

 
Fig. 9. Trends of simulated values of the number of available combines 
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Fig. 10. Trends of simulated values of available total power 

 
Fig. 11. Trends of simulated values of the area under wheat cultivation 
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Fig. 12. Trends of simulated values of the mechanisation level index 

 
Fig. 13. Trends of simulated values of yield 
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Fig. 14. Trends of simulated values of production 

 
In summary, Scenarios S1–S3 and S6–S7 

are dominated by the reinforcing loop R1 
(power–area expansion), whereas scenarios 
S4–S5 are primarily governed by the balancing 
loop B1 that constrains excessive growth. 
These causal linkages correspond directly to 
the feedback structure in Figure 2. The above 
behavioural patterns can be mechanistically 
explained by the interaction of the reinforcing 
loop (R1) and the balancing loop (B1) in the 
causal loop diagram (Figure 2). In scenarios 
S1–S3 and S6–S7, the R1 loop dominates, 
driving expansion through power–area 
feedback, while under S4–S5 the B1 loop 
counteracts this process by reducing the 
mechanisation gap and moderating land 
expansion. 

The analysis of guaranteed wheat price and 
cultivated area from 2011 to 2031 reveals a 
dynamic and policy‐dependent behaviour 
between price movements and land allocation 
(Figure 15). In the early years, increases in the 
guaranteed price directly stimulated the 
expansion of the wheat cultivated area. 
Specifically, the stock variable defined in Eqs. 
9–10 feeds into the land-allocation loop, 
capturing delayed farmer responses to price 
fluctuations. This growth reflects the rise in 
expected profit and farmers’ willingness to 
allocate more land to wheat production, 
thereby activating reinforcing feedback (R1). 

At this stage, the price signal serves as a key 
market driver, justifying higher investment in 
inputs and mechanisation. However, after the 
guaranteed price exceeds approximately 
20,000 Rials per kilogram, the rate of area 
expansion declines, and its sensitivity to 
further price increases weakens (Figure 16). 
This pattern indicates the emergence of 
balancing feedback (B1) in which structural 
and policy constraints become dominant. From 
an economic perspective, two factors explain 
this behaviour. First, the government’s 
procurement capacity and budget constraints 
limit the total quantity of wheat that can be 
purchased at the guaranteed rate. Hence, price 
increases beyond that threshold do not 
necessarily translate into higher net profits for 
farmers. Second, rising production costs, 
including inputs, labour, and energy, partially 
offset the price incentive, leading to a 
moderated real growth in cultivated area and 
movement toward a new equilibrium. 
Therefore, the guaranteed price policy in Iran 
performs a dual economic function: in the 
short term, it acts as an instrument to stimulate 
production (Figure 15), while in the long term, 
it serves as a control mechanism to prevent 
excessive or unsustainable expansion of 
cultivated land (Figure 16). This dual dynamic 
demonstrates that the guaranteed price is not a 
static economic variable but a policy‐driven 
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dynamic factor that simultaneously shapes 
farmers’ behaviour and governmental 

decisions. 

 

 
Fig. 15. Time series of guaranteed price and cultivated area 

 
Fig. 16. Nonlinear relationship between guaranteed price and cultivated wheat area 

 
Sensitivity Analysis 

The sensitivity analysis was performed to 
examine the behavioural stability of the model 
under variations in its key structural 
parameters, rather than to introduce new 
policy scenarios. Two parameters closely 
related to the scenario framework were 
selected for this test: the total inflow of 
agricultural power resources, representing the 
overall mechanisation capacity entering the 
sector, and the available irrigation water for 

wheat cultivation. A ±20% variation in the 
total inflow of power resources produced a 
proportional and consistent response in wheat 
yield, with higher inflows improving yield by 
approximately 5–7%, and lower inflows 
resulting in a moderate decline (Figure 17). 
This finding confirms the central role of 
mechanisation development and equipment 
availability in sustaining operational efficiency 
and enhancing productivity over time. 
Similarly, varying the available irrigation 
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water for wheat within a ±20–40% range led to 
only minor adjustments in the cultivated area 
(less than 1%), with a slight expansion 
observed under reduced water availability 
(Figure 18). This reaction aligns with the 
model’s internal logic and the adaptive 
behaviour reflected in the scenario analysis: 
under water stress, wheat, being a relatively 
water-efficient and policy-supported crop, 
occupies a slightly larger share of arable land, 

whereas under favourable water conditions, 
farmers tend to diversify toward high-value 
crops. 
Overall, the sensitivity tests demonstrate that 
the model maintains logical, proportional, and 
stable responses to variations in both structural 
and resource-related parameters, thereby 
confirming the robustness and behavioural 
validity of its feedback structure. 

 

 
Fig. 17. Sensitivity of wheat yield to replacement rate of power resources 
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Fig. 18. Sensitivity of cultivated area to available irrigation water for wheat 

 
Discussion 

A comprehensive review of the existing 
literature identifies agricultural mechanisation 
as a fundamental driver of agricultural 
development in numerous developed 
countries. Broadly defined, mechanisation 
entails the use of mechanical power to execute 
various farm operations. Nonetheless, in many 
developed nations, the comprehensive and 
seamless implementation of mechanisation has 
yet to be fully realised, largely due to 
prevailing economic, social, and cultural 
constraints. In recent years, however, there has 
been notable progress in this domain. While 
beyond conventional mechanisation, modern 
mechanisation, characterised by the integration 
of artificial intelligence and robotics, is 
increasingly being adopted and advanced in 
developed countries. 

Empirical evidence suggests that despite 
substantial systemic challenges, primarily 
stemming from the predominance of 
smallholder farming and fragmented 

landholdings, the adoption and diffusion of 
mechanisation technologies in several 
developing countries, including India, 
Bangladesh, Nepal, and South Africa, as well 
as in China, have garnered significant farmer 
engagement (Ahmed & Ahmed, 2023; Aryal, 
Rahut, Thapa, & Simtowe, 2021, Huo et al., 
2022; Mohammed, Batung, Saaka, Kansanga, 
& Luginaah, 2023; Aryal et al., 2021). The 
attractiveness of mechanisation in these 
contexts is not predicated on a singular, 
transformative innovation, but rather on the 
aggregate effect of its decreased post-harvest 
losses, particularly in grain crops (Belton et 
al., 2021). Quantitative studies, such as those 
by Liu and Li (2023), have established that the 
elasticity of agricultural machinery utilisation 
with respect to rice production, wheat, and 
maize is positive and statistically significant, 
estimated at 0.0059, 0.0148, and 0.0607, 
respectively. Moreover, findings by Peng et al. 
(2022) indicate that a 1% increase in the 
mechanisation index corresponds to yield 
improvements of 1.2151% across all crops and 
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1.5941% for cereals. Similarly, Sun et al. 
(2024) demonstrate that mechanisation 
expansion increases cultivated land area, and, 
ceteris paribus, each 1% rise in mechanisation 
results in a 0.467% increase in the benefit-cost 
ratio for maize production. Regional 
assessments across small, medium, and large-
scale farms in South Asia and the Pacific 
coastline further corroborate the significant 
and positive impact of mechanisation on crop 
productivity, with particularly pronounced 
effects observed in rice cultivation (Rath et al., 
2024). In Pakistan, mechanisation has 
facilitated the reclamation and productive use 
of fallow lands, thereby augmenting the 
cultivated area and yield of key staples, wheat, 
rice, and maize, by 0.4%, 10.4%, and 27.3%, 
respectively (Yamin, Tahir, Awan, & Yaseen, 
2011). Comparative analyses also reveal that 
full mechanisation across all stages of crop 
production enhances food security by up to 
125% compared to semi-mechanised systems 
(Yasar et al., 2024). Additionally, panel data 
analysis of 30 Chinese provinces spanning the 
period of 2000 to 2021 reveals that 
mechanisation positively influences green total 
factor productivity in agriculture. This occurs 
through three primary transmission 
mechanisms: enhanced managerial capacity in 
farm systems, improved input use efficiency, 
and increased diversification within the 
agricultural industrial structure (Lu, Meng, & 
Cheng, 2024). Accordingly, mechanisation not 
only drives productivity but also facilitates the 
transition toward environmentally sustainable 
and climate-smart agricultural systems (Fang, 
Chen, Wang, & Chen, 2024; Lu et al., 2024). 
Further, findings by Fang et al. (2024) indicate 
that mechanisation, by boosting food 
production and reducing vulnerability to 
natural disasters, generates both direct and 
spatial spillover effects that enhance the 
climate resilience of agricultural production. 
Specifically, each 1% increase in 
mechanisation is associated with a 0.012-unit 
improvement in local food system resilience. 
The capacity of mechanisation to ensure the 
timeliness of field operations positions it as a 
critical lever for safeguarding food security 

and adapting to climatic shifts (Daum, 2023; 
Liu, Yasir, Tahir, & Awan, 2025; Rahman et 
al., 2021; Yamin et al., 2011). Conversely, 
certain studies, such as those by Zou, Chen, 
Mishra and Hirsch (2024), report a negative 
correlation between mechanisation and local 
GDP in China. These findings attribute the 
decline to the disproportionate concentration 
of mechanisation efforts in cereal production, 
which has skewed cropping patterns toward 
lower value-added commodities. This 
reallocation of resources is posited to have 
constrained the cultivation of high-value crops, 
thereby exerting downward pressure on 
regional economies. Additionally, Min and 
Paudel (2021) argue that suboptimal farm 
scale, particularly in rice cultivation below the 
economically efficient threshold, has led to 
allocative inefficiencies and underutilisation of 
mechanised assets. 

In sum, the reviewed body of evidence 
affirms the internal consistency and logical 
coherence of the present study’s findings. The 
results highlight the synergistic potential of 
integrated mechanisation strategies in 
enhancing incremental, overlapping, and 
complementary benefits. These advantages 
include reductions in labour requirements, 
alleviation of manual drudgery, operational 
convenience, improved timeliness and 
efficiency of field operations, enhanced 
adaptive capacity to climate variability, and 
agricultural performance metrics and 
underscore the critical importance of targeted, 
evidence-based policy interventions. 
Ultimately, the strategic advancement of 
agricultural mechanisation offers a viable 
pathway to long-term productivity gains and 
the sustainable intensification of land use. 
Despite the positive impacts demonstrated in 
this study, the findings should be interpreted in 
the light of potential challenges associated 
with agricultural mechanisation. While 
improved access to machinery can enhance 
productivity, it may also lead to increased 
energy consumption, greenhouse gas 
emissions, and potential soil degradation if not 
managed sustainably (Lu et al., 2024; Yan et 
al., 2024; Zhu et al., 2022). Furthermore, 
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mechanisation can unintentionally widen 
socio-economic disparities between large-scale 
and smallholder farmers, since resource-rich 
farmers are typically better positioned to adopt 
modern technologies and benefit from 
economies of scale (Liu & Li, 2023; 
Mohammed et al., 2023; Peng et al., 2022). 
From a policy perspective, these findings 
highlight the need for balanced mechanisation 
strategies. Investments in agricultural 
machinery should be complemented by 
capacity-building programs, credit access for 
smallholders, and environmentally sustainable 
practices (Aryal et al., 2021; Emami et al., 
2018; Lu et al., 2024). Future studies could 
integrate broader environmental, social, and 
economic dimensions into the modelling 
framework to better capture potential trade-
offs and synergies between mechanisation, 
resource efficiency, and sustainability (Daum, 
2023; Fang et al., 2024; Lu et al., 2024). 
Incorporating these aspects would enhance the 
relevance of simulation results for policy 
design, particularly in regions facing resource 
constraints and climate variability (Rahman et 
al., 2021; Winarno et al., 2025). 

 
Conclusion 

The findings of this study demonstrate that 
the development of agricultural mechanisation 
can play a significant role in enhancing crop 
yield, optimising resource utilisation, and 
strengthening the resilience of agricultural 
production systems in the face of climatic 
challenges and structural constraints. The 
results of the system dynamics-based 
simulations indicate that a 30% increase in the 
development of power sources results in a 7% 
improvement in wheat yield and 
approximately a 1% increase in the cultivated 
area compared to the baseline scenario. These 
outcomes underscore the potential of 
mechanisation to enhance agricultural 
productivity and profitability. Moreover, the 
integrated analysis of mechanisation scenarios 
in conjunction with water resource variability 
reveals that under conditions of resource 
abundance, farmers tend to shift toward the 
cultivation of higher value-added crops. This 

behavioural shift diminishes the direct impact 
of mechanisation on the expansion of wheat 
cultivation. In contrast, under water-scarce 
conditions, the area under wheat cultivation 
increases significantly, an outcome attributed 
to wheat’s agro-climatic suitability and the 
operational efficiencies enabled by 
mechanisation under water-stressed 
environments. However, yield gains under 
such conditions remain comparatively limited 
due to irrigation constraints. 

Overall, the study underscores the critical 
importance of employing dynamic, simulation-
based analytical frameworks in the design of 
mechanisation policies. It further demonstrates 
that well-targeted mechanisation strategies, 
beyond enhancing productivity and food 
security, can act as a pivotal tool for climate 
adaptation and the long-term sustainable 
development of the agricultural sector. To 
enhance the model’s utility across broader 
contexts, future work could explore integrating 
socio-economic and behavioural dynamics, 
thereby expanding its scope for regional and 
national decision-making. 

 
Limitations and Future Research Directions 

While this study provides valuable insights 
into the dynamic interactions between 
agricultural mechanisation, cultivated area, 
and yield, several limitations should be 
acknowledged. 
First, the model was calibrated using data from 
Khuzestan Province, Iran, which may 
constrain the generalisability of the findings to 
other agroecological contexts. Nevertheless, 
the overall framework and methodological 
approach are transferable to regions with 
similar climatic, socio-economic, and 
technological conditions. Second, the model 
primarily captures long-term structural 
feedback and does not explicitly incorporate 
short-term policy fluctuations, market shocks, 
or farmers’ behavioural responses, which 
could influence real-world outcomes. Third, 
potential environmental and social 
consequences of mechanisation, such as soil 
degradation, shifts in rural employment, 
energy use, and equity concerns, were not 
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explicitly modelled and merit further 
investigation. Furthermore, the policy 
scenarios examined in this study were 
intentionally narrow in scope to ensure 
conceptual clarity. Future research should 
consider a broader range of interventions, 
including institutional mechanisms, credit 
accessibility, technology diffusion, and 
integration with multi-crop systems. Finally, 
although the forecasts up to 2031 provide 
meaningful directional insights, they should be 
interpreted cautiously due to inherent 
uncertainties arising from climate variability, 
technological advancements, and socio-
economic dynamics. Addressing these 
limitations in future studies will improve 
model robustness, enhance the policy 
relevance of findings, and support more 
sustainable agricultural development 
strategies. 

 

Acknowledgments 
The authors acknowledge with thanks the 

financial support provided by the Agricultural 
Sciences and Natural Resources University of 
Khuzestan for this research. 

 
Authors Contribution 

A. Keshvari: Conceptualization, Data 
acquisition, Data processing, Visualization, 
Writing original draft 

A. Marzban: Supervision, 
Conceptualization, Methodology, Review and 
editing 

M. A. Asoodar: Supervision, Technical 
advice, Review and editing 

A. Abdeshahi: Statistical advice, Review 
and editing 

M. S. Pishvaee: Methodology, Software, 
Validation. 

References 

1. Ahmed, H., & Ahmed, M. (2023). Influencing factors on adoption of modern agricultural 
technology in developing economy countries. Developing Country Studies, 13(2), 1-15. 
https://iiste.org/Journals/index.php/DCS/article/view/60396 

2. Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines 
for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome, 
300(9), D05109. https://www.fao.org/4/x0490e/x0490e00.htm 

3. Amoozad-Khalili, M., Rostamian, R., Esmaeilpour-Troujeni, M., & Kosari-Moghaddam, A. 
(2020). Economic modeling of mechanized and semi-mechanized rainfed wheat production 
systems using multiple linear regression model. Information Processing in Agriculture, 7(1), 
30-40. https://doi.org/10.1016/j.inpa.2019.06.002 

4. Anonymous. (2018). Sectoral Paper on Farm Mechanization. Farm Sector Policy Department 
NABARD Head Office, NABARD, 1-40. https://aspirecircle.org/wp-
content/uploads/2022/01/NSP-Farm-Mechanisation-AGRI.pdf 

5. Araújo, R. G., Chavez-Santoscoy, R. A., Parra-Saldívar, R., Melchor-Martínez, E. M., & Iqbal, 
H. M. N. (2023). Agro-food systems and environment: Sustaining the unsustainable. Current 
Opinion in Environmental Science & Health, 31, 100413. 
https://doi.org/10.1016/j.coesh.2022.100413 

6. Aryal, J. P., Rahut, D. B., Thapa, G., & Simtowe, F. (2021). Mechanisation of small-scale 
farms in South Asia: Empirical evidence derived from farm households survey. Technology in 
Society, 65, 101591. https://doi.org/10.1016/j.techsoc.2021.101591 

7. Belton, B., Win, M. T., Zhang, X., & Filipski, M. (2021). The rapid rise of agricultural 
mechanization in Myanmar. Food Policy, 101, 102095. 
https://doi.org/10.1016/j.foodpol.2021.102095 

8. Biggs, S., & Justice, S. (2015). Rural and agricultural mechanization: A history of the spread of 
small engines in selected Asian countries. https://ideas.repec.org/p/fpr/ifprid/1443.html 

9. Bissadu, K. D., Sonko, S., & Hossain, G. (2024). Society 5.0 enabled agriculture: Drivers, 

https://iiste.org/Journals/index.php/DCS/article/view/60396
https://www.fao.org/4/x0490e/x0490e00.htm
https://doi.org/10.1016/j.inpa.2019.06.002
https://aspirecircle.org/wp-content/uploads/2022/01/NSP-Farm-Mechanisation-AGRI.pdf
https://aspirecircle.org/wp-content/uploads/2022/01/NSP-Farm-Mechanisation-AGRI.pdf
https://doi.org/10.1016/j.coesh.2022.100413
https://doi.org/10.1016/j.techsoc.2021.101591
https://doi.org/10.1016/j.foodpol.2021.102095
https://ideas.repec.org/p/fpr/ifprid/1443.html


?    Journal of Agricultural Machinery Vol. ?, No. ?, ?, ? 

enabling technologies, architectures, opportunities, and challenges. Information Processing in 
Agriculture. https://doi.org/10.1016/j.inpa.2024.04.003 

10. Chaudhary, A. K., Pandit, R., & Burton, M. (2022). Farmyard manure use and adoption of 
agricultural mechanization among smallholders in the Mahottari District, Nepal. World 
Development Perspectives, 25, 100394. https://doi.org/10.1016/j.wdp.2022.100394 

11. Chisadza, B., Gwate, O., Musinguzi, S. P., Mpofu, N., Macherera, M., & Dube, T. (2025). 
Resilient agriculture in semi-arid Zimbabwe: adaptation strategies and influencers among 
smallholder farmers. Discover Agriculture, 3(1), 76. https://doi.org/10.1007/s44279-025-
00234-3 

12. Conforti, P. (2001). The common agricultural policy in main partial equilibrium models. 
https://ideas.repec.org/p/ags/ineawp/14806.html 

13. Daum, T. (2023). Mechanization and sustainable agri-food system transformation in the Global 
South. A review. Agronomy for Sustainable Development, 43(1), 16. 
https://doi.org/10.1007/s13593-023-00868-x 

14. Daum, T., Adegbola, Y. P., Kamau, G., Kergna, A. O., Daudu, C., Zossou, R. C., …, & 
Ndirpaya, Y. (2020). Perceived effects of farm tractors in four African countries, highlighted 
by participatory impact diagrams. Agronomy for Sustainable Development, 40, 1-19. 
https://doi.org/10.1007/s13593-020-00651-2 

15. Daum, T., & Birner, R. (2020). Agricultural mechanization in Africa: Myths, realities and an 
emerging research agenda. Global Food Security, 26, 100393. 
https://doi.org/10.1016/j.gfs.2020.100393 

16. Dedewanou, F. A., & Kpekou Tossou, R. C. B. (2022). Remittances and agricultural 
productivity in Burkina Faso. Applied Economic Perspectives and Policy, 44(3), 1573-1590. 
https://doi.org/10.1002/aepp.13188 

17. Diao, X., Silver, J., & Takeshima, H. (2016). Agricultural mechanization and agricultural 
transformation (Vol. 1527). Intl Food Policy Res Inst. https://doi.org/10.2499/9780896298753 

18. Emami, M., Almassi, M., Bakhoda, H., & Kalantari, I. (2018). Agricultural mechanization, a 
key to food security in developing countries: strategy formulating for Iran. Agriculture & Food 
Security, 7, 1-12. https://doi.org/10.1186/s40066-018-0176-2 

19. Fang, D., Chen, J., Wang, S., & Chen, B. (2024). Can agricultural mechanization enhance the 
climate resilience of food production? Evidence from China. Applied Energy, 373, 123928. 
https://doi.org/10.1016/j.apenergy.2024.123928 

20. Hamilton, S. F., Richards, T. J., Shafran, A. P., & Vasilaky, K. N. (2022). Farm labor 
productivity and the impact of mechanization. American Journal of Agricultural Economics, 
104(4), 1435-1459. https://doi.org/10.1111/ajae.12273 

21. Hoekstra, A. Y., Chapagain, A., Martinez-Aldaya, M., & Mekonnen, M. (2009). Water 
footprint manual: State of the art 2009. 
https://ris.utwente.nl/ws/portalfiles/portal/5146564/Hoekstra09WaterFootprintManual.pdf 

22. Hormozi, M. A., Asoodar, M. A., & Abdeshahi, A. (2012). Impact of mechanization on 
technical efficiency: A case study of rice farmers in Iran. Procedia Economics and Finance, 1, 
176-185. https://doi.org/10.1016/S2212-5671(12)00021-4 

23. Huo, Y., Ye, S., Wu, Z., Zhang, F., & Mi, G. (2022). Barriers to the development of 
agricultural mechanization in the North and Northeast China plains: A farmer survey. 
Agriculture, 12(2), 287. https://doi.org/10.3390/agriculture12020287 

24. Isaak, M., Yahya, A., Razif, M., & Mat, N. (2020). Mechanization status based on machinery 
utilization and workers’ workload in sweet corn cultivation in Malaysia. Computers and 
Electronics in Agriculture, 169, 105208. https://doi.org/10.1016/j.compag.2019.105208 

25. Jalalzadeh, B., Borghei, A. M., & Almassi, M. (2016). Modeling the effect of mechanization 
level index on crop yield approaching system dynamics methodology. 

https://doi.org/10.1016/j.inpa.2024.04.003
https://doi.org/10.1016/j.wdp.2022.100394
https://doi.org/10.1007/s44279-025-00234-3
https://doi.org/10.1007/s44279-025-00234-3
https://ideas.repec.org/p/ags/ineawp/14806.html
https://doi.org/10.1007/s13593-023-00868-x
https://doi.org/10.1007/s13593-020-00651-2
https://doi.org/10.1016/j.gfs.2020.100393
https://doi.org/10.1002/aepp.13188
https://doi.org/10.2499/9780896298753
https://doi.org/10.1186/s40066-018-0176-2
https://doi.org/10.1016/j.apenergy.2024.123928
https://doi.org/10.1111/ajae.12273
https://ris.utwente.nl/ws/portalfiles/portal/5146564/Hoekstra09WaterFootprintManual.pdf
https://doi.org/10.1016/S2212-5671(12)00021-4
https://doi.org/10.3390/agriculture12020287
https://doi.org/10.1016/j.compag.2019.105208


Keshvari et al., System Dynamics Modelling of Long-term Effects …     ? 

https://doi.org/10.18006/2016.4(2).169.179 
26. Keshvari, A., & Marzban, A. (2018). Zoning tthe Distribution of Required Agricultural Tractor 

Power in Khuzestan Province Using FCM Cluster Analysis. Agricultural Mechanization and 
Systems Research, 19(71), 125-138. https://doi.org/10.22111/gdij.2019.4596 

27. Keshvari, A., & Marzban, A. (2019). Prioritizing the power arrival in Khuzestan province 
agriculture using FAHP and FTOPSIS. https://doi.org/10.22067/jam.v9i1.69258 

28. Khatri, P., Kumar, P., Shakya, K. S., Kirlas, M. C., & Tiwari, K. K. (2024). Understanding the 
intertwined nature of rising multiple risks in modern agriculture and food system. Environment, 
Development and Sustainability, 26(9), 24107-24150. https://doi.org/10.1007/s10668-023-
03638-7 

29. Kienzle, J., Ashburner, J. E., & Sims, B. G. (2013). Mechanization for rural development: a 
review of patterns and progress from around the world. 
https://openknowledge.fao.org/handle/20.500.14283/i3259e 

30. Khuzestan Water Authority. (2020). Annual hydrological report of Khuzestan Province 2020: 
Agricultural water availability and allocation. Ministry of Energy, Ahvaz, Iran. 

31. Yasir, H., Tahir, H., & Awan, A. G. (2025). Full mechanization: a path to increased 
farm income, food security, and environmental quality in developing countries. Environment, 
Development and Sustainability. https://doi.org/10.1007/s10668-024-05720-0 

32. Liu, X., & Li, X. (2023). The influence of agricultural production mechanization on grain 
production capacity and efficiency. Processes, 11(2), 487. https://doi.org/10.1007/s10668-024-
05720-0 

33. Lu, F., Meng, J., & Cheng, B. (2024). How does improving agricultural mechanization affect 
the green development of agriculture? Evidence from China. Journal of Cleaner Production, 
472, 143298. https://doi.org/10.1016/j.jclepro.2024.143298 

34. Manida, M. (2022). The future of food and agriculture trends and challenges. Agriculture & 
Food E-Newsletter, 4(2), 27-29. 
https://openknowledge.fao.org/server/api/core/bitstreams/2e90c833-8e84-46f2-a675-
ea2d7afa4e24/content 

35. Min, S. H. I., & Paudel, K. P. (2021). Mechanization and efficiency in rice production in China. 
Journal of Integrative Agriculture, 20(7), 1996-2008. https://doi.org/10.1016/S2095-
3119(20)63439-6 

36. Ministry of Agriculture Jihad. (2011–2022). Statistical yearbook of agricultural machinery and 
wheat production (Provincial data reports). Agricultural Research, Education and Extension 
Organization (AREEO), Tehran, Iran. 

37. Mitiku Degu, Y., DK Nageswara, R., Moges Ketsela, G., & Workneh Fanta, S. (2025). 
Estimation of Mechanization Index and Farm Power Density: Case Study of Smallholder 
Farmers in Bure District, Ethiopia. Journal of Agricultural Machinery. 
https://doi.org/10.22067/jam.2025.92764.1373 

38. Mohammed, K., Batung, E., Saaka, S. A., Kansanga, M. M., & Luginaah, I. (2023). 
Determinants of mechanized technology adoption in smallholder agriculture: Implications for 
agricultural policy. Land Use Policy, 129, 106666. 
https://doi.org/10.1016/j.landusepol.2023.106666 

39. Paudel, G. P., Kc, D. B., Khanal, N. P., Justice, S. E., & McDonald, A. J. (2019). Smallholder 
farmers’ willingness to pay for scale-appropriate farm mechanization: Evidence from the mid-
hills of Nepal. Technology in Society, 59, 101196. 
https://doi.org/10.1016/j.techsoc.2019.101196 

40. Peng, J., Zhao, Z., & Liu, D. (2022). Impact of agricultural mechanization on agricultural 
production, income, and mechanism: evidence from Hubei province, China. Frontiers in 
Environmental Science, 10, 838686. https://doi.org/10.3389/fenvs.2022.838686 

https://doi.org/10.18006/2016.4(2).169.179
https://doi.org/10.22111/gdij.2019.4596
https://doi.org/10.22067/jam.v9i1.69258
https://doi.org/10.1007/s10668-023-03638-7
https://doi.org/10.1007/s10668-023-03638-7
https://openknowledge.fao.org/handle/20.500.14283/i3259e
https://doi.org/10.1007/s10668-024-05720-0
https://doi.org/10.1007/s10668-024-05720-0
https://doi.org/10.1007/s10668-024-05720-0
https://doi.org/10.1016/j.jclepro.2024.143298
https://openknowledge.fao.org/server/api/core/bitstreams/2e90c833-8e84-46f2-a675-ea2d7afa4e24/content
https://openknowledge.fao.org/server/api/core/bitstreams/2e90c833-8e84-46f2-a675-ea2d7afa4e24/content
https://doi.org/10.1016/S2095-3119(20)63439-6
https://doi.org/10.1016/S2095-3119(20)63439-6
https://doi.org/10.22067/jam.2025.92764.1373
https://doi.org/10.1016/j.landusepol.2023.106666
https://doi.org/10.1016/j.techsoc.2019.101196
https://doi.org/10.3389/fenvs.2022.838686


?    Journal of Agricultural Machinery Vol. ?, No. ?, ?, ? 

41. Qiao, F. (2017). Increasing wage, mechanization, and agriculture production in China. China 
Economic Review, 46, 249-260. https://doi.org/10.1016/j.chieco.2017.10.002 

42. Rabet, G. R., Bahrami, H., & Sheikhdavoodi, M. J. (2014). Study of Primary Tillage 
Timeliness Cost for Irrigated Wheat in Fars Province Using System Dynamics. 
https://doi.org/10.22067/jam.v3i2.25174 

43. Rahman, M. M., Ali, M. R., Oliver, M. M. H., Hanif, M. A., Uddin, M. Z., Saha, K. K., …, & 
Moniruzzaman, M. (2021). Farm mechanization in Bangladesh: A review of the status, roles, 
policy, and potentials. Journal of Agriculture and Food Research, 6, 100225. 
https://doi.org/10.1016/j.jafr.2021.100225 

44. Rath, I., Pradhan, P. L., Dash, R. C., Mahapatra, M., Sahoo, P. K., Behera, A., & Verma, K. 
(2024). Assessment of Mechanization Indices: Insights from Rice-Growing Region of the 
Southern Asia–Pacific Region. Journal of The Institution of Engineers (India): Series A, 
105(3), 719-732. https://doi.org/10.1007/s40030-024-00815-3 

45. Ravikishore, M., Supriya, P., & Subbaiah, S. K. R. (2022). Farm Mechanisation: Policies, 
Challenges and Strategies. The Agriculture Magazine, 2(1), 118-126. 
https://www.researchgate.net/publication/366356313_Farm_Mechanisation_Policies_Challeng
es_and_Strategies 

46. Sanaullah, A. B., & Ullah, I. (2021). Challenges and prospects of farm mechanization in 
Pakistan: A case study of rural farmers in District Peshawar Khyber Pakhtunkhwa. Sarhad 
Journal of Agriculture, 37(1), 167-179. 
https://www.cabidigitallibrary.org/doi/pdf/10.5555/20210231066 

47. Sarkar, A. (2020). Agricultural mechanization in India: A study on the ownership and 
investment in farm machinery by cultivator households across agro-ecological regions. 
Millennial Asia, 11(2), 160-186. https://doi.org/10.1177/0976399620925440 

48. Sibhatu, K. T., & Qaim, M. (2017). Rural food security, subsistence agriculture, and 
seasonality. PloS One, 12(10), e0186406. https://doi.org/10.1371/journal.pone.0186406 

49. Smith, P., Calvin, K., Nkem, J., Campbell, D., Cherubini, F., Grassi, G., …, & McElwee, P. 
(2020). Which practices co‐deliver food security, climate change mitigation and adaptation, and 
combat land degradation and desertification? Global Change Biology, 26(3), 1532-1575. 
https://doi.org/10.1111/gcb.14878 

50. Statistical Center of Iran. (2011–2022). Agricultural statistics yearbook: National agricultural 
production statistics (2011–2022). Tehran, Iran: Statistical Center of Iran. Retrieved from 
https://www.amar.org.ir 

51. Sterman, J. D. (2000). Business dynamics: Systems thinking and modeling for a complex world. 
Boston, MA: Irwin/McGraw-Hill. 

52. Sun, M., Wan, Y., Wang, S., Liang, J., Hu, H., & Cheng, L. (2024). Analysis of the Impact of 
Agricultural Mechanization on the Economic Efficiency of Maize Production. Sustainability, 
16(13), 5522. https://doi.org/10.3390/su16135522 

53. Sun, P., Liu, R., Yao, R., Shen, H., & Bian, Y. (2023). Responses of agricultural drought to 
meteorological drought under different climatic zones and vegetation types. Journal of 
Hydrology, 619, 129305. 
https://www.sciencedirect.com/science/article/abs/pii/S0022169423002470 

54. Taheri, N., Jahani, H., & Pishvaee, M. S. (2024). Modeling sustainable bioethanol supply chain 
in Australia: A system dynamics approach. Renewable Energy, 227, 120481. 
https://doi.org/10.1016/j.renene.2024.120481 

55. Takeshima, H., Edeh, H. O., Lawal, A. O., & Isiaka, M. A. (2015). Characteristics of Private‐
Sector Tractor Service Provisions: Insights from N igeria. The Developing Economies, 53(3), 
188-217. https://doi.org/10.1111/deve.12077 

56. Turner, B. L., Menendez, H. M., Gates, R., Tedeschi, L. O., & Atzori, A. S. (2016). System 

https://doi.org/10.1016/j.chieco.2017.10.002
https://doi.org/10.22067/jam.v3i2.25174
https://doi.org/10.1016/j.jafr.2021.100225
https://doi.org/10.1007/s40030-024-00815-3
https://www.researchgate.net/publication/366356313_Farm_Mechanisation_Policies_Challenges_and_Strategies
https://www.researchgate.net/publication/366356313_Farm_Mechanisation_Policies_Challenges_and_Strategies
https://www.cabidigitallibrary.org/doi/pdf/10.5555/20210231066
https://doi.org/10.1177/0976399620925440
https://doi.org/10.1371/journal.pone.0186406
https://doi.org/10.1111/gcb.14878
https://www.amar.org.ir/
https://doi.org/10.3390/su16135522
https://www.sciencedirect.com/science/article/abs/pii/S0022169423002470
https://doi.org/10.1016/j.renene.2024.120481
https://doi.org/10.1111/deve.12077


Keshvari et al., System Dynamics Modelling of Long-term Effects …     ? 

Dynamics Modeling for Agricultural and Natural Resource Management Issues: Review of 
Some Past Cases and Forecasting Future Roles. Resources. 
https://doi.org/10.3390/resources5040040 

57. Van den Berg, M. M., Hengsdijk, H., Wolf, J., Van Ittersum, M. K., Guanghuo, W., & Roetter, 
R. P. (2007). The impact of increasing farm size and mechanization on rural income and rice 
production in Zhejiang province, China. Agricultural Systems, 94(3), 841-850. 
https://doi.org/10.1016/j.agsy.2006.11.010 

58. Wang, T., Liu, H., & Wang, Z. (2025). Decomposing the Impact of Agricultural Mechanization 
on Agricultural Output Growth: A Case Study Based on China’s Winter Wheat. Sustainability. 
https://doi.org/10.3390/su17051777 

59. Wang, X., Dong, Z., & Sušnik, J. (2023). System dynamics modelling to simulate regional 
water-energy-food nexus combined with the society-economy-environment system in Hunan 
Province, China. Science of The Total Environment, 863, 160993. 
https://doi.org/10.1016/j.scitotenv.2022.160993 

60. Winarno, K., Sustiyo, J., Aziz, A. A., & Permani, R. (2025). Unlocking agricultural 
mechanisation potential in Indonesia: Barriers, drivers, and pathways for sustainable agri-food 
systems. Agricultural Systems, 226, 104305. https://doi.org/10.1016/j.agsy.2025.104305 

61. Wittwer, R. A., Bender, S. F., Hartman, K., Hydbom, S., Lima, R. A. A., Loaiza, V., …, & 
Petchey, O. (2021). Organic and conservation agriculture promote ecosystem 
multifunctionality. Science Advances, 7(34), eabg6995. https://doi.org/10.1126/sciadv.abg6995 

62. Wu, Z., Dang, J., Pang, Y., & Xu, W. (2021). Threshold effect or spatial spillover? The impact 
of agricultural mechanization on grain production. Journal of Applied Economics, 24(1), 478-
503. https://doi.org/10.1080/15140326.2021.1968218 

63. Yamin, M., Tahir, A., Awan, A., & Yaseen, M. (2011). Studying the impact of farm 
mechanization on wheat production in Punjab-Pakistan. Soil and Environment, 30, 151-154. 
https://www.cabidigitallibrary.org/doi/pdf/10.5555/20113380591 

64. Yan, F., Sun, X., Chen, S., & Dai, G. (2024). Does agricultural mechanization improve 
agricultural environmental efficiency? Frontiers in Environmental Science, 11, 1344903. 
https://doi.org/10.1007/s11356-022-19642-9 

65. Yang, J., Huang, Z., Zhang, X., & Reardon, T. (2013). The rapid rise of cross-regional 
agricultural mechanization services in China. American Journal of Agricultural Economics, 
95(5), 1245-1251. https://doi.org/10.1093/ajae/aat027 

66. Yasar, H., Raza, M. H., Faisal, M., Nadeem, N., Khan, N., Kassem, H. S., …, & Mahmood, S. 
(2024). Does farm mechanization improve farm performance and ensure food availability at 
household level? Empirical evidence from Pakistan. Frontiers in Sustainable Food Systems, 8, 
1453221. https://doi.org/10.3389/fsufs.2024.1453221 

67. Zhou, C., Li, X., Lin, X., & Cheng, M. (2022). Influencing factors of the high-quality economic 
development in China based on LASSO model. Energy Reports, 8, 1055-1065. 
https://doi.org/10.1016/j.egyr.2022.10.167 

68. Zhou, X., & Ma, W. (2022). Agricultural mechanization and land productivity in China. 
International Journal of Sustainable Development & World Ecology, 29(6), 530-542. 
https://doi.org/10.1080/13504509.2022.2051638 

69. Zhu, Y., Zhang, Y., & Piao, H. (2022). Does agricultural mechanization improve agricultural 
environment efficiency? Evidence from China’s planting industry. Environmental Science and 
Pollution Research, 29(35), 53673–53690. https://doi.org/10.1007/s11356-022-19642-9 

70. Zou, B., Chen, Y., Mishra, A. K., & Hirsch, S. (2024). Agricultural mechanization and the 
performance of the local Chinese economy. Food Policy, 125, 102648. 
https://doi.org/10.1016/j.foodpol.2024.102648  

https://doi.org/10.3390/resources5040040
https://doi.org/10.1016/j.agsy.2006.11.010
https://doi.org/10.3390/su17051777
https://doi.org/10.1016/j.scitotenv.2022.160993
https://doi.org/10.1016/j.agsy.2025.104305
https://doi.org/10.1126/sciadv.abg6995
https://doi.org/10.1126/sciadv.abg6995
https://doi.org/10.1080/15140326.2021.1968218
https://www.cabidigitallibrary.org/doi/pdf/10.5555/20113380591
https://doi.org/10.1007/s11356-022-19642-9
https://doi.org/10.1093/ajae/aat027
https://doi.org/10.3389/fsufs.2024.1453221
https://doi.org/10.1016/j.egyr.2022.10.167
https://doi.org/10.1080/13504509.2022.2051638
https://doi.org/10.1007/s11356-022-19642-9
https://doi.org/10.1016/j.foodpol.2024.102648


?    Journal of Agricultural Machinery Vol. ?, No. ?, ?, ? 

 

کشت و عملکرد  ریبر سطح ز یکشاورز ونیزاسی اثرات بلندمدت مکان ستمیس ییایپو یسازمدل

 گندم 

 
 3، میرسامان پیشوایی2، عباس عبدشاهی1، محمدامین آسودار*1، افشین مرزبان1آتنا کشوری
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 07/1404/ 23تاریخ پذیرش: 

  چکیده

 یب  را کیاس  ترات  یب  ا اهرم    یکش  اورز ونیزاس   یمکان ،ییکار روستا یرو یو کمبود ن یمیاقل راتییمنابع، تغ  تیاز محدود  یناش  یفشارها  دیبا تشد
 مو عملک  رد دن  د رکشتیبر سطح ز ونیزاسیاثرات بلندمدت مکان یبررس یرا برا ستمیس ییایمدل پو کیمطالعا    نیشده است. ا  لیتبد  یوربهره  یارتقا

مدل  کیآغاز شد. سپس  یدیبازخورد کل یساختارها یسازمفهوم ی( براCLD) ینمودار حلقا عل میتوسعا داد. پ وهش با ترس یمالکخرده  یهادر نظام
 ین  دهارو  نیب    یق  و یهمخ  وان ج،یشد. نت  ا یو اعتبارسنج نی( تدو 2011-2022استان خوزستان ) یهابا استفاده از داده  ان،یو جر  یموجود  یسازایشب
 ها،نیناود  ان ماش    یمختلف شامل نوساز یاستیس یوهایسنار یسازایشب ینشان داد. از مدل برا  یاصل  یهارا در شاخص  یشده و مشاهدات  یسازایشب

 یرص  دد 1عملک  رد و  یدرص  د 7 شیمنجر با افزا آلاتنیماش ینیگزینرخ جا یدرصد 30 شیاستفاده شد. افزا یبارندد  یریرپذییبا آب و تغ  یدسترس
ک  ا  اف  تیک  اهش  نیآن بر استفاده از زم    ییشد، اثر نها بیبهتر آب ترک یبا دسترس ونیزاسیکا بهبود مکان  یشد. هنگام  اینسبت با پا  رکشتیسطح ز
 لیدلکش  ت دن  دم ب  ا  ،یآب   کم  طیمطلوب اس  ت. در مقاب  ل، در ش  را  کیدرولوژیه  طیکشاورزان با کشت محصولات باارزش در شرا  لیدهنده تمانشان

در مناطق   هیو با ها،استیس  یدر طراح  ونیزاسیتوجا با تعامل آب و مکان تیبر اهم  هاافتای  نی. اافتیدسترش   ون،یزاسیاز مکان یناش  ییو کارا  یسازدار
و اس  تفاده  یم   یاقل  یآوربهب  ود ت  اب  یدر راستا  یریدمیاز تصم  یبانیپشت  یبر تجربا برا  یو مبتن  ریپذشده، ابزار انعطاف. مدل ارائاکنندیم  دیخشک تأک
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