با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی بیوسیستم، دانشگاه تبریز، تبریز، ایران

چکیده

ارتعاش بوم‌های عریض سم‌پاشی‌ هنگام عبور از ناهمواری‌های زمین و سرعت عمل در میرا کردن ارتعاشات، یکی از چالش‌های پژوهشگران است. عدم یکنواختی الگوی پاشش نازل و کاهش دقت و کیفیت کار، نتیجه ارتعاش کنترل نشده بوم سم‌پاش است. تاکنون تلاش‌های زیادی برای میراسازی ارتعاش بوم‌های عریض سم‌پاشی به‌عمل‌آمده است. پژوهشگران با استفاده از روش‌های فعال و غیرفعال موفقیت‌های زیادی در میراسازی ارتعاش بوم‌های سم‌پاشی به‌دست آورده‌اند. بسیاری از این روش‌ها مبتنی بر استفاده از نیروی خارجی به‌عنوان نیروی فعال کنترل‌کننده است. تجهیزات گران‌قیمت، استفاده از توان تراکتور و صرف انرژی زیاد، ایراد اساسی این روش‌ها است. در کار تحقیقی حاضر، سامانه جدیدی تحت عنوان تکیه‌گاه متغیر طراحی و نمونه‌سازی شد. آزمایش‌ها به‌صورت اثر عاملی چند متغیره روی بوم سم‌پاش انجام شد. نتایج نشان داد که سم‌پاش دارای تکیه‌گاه متغیر نسبت به سم‌پاش مرسوم ازنظر کنترل شتاب‌های بوم و تعادل زاویه‌ای بوم دارای تفاوت معنی‌دار و برتری نسبی است.

کلیدواژه‌ها

موضوعات

Open Access

©2021 The author(s). This article is licensed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

1. Rohani, A., and H. Makarian. 2012. Making weed management maps by artificial neural networks for using in precision agriculture. Journal of Agricultural Machinery 1: 74-83. (In Farsi).
2. Atreya, K., F. Johnsen, and B. Sitaula. 2012. Health and environmental costs of pesticide use in vegetable farming in Nepal. Environment, Development and Sustainability 14: 477-493.
3. Chaplin, J., and C. Wu. 1990. Dynamic modeling of field sprayers. Transactions of the ASAE 32: 1857-1863.
4. Clijmans, L., J. Swevers, J. De Baerdemaeker, and H. Ramon. 1999. Experimental design for vibration analysis on agricultural spraying machines. Proceedings of the International Seminar on Modal Analysis 3: 1517-1522.
5. Clijmans, L., H. Ramon, P. Sas, and J. Swevers. 2000a. Sprayer boom motion, part 2: validation of the model and effect of boom vibration on spray liquid deposition. Journal of Agricultural Engineering Research 76: 121-128.
6. Clijmans, L., J. Swevers, J. De Baerdemaeker, and H. Ramon. 2000b. Sprayer boom motion, part 1: derivation of the mathematical model using experimental system identification theory. Journal of Agricultural Engineering Research 76: 61-69.
7. Deprez, K., M. Lannoije, J. Anthonis, H. Ramon, and H. Van Brussel. 2000. Development of a slow active suspension for stabilizing the roll of spray booms. Proceedings of the UKACC International Conference on Control 81: 185-191.
8. Ebrahimi, R., and M. Ghayour. 2015. Simulation and control of rotational vibration of sprayer boom using a novel suspension system. Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineering 8: 163-173.
9. Engelen, K., H. Ramon, and J. Anthonis. 2006. Load spectrum estimation from output-only measurements applied to a spray boom model. International Conference on Noise and Vibration Engineering 5: 2949-2959.
10. Frost, A. 1984. Simulation of an active spray boom suspension. Journal of agricultural engineering research 30: 313-325.
11. He, Y. J., B. J. Qiu, and Y. F. Yang. 2014. Modal testing and parameters' identification of spray boom. Applied Mechanics and Materials 532: 324-327.
12. Herbst, A., H. Osteroth, W. Fleer, and H. Stendel. 2015. A method for testing automatic spray boom height control systems. ASABE Annual International Meeting: 1-7.
13. Hicks, B. 2005. Effect of tilt actuator manipulation on suspended boom sprayer roll. University of Saskatchewan, Canada.
14. Ito, T., T. Inada, T. Yoshida, T. Mizukami, A. Oota, D. Shibasaki, M. Akashi, and Y. Tanaka. 2014. Boom sprayer and boom vibration control device. Pages 24. US Patent App: Kayaba industry co. ltd.
15. Jeon, H. 2003. Instrumented self-propelled sprayer to determine dynamic boom effects on droplet application uniformity. University of tennessee, Knoxville.
16. Jeon, H., A. Womac, and J. Gunn. 2003a. Influence of 27-m sprayer boom dynamics on precision chemical application. ASAE Annual Meeting: 1-28.
17. Jeon, H., A. Womac, and J. Gunn. 2004. Sprayer boom dynamic effects on application uniformity. Transactions of the ASAE 47: 647-658.
18. Jeon, H., A. Womac, J. Wilkerson, and W. Hart. 2003b. Instrument system to monitor the dynamic behavior of a 27-m sprayer boom. ASAE Annual Meeting: 1-17.
19. Lebeau, F., and M. Destain. 1998. Measurement of the sprayer boom displacements with a laser sensor displacement. Proceedings of the AgEng, Oslo, Paper: 004.
20. Mohamad, M., M. Mailah, and A. Muhaimin. 2006. Vibration control of mechanical suspension system using active force control. Universiti Teknologi Malaysia.
21. Nation, H. J. 1982. The dynamic behaviour of field sprayer booms. Journal of Agricultural Engineering Research 27: 61-70.
22. O’Sullivan, J. 1986. Simulation of the behaviour of a spray boom with an active and passive pendulum suspension. Journal of Agricultural Engineering Research 35: 157-173.
23. Parloo, E., P. Guillaume, J. Anthonis, W. Heylen, and J. Swevers. 2003. Modelling of sprayer boom dynamics by means of maximum likelihood identification techniques, Part 2: Sensitivity-based mode shape normalisation. Biosystems engineering 85: 291-298.
24. Pochi, D., and D. Vannucci. 2001. Laboratory evaluation of linear and angular potentiometers for measuring spray boom movements. Journal of Agricultural Engineering Research 80: 153-161.
25. Ramon, H., J. De Baerdemaeker, and H. Van Brussel. 1996. Design of a cascade controller for a flexible spray boom. Mechanical Systems and Signal Processing 10: 197-210.
26. Sartori, S., E. Domingues, J. Kimura, and S. Garrito. 2002. Automatic control of boom height and positioning on a self propelled sprayer. World Congress of Computers in Agriculture and Natural Resources, Proceedings of the 2002 Conference: 421.
27. Sigrimis, N., K. Arvanitis, and G. Pasgianos. 2002. A comparison of optimal control algorithms for vibration attenuation of agricultural spray booms. ASAE Annual Meeting: 1-14.
28. Sinfort, C., A. Miralles, F. Sevila, and G. Maniere. 1994. Study and development of a test method for spray boom suspensions. Journal of Agricultural Engineering Research 59: 245-252.
29. Sun, J., and Y. Miao. 2011. Modeling and simulation of the agricultural sprayer boom leveling system. Third International Conference on Measuring Technology and Mechatronics Automation 2: 613-618.
30. Tahmasebi, M., R. Rahman, M. Mailah, and M. Gohari. 2012. Sprayer boom active suspension using intelligent active force control. Journal of World Academy of Science, Engineering and Technology 68: 1277-1281.
31. Tahmasebi, M., R. Rahman, M. Mailah, and M. Gohari. 2013. Active force control applied to spray boom structure. Applied Mechanics and Materials 315: 616-620.
32. Wang, X., D. Wang, S. Li, and X. Li. 2018. Design of position balance controller for the sprayer boom. 3rd International Conference on Mechanical, Control and Computer Engineering (ICMCCE): 304-307.
33. Weidong, J., Z. Leijiang, and Y. Mingde. 2013. Current situation and development trend of boom sprayer. Journal of Chinese Agricultural Mechanization 34: 19-22.
34. Wu, J., and Y. Miao. 2012. Dynamic characteristic analysis of boom for wide sprayer with different exciting sources. Transactions of the Chinese Society of Agricultural Engineering 28: 39-44.
35. Yuki, S., H. Yasuda, T. Matsubayashi, and H. Ishizuka. 2013. Development of tractor automatic controlled boom sprayer using CAN-BUS. IFAC Proceedings Volumes 46: 264-269.
CAPTCHA Image