با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی مکانیک، دانشگاه فنی و حرفه‌ای، تهران، ایران

2 گروه مهندسی مکانیک بیوسیستم، واحد بناب، دانشگاه آزاد اسلامی، بناب، ایران

چکیده

در این تحقیق به‌منظور بررسی عملکرد حرارتی رادیاتور تراکتور MF 285 با استفاده از نانو سیال، مدل آزمایشگاهی طراحی و ساخته شد. در این مدل آزمایشگاهی آب و اتیلن گلیکول به‌عنوان سیال‌های پایه با نانوذرات AL2O3 ترکیب و مورد استفاده قرار گرفتند. از نانوذرات 20 nm با درصدهای حجمی 1 الی 4 درصد استفاده شد. دمای سیال ورودی به رادیاتور حداکثر 85 درجه سانتی‌گراد و سرعت جریان سیال خنک‌کننده  18/3 تا  08/15 لیتر در دقیقه و سرعت جریان هوا از  2/3 تا  4/6 متر در ثانیه متغیر بود. نتایج نشان داد افزایش سرعت جریان مایع خنک‌کننده و سرعت جریان هوا می‌تواند عملکرد انتقال حرارت را بهبود دهد همچنین افزایش کسر حجمی نانوذرات در سیال پایه موجب افزایش نرخ انتقال حرارت و کاهش دمای خروجی می‌گردد. بنابراین با افزایش دور الکتروموتور از Hz 20 به Hz 40 ضریب انتقال حرارت آب خالص به‌طور متوسط 26% و نانو سیال 29% افزایش را نشان می‌دهد. با افزودن 4 درصد حجمی نانوذرات به سیال پایه می‌توان نرخ انتقال حرارت را به‌طور متوسط 37% و ضریب انتقال حرارت جابه‌جایی را 28% نسبت به سیال پایه افزایش داد.

کلیدواژه‌ها

  1. Bahiraei, M., S. M. Hosseinalipour, K. Zabihi and E. Taheran. 2012. Using neural network for determination of viscosity in water-TiO2 Advances in Mechanical Engineering 4: 1-10. https://doi.org/10.1155/2012/742680.
  2. Bozorg Bigdeli, M., M. Fasano, A. Cardellini, E. Chiavazzo, and P. Asinari. 2016. A review on the heat and mass transfer phenomena in nanofluid coolants with special focus on automotive applications. Renewable and Sustainable Energy Reviews 60: 1615-1633. https://doi.org/10.1016/j.rser.2016.03.027.
  3. Chiou, J. P. 1980. The effect of the flow nonuniformity on the sizing of the engine radiator. SAE paper no.800035, Society of Automotive Engineers 91: 250-260. DOI: https://doi.org/10.4271/800035.
  4. Choi, S. U. S. 1995. Enhancing thermal conductivity of fluids with nanoparticles. International Mechanical Engineering Congress & Exposition (ASME) 66: 99-105.
  5. Das, S. K., N. Putra, P. Thiesen, and W. Roetzel. 2003. Temperature dependence of thermal conductivity enhancement for nanofluids. Journal of Heat Transfer 125 (4): 567-574. https://doi.org/10.1115/1.1571080.
  6. Das, S., S. Choi, and H. Patel. 2006. Heat transfer in nanofluids – a review. Heat Transfer Engineering 27 (10): 3-19. https://doi.org/10.1080/01457630600904593.
  7. Einstein, A. 1906. Eine neue bestimmung der moleküldimensionen. Annalen der Physik 324 (2): 289-306. https://doi.org/10.1002/andp.19063240204.
  8. Fan, X., H. Chen, Y. Ding, P. K. Plucinski, and A. A. Lapkin. 2008. Potential of ‘nanofluids’ to further intensify microreactors. Green Chemistry 10 (6): 670-677.
  9. Ghadimi, A., and I. H. Metselaar. 2013. The influence of surfactant and ultrasonic processing on improvement of stability. thermal conductivity and viscosity of titania nanofluid. Experimental Thermal and Fluid Science 51: 1-9. https://doi.org/10.1016/j.expthermflusci.2013.06.001.
  10. Gifford, N. L., A. G. Hunt, E. Savory, and R. J. Martinuzzi. 2006. Experimental study of low-pressure automotive cooling fan Aerodynamics under blocked Conditions. Canadian Society for Mechanical Engineering 1: 1-8.
  11. Heydarbeigi, G. 2017. Investigation of the effect of using copper nanofluid, silver nanofluid and aluminum oxide on the heat transfer rate of Ferguson 285 copper tractor engine radiator. First International Conference on Applied Research in Agricultural Sciences. Natural Resources and Environment. https://civilica.com/doc/673996.
  12. Heyhat, M. M., F. Kowsary, A. M. Rashidi., S. Alem Varzane Esfehani, and A. Amrollahi. 2012. Experimental investigation of turbulent flow and convective heat transfercharacteristics of alumina water nanofluids in fully developed flow regime. International Communication in Heat and Mass Transfer 39 (8): 1272-1278. https://doi.org/10.1016/j.icheatmasstransfer.2012.06.024.
  13. Hussein, A. M., R. A. Bakar, and K. Kadirgama. 2014. Study of forced convection nanofluid heat transfer in the automotive cooling system. Case Studies Thermal Engineering 2: 50-61. https://doi.org/10.1016/j.csite.2013.12.001.
  14. Holman, J. P. 1989. Heat Transfer. McGraw-Hill Book Co., New York.
  15. Kong, L., J. Sun, and Y. Bao. 2017. Preparation, characterization and tribological mechanism of nanofuids. Royal Society of Chemistry Advances 7: 12599-12609. https://doi.org/10.1039/C6RA28243A.
  16. Kouloulias, K., A. Sergis, and Y. Hardalupas. 2016. Sedimentation in nanofluids during a natural convection experiment. International Journal of Heat and Mass Transfer 101: 1193-1203. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.113.
  17. Leong, K. Y., R. Saidur, S. N. Kazi, and A. H. Mamun. 2010. Performance investigation of an automotive car radiator operated with nanofluid-based coolants (nanofluid as a coolant in a radiator). Applied Thermal Engineering 30: 2685-2692. https://doi.org/10.1016/j.applthermaleng.2010.07.019.
  18. Masuda, H., A. Ebata, and K. Teramae. 1993. Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Dispersion of Al2O3, SiO2 and TiO2 ultra-fine particles. Netsu Bussei 7: 227-233.
  19. Maxwell, J. C. 1891. A Treatise on Electricity and Magnetism. Clarendon Press, Oxford, UK.
  20. Maxwell Garnett, J. 1904. Colours in metal glasses and in metallic films. Philosophical Transactions the Royal Society 203: 385-420. https://doi.org/10.1098/rsta.1904.0024.
  21. Morris, S. C., J. J. Goad, and J. F. Fess. 1998. Velocity measurements in the wake of an automotive cooling fan. Experimental Thermal and Fluid Science 7: 100-106. https://doi.org/10.1016/S0894-1777(97)10054-1.
  22. Nguyen, C., F. Desgranges, G. Roy, N. Galanis, T. Mare, S. Boucher, and H. A. Mintsa. 2008. Viscosity data for Al2O3–water nanofluid–hysteresis: is heat transfer enhancement using nanofluids reliable?. International Journal of Thermal Sciences 47 (2): 103-111. https://doi.org/10.1016/j.ijthermalsci.2007.01.033.
  23. Nisar, K. S., D. Khan, A. Khan, W. A. Khan, I. Khan, and A. M. Aldawsari. 2019. Entropy Generation and Heat Transfer in Drilling Nanoliquids with Clay Nanoparticles. Entropy 21 (12): 1226. https://doi.org/10.3390/e21121226.
  24. Oliet, C., A. Oliva, J. Castro, and C. D. Pe´rez-Segarra. 2007. Parametric studies on automotive radiators. Applied Thermal Engineering 27: 2033-2043. https://doi.org/10.1016/j.applthermaleng.2006.12.006.
  25. Pak, B. C., and Y. I. Cho. 1998. Hydraulic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer 11 (2): 151-170. https://doi.org/10.1080/08916159808946559.
  26. Pandey, S. D., and V. K. Nema. 2012. Experimental analysis of heat transfer and friction factor of nanofluid as a coolant in a corrugated plate heat exchanger. Experimental Thermal and Fluid Science 38: 248-256. https://doi.org/10.1016/j.expthermflusci.2011.12.013.
  27. Pecora, R. 1985. Dynamic Light Scattering. Applications of Photon Correlation Spectroscopy. Springer.
  28. Peyghambarzadeh, S. M., S. H. Hashemabadi, M. Seiji Jamnani, and S. M. Hoseini. 2011, a. Improving the cooling performance of automobile radiator with Al2O3/water nanofluid. Applied Thermal Engineering 31 (10): 1833-1838. https://doi.org/10.1016/j.applthermaleng.2011.02.029.
  29. Peyghambarzadeh, S. M., H. Hashemabadi, S. M. Hoseini, and M. Seiji Jamnani. 2011, b. Experimental study of heat transfer enhancement using water/ethylene glycol based nanofluids as a new coolant for car radiators. International Communications in Heat and Mass Transfer 38 (9): 1283-1290. https://doi.org/10.1016/j.icheatmasstransfer.2011.07.001.
  30. Raja, M., R. Vijayan, P. Dineshkumar, and M. Venkatesan. 2016. Review on nanofluids characterization, heat transfer characteristics and applications. Renewable and Sustainable Energy Reviews 64: 163-173. https://doi.org/10.1016/j.rser.2016.05.079.
  31. Sabralilou, B., A. Mohebbi, E. Akbarian, and A. Rezvanivand fanaei. 2020. Aero-acoustical study of axial fan using computational fluid dynamics. Journal of Agricultural Machinery 10 (2): 255-264. (In Persian). DOI: 22067/jam.v10i2.74963.
  32. Turgut, A., I. Tavman, M. Chirtoc, H. P. Schuchmann, C. Sauter, and S. Tavman. 2009. Thermal conductivity and viscosity measurements of waterbased TiO2 International Journal of Thermophysics 30 (4): 1213-1226.
  33. Xiang-Qi, W., and A. Mujumdar, S. 2008. A review on nanofluids- Part I: theoretical and numerical investigations. Brazilian Journal of Chemical Engineering 25 (4): 613-630. https://doi.org/10.1590/S0104-66322008000400001.
  34. Wang, X., X. Xu, S. U. S. Choi. 1999. Thermal conductivity of nanoparticle–fluid mixture. Journal of Thermophysics and Heat Transfer 13: 474-480. https://doi.org/10.2514/2.6486.
  35. Wen, D., G. Lin, and S. Vafaei. 2009. Review of nanofluids for heat transfer applications. Particuology 7: 141-150. https://doi.org/10.1016/j.partic.2009.01.007.
  36. White, F. M. 2002. Fluid Mechanics, McGraw-Hill; 5th ed.
  37. Williams, W. C., J. Buongiorno, and W. L. Hu. 2008. Experimental investigation of turbulent convective heat transfer and pressure loss of alumina/water and zirconia/water nanoparticle colloids (nanofluids) in horizontal tubes. Journal of Heat Transfer 130 (4): 042412. https://doi.org/10.1115/1.2818775.
  38. Wong, K. V., and O. D. Leon. 2010. Applications of nanofluids. Current and future. Advances in Mechanical Engineering Article ID 519659: 1-11. https://doi.org/10.1155/2010/519659.
  39. Yiamsawas, T., A. S. Dalkilic, O. Mahian, and A. Wongwises. 2013. Measurement and correlation of the viscosity of waterbased Al2O3 and TiO2 nanofluids in high temperatures and comparisons with literature reports. Journal of Dispersion Science and Technology 34 (12): 1697-1703. https://doi.org/10.1080/01932691.2013.764483.
CAPTCHA Image