با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی ماشین‌های کشاورزی، دانشکده مهندسی و فناوری کشاورزی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران

چکیده

این مطالعه به‌منظور بررسی پتانسیل‌ تولید بیوگاز از تفاله‌های آب‌میوه‌گیری سیب و مدل‌سازی فرآیند تولید صورت پذیرفته است. بدین منظور تولید بیوگاز از تفاله‌های سیب تحت شرایط مختلف دمایی شامل سایکروفیلیک، مزوفیلیک و ترموفیلیک بررسی گردید. نتایج مطالعه حاکی از پتانسیل تئوری بالای تولید متان بیوشیمیایی تفاله‌های سیب می‌باشد ( ml g-VS-17/473) که تحت شرایط آزمایشگاهی این مطالعه تا 9/63 درصد این پتانسیل (برابر میزان ml g-VS-1 70/302) استحصال گردید. نتایج نشان داد که هر سه مدل سینتیک گومپرتز، لجستیک و ریچاردز به‌خوبی قادر هستند روند تولید متان تجمعی از تفاله‌های سیب را مدل‌سازی کنند هرچند که نتایج مدل لجستیک بهتر و قابل قبول­تر می‌باشد. همچنین این مدل‌ها تحت دمای مزوفیلیک و ترموفیلیک تطابق بیشتری با روند تولید داشتند. نتایج بررسی تاثیرات دما بر روی تولید بیوگاز نشان داد که با افزایش دما میزان تولید افزایش و زمان ماند و زمان پیک تولید کاهش یافت اما میزان تولید تیمارهای 37 و 47 درجه از نظر آماری معنی دار نبوده است.

کلیدواژه‌ها

موضوعات

Open Access

©2021 The author(s). This article is licensed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

1. AOAC. 1990. Official methods of analysis of the AOAC, 15th ed. Methods 932.06, 925.09, 985.29, 923.03. Association of official analytical chemists. Arlington, VA, USA.
2. Ağdağ, O. N., and D. T. Sponza. 2007. Co-digestion of mixed industrial sludge with municipal solid wastes in anaerobic simulated landfilling bioreactors. Journal of hazardous materials 140: 75-85.
3. Agrahari, P. R., and D. Khurdiya. 2003. Studies on preparation and storage of RTS beverage from pulp of culled apple pomace. Indian Food Packer 57: 56-61.
4. Alzate-Gaviria, L. M., P. Sebastian, A. Perez-Hernandez, and D. Eapen. 2007. Comparison of two anaerobic systems for hydrogen production from the organic fraction of municipal solid waste and synthetic wastewater. International Journal of Hydrogen Energy 32: 3141-3146.
5. Angelidaki, I., and W. Sanders. 2004. Assessment of the anaerobic biodegradability of macropollutants. Re/Views in Environmental Science & Bio/Technology 3: 117-129.
6. Buffière, P., D. Loisel, N. Bernet, J. P. Delgenes. 2006. Towards new indicators for the prediction of solid waste anaerobic digestion properties. Water Science and Technology 53: 233-41.
7. Chen, Z., D. Hu, Z. Zhang, N. Ren, and H. Zhu. 2009. Modeling of two-phase anaerobic process treating traditional Chinese medicine wastewater with the IWA Anaerobic Digestion Model No. 1. Bioresource Technology 100: 4623-4631.
8. Ding, H.-B. and J.-Y. Wang. 2008. Responses of the methanogenic reactor to different effluent fractions of fermentative hydrogen production in a phase-separated anaerobic digestion system. International Journal of Hydrogen Energy 33: 6993-7005.
9. Doagoi, A., A. Ghazanfari Moghaddam, and M. H. Fooladi. 2011. Investigating and Modeling the Process of Biogas Production while Utilizing the Wastes of Damask Rose Distillation. Iranian Journal of Biosystems Engineering 42: 95-102. (In Farsi).
10. Dubrovskis, V., and I. Plume. 2017. Biogas from wastes of pumpkin, marrow and apple. Agronomy Research 15 (1): 69-78.
11. El-Mashad, H. M., and R. Zhang. 2010. Biogas production from co-digestion of dairy manure and food waste. Bioresource Technology 101 (11): 4021-4028.
12. Fang, W., P. Zhang, G. Zhang, S. Jin, D. Li, M. Zhang, and X. Xu. 2014. Effect of alkaline addition on anaerobic sludge digestion with combined pretreatment of alkaline and high pressure homogenization Bioresource Technology 168: 167-172.
13. FAOSTAT. 2019. Apple production in 2017. Crops World Regions Production Quantity": UN Food & Agriculture Organization, Statistics Division.
14. Haji Agha Alizadeh, H., F. Rahimi Sardari, and S. A. Radmdar. 2014. Effect Of Reactor Temperature on the Rate of Biogas Production from Quail Manure. in First National Conference of Agriculture, Environment and Food Security. Jiroft. (In Farsi).
15. Hanssen, J. F., M. Indergaard, K. Østgaard, O. A. Bævre, T. A. Pedersen, and A. Jensen. 1987. Anaerobic digestion of Laminaria spp. and Ascophyllum nodosum and application of end products. Biomass 14: 1-13.
16. Hassan Dar, Gh., and S. M. Tandon. 1987. Biogas production from pretreated wheat straw, lantana residue, apple and peach leaf litter with cattle dung, Biological Wastes 21 (2): 75-83.
17. Heo, N. H., and S. C. Park, and H. Kang. 2004. Effects of mixture ratio and hydraulic retention time on single-stage anaerobic co-digestion of food waste and waste activated sludge. Journal of Environmental Science and Health, Part A 39: 1739-1756.
18. Hoseinzadeh, Y. 2013. Investigating the potential of biogas production from lettuce and cabbage waste in common digestion with cow manure. MSc thesis. Ferdowsi University of Mashhad.
19. Labatut, R. A., L. T. Angenent, and N. R. Scott. 2011. Biochemical methane potential and biodegradability of complex organic substrates. Bioresource Technology 102: 2255-2264.
20. Laurinovica, L., J. Jasko, E. Skripsts, and V. Dubrovskis. 2013. Biochemical methane potential of biologically and chemically pretreated sawdust and straw. Pages 468-471. Proceedings of the 12th International Scientific Conference: Engineering for Rural Development.
21. Lay, J.-J., Y.-Y. Li, and T. Noike. 1998. Developments of bacterial population and methanogenic activity in a laboratory-scale landfill bioreactor. Water Research 32: 3673-3679.
22. Lesteur, M., V. Bellon-Maurel, C. Gonzalez, E. Latrille, J. Roger, G. Junqua, and J. Steyer. 2010. Alternative methods for determining anaerobic biodegradability: a review. Process Biochemistry 45: 431-440.
23. Lianhua, L., L. Dong, S. Yongming, M. Longlong, Y. Zhenhong, and K. Xiaoying. 2010. Effect of temperature and solid concentration on anaerobic digestion of rice straw in South China. International Journal of Hydrogen Energy 35: 7261-7266.
24. Lo, H., T. Kurniawan, M. Sillanpää, T. Pai, C. Chiang, K. Chao, M. Liu, S. Chuang, C. Banks, and S. Wang. 2010. Modeling biogas production from organic fraction of MSW co-digested with MSWI ashes in anaerobic bioreactors. Bioresource Technology 101: 6329-6335.
25. Lopes, W. S., V. D. Leite, and S. Prasad. 2004. Influence of inoculum on performance of anaerobic reactors for treating municipal solid waste. Bioresource Technology 94: 261-266.
26. Nazari, A., and Nasiri, J. 2013. Types of anaerobic digesters for energy extraction from corrosive organic matter. Jornal of Renewable and New Energy 1 (2): 37-44.
27. Nopharatana, A., P. C. Pullammanappallil, and W. P. Clarke. 2003. A dynamic mathematical model for sequential leach bed anaerobic digestion of organic fraction of municipal solid waste. Biochemical Engineering Journal 13: 21-33.
28. Owen, W., D. Stuckey, J. Healy Jr, L. Young, and P. McCarty. 1979. Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Research 13: 485-492.
29. Prabhudessai, V., A. Ganguly, S. Mutnuri. 2013. Biochemical Methane Potential of Agro Wastes. Journal of Energy (17): 1-7.
30. Rao, M., S. Singh, A. Singh, and M. Sodha. 2000. Bioenergy conversion studies of the organic fraction of MSW: assessment of ultimate bioenergy production potential of municipal garbage. Applied Energy 66: 75-87.
31. Raposo, F., R. Borja, B. Rincon, and A. Jimenez. 2008. Assessment of process control parameters in the biochemical methane potential of sunflower oil cake. Biomass and Bioenergy 32: 1235-1244.
32. Raposo, F., V. Fernandez‐Cegri, M. De la Rubia, R. Borja, F. Beline, C. Cavinato, G. Demirer, B. Fernandez, M. Fernandez‐Polanco, and J. Frigon. 2011. Biochemical methane potential (BMP) of solid organic substrates: evaluation of anaerobic biodegradability using data from an international interlaboratory study. Journal of Chemical Technology & Biotechnology 86: 1088-1098.
33. Rincon, B., C. J. Banks, and S. Heaven. 2010. Biochemical methane potential of winter wheat (Triticum aestivum L.): Influence of growth stage and storage practice. Bioresource Technology 101 (21): 8179-8184.
34. Safley Jr, L., and P. Westerman. 1992. Performance of a low temperature lagoon digester. Bioresource Technology 41: 167-175.
35. Sahito, A. R., R. B. Mahar, and K. M. Brohi. 2013. Anaerobic biodegradability and methane potential of crop residue co-digested with buffalo dung. Mehran University Research Journal of Engineering & Technology 32: 509-518.
36. Salmani, F., A. Ehsan, and M. Salimi. 2017. The Feasibility of Building Two units Combined Heat and Power (CHP) With Biogas in Urban Wastewater Treatment Plant. Journal of Mechanical Engineering 47: 325-331. (In Farsi).
37. Shariatifar, M. 2014. Investigating the potential of biogas production from citrus and livestock waste. Sari University of Agricultural Sciences and Natural Resources. (In Farsi).
38. Strömberg, S., M. Nistor, and J. Liu. 2014. Towards eliminating systematic errors caused by the experimental conditions in Biochemical Methane Potential (BMP) tests. Waste Management 34: 1939-1948.
39. Symons, G., and A. Buswell. 1933. The methane fermentation of carbohydrates1, 2. Journal of the American Chemical Society 55: 2028-2036.
40. Waezi-Zadeh, M., A. Ghazanfari, and S. Noorbakhsh. 2010. Finite element analysis and modeling of water absorption by date pits during a soaking process. Journal of Zhejiang University SCIENCE B 11: 482-488.
41. Walker, M., Y. Zhang, S. Heaven, and C. Banks. 2009. Potential errors in the quantitative evaluation of biogas production in anaerobic digestion processes. Bioresource Technology 100: 6339-6346.
42. Xie, S., P. G. Lawlor, J. P. Frost, Z. Hu, and X. Zhan. 2011. Effect of pig manure to grass silage ratio on methane production in batch anaerobic co-digestion of concentrated pig manure and grass silage. Bioresource Technology 102: 5728-5733.
43. Zwietering, M., I. Jongenburger, F. Rombouts, and K. Van't Riet. 1990. Modeling of the bacterial growth curve. Applied and Environmental Microbiology 56: 1875-1881.
CAPTCHA Image