با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی ماشین‌های کشاورزی و مکانیزاسیون، دانشکده مهندسی زراعی و عمران روستایی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ملاثانی، ایران

چکیده

هدف از این پژوهش ارزیابی الگوی مصرف انرژی، اثرات زیست‌محیطی و بهینه‌سازی شاخص‌های انرژی در واحدهای صنعتی پرورش گاو شیری در استان خوزستان بود. برای تحلیل انرژی مصرفی، ارزیابی اثرات زیست‌محیطی و بهینه‌سازی انرژی، به‌ترتیب از شاخص‌های انرژی، ارزیابی چرخه حیات و تحلیل پوششی داده‌ها با مدل اندرسون-پیترسون استفاده شد. تعداد 30 واحد تولیدی مورد بررسی قرار گرفت. نتایج نشان داد که خوراک دام و الکتریسیته به‌ترتیب با 65.4% و 27.2% بیشترین و روغن مصرفی برای روغن‌کاری تیلر-اسکریپر جمع‌آوری کود با 0.01 درصد کمترین انرژی ورودی را به خود اختصاص دادند. تعداد واحدهای کارا با استفاده از مدل بازگشت به مقیاس ثابت، 7 واحد (و واحدهای ناکارا برابر 23 واحد) تعیین شد و میانگین واحدهای تولید از نظر کارایی 0.78 به‌دست آمد. براساس مدل بازگشت به مقیاس ثابت یک واحد زمانی کارآمد است که کارایی آن برابر یک باشد، در غیر این‌صورت ناکارآمد است. هدف اصلی یافتن واحد مرجع برای یک واحد ناکارآمد نیز تشخیص میزان مازاد ورودی استفاده شده بود که براساس آن بتوان برای بهبود کارایی برنامه‌ریزی نمود. در اکثر گروه‌های اثر، خوراک دام و در گروه اثر پتانسیل تقلیل منابع غیرآلی، خوراک دام، ماشین‌ها و تجهیزات دامداری، بالاترین اثرات زیست‌محیطی را دارا بودند. در همه‌ی گروه‌های اثر غیر از پتانسیل تقلیل منابع غیرآلی مربوط به سوخت‌های فسیلی، خوراک دام بیشترین انتشارات زیست‌محیطی را دارا بود. با توجه به طول دوره گرما و شدت شار تابش خورشید، استفاده از صفحات خورشیدی روی سقف دامداری‌ها برای تامین برق مورد نیاز می‌تواند سبب کاهش مصرف انرژی‌های تجدیدناپذیر شود.

کلیدواژه‌ها

موضوعات

©2023 The author(s). This article is licensed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

  1. Anonymous. (2017). Economic, social and cultural report of Khuzestan province. Management and Planning Organization of Khuzestan Province, 2(1), 251. (In Persian).
  2. (2020). Khuzestan Agricultural Jihad Organization, Khuzestan Databases, Khuzestan Agricultural Statistics, Livestock Products Statistics 2020: 5. (In Persian).
  3. (2021a). Management and Planning Organization of Khuzestan Province, Deputy of Statistics and Information, Statistical Yearbook of Khuzestan Province, Agriculture, Forestry and Fisheries 217-206. (In Persian).
  4. (2021b). Program & Budget Organization. Statistics Center of Iran, Agricultural Statistics System, Agricultural Office, Deputy of Statistical Plans and Registration Statistics 18-19. (In Persian).
  5. Anzai, H., Wang, L., Oishi, K., Irbis, C., Li, K., Kumagai, H., Inamura, T., & Hirooka, H. (2016). Estimation of nitrogen and phosphorus flows in livestock production in D ianchi L ake basin, C hina. Animal Science Journal, 87(1), 37-45. https://doi.org/10.1111/asj.12390
  6. Attia, S. (2018). Net zero energy buildings (nzeb). Concepts Frameworks and Roadmap for Project Analysis and Implementation. https://doi.org/10.1016/b978-0-12-812461-1.00012-5
  7. Audsley, E., Alber, S., Clift, R., Cowell, S., Crettaz, P., Gaillard, G., Hausheer, J., Jolliet, O., Kleijn, R., Mortensen, B., & Pearce, D. (1997). Harmonisation of environmental life cycle assessment for agriculture. Final Report, Concerted Action AIR3-CT94-2028. European Commission, DG VI Agriculture, 139(1).
  8. Basset-Mens, C., Ledgard, S., & Boyes, M. (2009). Eco-efficiency of intensification scenarios for milk production in New Zealand. Ecological Economics, 68(6), 1615-1625. https://doi.org/10.1016/j.ecolecon.2007.11.017
  9. Battini, F., Agostini, A., Tabaglio, V., & Amaducci, S. (2016). Environmental impacts of different dairy farming systems in the Po Valley. Journal of Cleaner Production, 112, 91-102. https://doi.org/10.1016/j.jclepro.2015.09.062
  10. Beiragh, R. G., Alizadeh, R., Beiragh, M. G., & Pamucar, D. (2021). Energy production efficiency assessment using network data envelopment analysis. Research Square (preprint). https://doi.org/10.21203/rs.3.rs-173973/v1
  11. Bhatta, R., Saravanan, M., Baruah, L., & Prasad, C. S. (2015). Effects of graded levels of tannin‐containing tropical tree leaves on in vitro rumen fermentation, total protozoa and methane production. Journal of Applied Microbiology, 118(3), 557-564. https://doi.org/10.1111/jam.12723
  12. Bilalis, D., Kamariari, P. E., Karkanis, A., Efthimiadou, A., Zorpas, A., & Kakabouki, I., (2013). Energy inputs, output and productivity in organic and conventional maize and tomato production, under Mediterranean conditions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 41(1), 190-194. https://doi.org/10.15835/nbha4119081
  13. Canakci, M. U. R. A. D., Topakci, M. E. H. M. E. T., Akinci, I., & Ozmerzi., A. (2005). Energy use pattern of some field crops and vegetable production: Case study for Antalya Region, Turkey. Energy conversion and Management, 46(4), 655-666. https://doi.org/10.1016/j.enconman.2004.04.008
  14. Celik, L., & Oztürkcan, O. (2003). Effects of Dietary Supplemental L-Carnitine and Ascorbic Acid on Performance, Carcass Composition and Plasma L-Carnitine Concentration of Broiler Chicks Reared under Different Temperature. Archives of Animal Nutrition, 57(1), 27-38. https://doi.org/10.1080/0003942031000086644
  15. Charnes, A., Cooper, W. W., & Rhodes, E. (1979). Measuring the efficiency of decision-making units. European Journal of Operational Research, 3(4), 339-338. https://doi.org/10.1016/0377-2217(79)90229-7
  16. Chen, C., Habert, G., Bouzidi, Y., Jullien, A., & Ventura, A. (2010). LCA allocation procedure used as an incitative method for waste recycling: An application to mineral additions in concrete. Resources, Conservation and Recycling 54(12), 231-1240. https://doi.org/10.1016/j.resconrec.2010.04.001
  17. Chianese, D. S., Rotz, C. A., & Richard, T. L. (2009). Whole-farm greenhouse gas emissions: A review with application to a Pennsylvania dairy farm. Applied Engineering in Agriculture, 25(3), 431-442. https://doi.org/10.13031/2013.26895
  18. Ciacci, L., & Passarini, F. (2020). Life cycle assessment (LCA) of environmental and energy systems. Energies, 13(22), 5892. https://doi.org/10.3390/en13225892
  19. Cochran, W. G. (1977). The Estimation of Sample Size. Sampl Tech. 3, 72-90.
  20. De, D., Singh, R. S., & Chandra, H. (2001). Technological impact on energy consumption in rainfed soybean cultivation in Madhya Pradesh. Applied Energy, 70(3), 193-213. https://doi.org/10.1016/s0306-2619(01)00035-6
  21. (2021). https://www.Ecoinvent.Org/Database/Ecoinvent-371/Ecoinvent-371.Html. 2021
  22. El Bilali, H., Callenius, C., Strassner, C., & Probst, L. (2019). Food and nutrition security and sustainability transitions in food systems. Food and Energy Security, 8(2), e00154. https://doi.org/10.1002/fes3.154
  23. Erdal, G., Esengün, K., Erdal, H., & Gündüz, O. (2007). Energy use and economical analysis of sugar beet production in Tokat province of Turkey. Energy, 32(1), 35-41. https://doi.org/10.1016/j.energy.2006.01.007
  24. Erzinger, S., Dux, D., Zimmermann, A., & Badertscher Fawaz, R. (2004). LCA of animal products from different housing systems in Switzerland: relevance of feedstuffs, infrastructure and energy use DIAS report: 55.
  25. (2010). Greenhouse Gas Emissions from the Dairy Sector, A Life Cycle Assessment. A Report Prepared by Food and Agriculture Organization of the United Nations Animal Production and Health Division, Rome, Italy.
  26. (2018). Climate change and the global dairy cattle sector – The role of the dairy sector in a low-carbon future. Rome. 36 pp. Licence: CC BY-NC-SA- 3.0 IGO.
  27. Fathollahi, H., Mousavi-Avval, S. H., Akram, A., & Rafiee, S. (2018). Comparative energy, economic and environmental analyses of forage production systems for dairy farming. Journal of Cleaner Production, 182, 852-862. https://doi.org/10.1016/j.jclepro.2018.02.073
  28. Gerber, P. J., Hristov, A. N., Henderson, B., Makkar, H., Oh, J., Lee, C., Meinen, R., Montes, F., Ott, T., Firkins, J. & Rotz, A. (2013). Technical options for the mitigation of direct methane and nitrous oxide emissions from livestock: a review. Animal, 7(s2), 220-234. https://doi.org/10.1017/s1751731113000876
  29. Guinée, J. B., & Lindeijer, E. eds., (2002). Handbook on life cycle assessment: operational guide to the ISO standards (Vol. 7). Springer Science & Business Media.
  30. Haas, G., Wetterich, F., & Köpke, U. (2001). Comparing intensive, extensified and organic grassland farming in southern Germany by process life cycle assessment. Agriculture, Ecosystems & Environment, 83(1-2), 43-53. https://doi.org/10.1016/s0167-8809(00)00160-2
  31. Hamedani, S. R., Rajabi, S., Shabani, Z., & Rafiee, Sh. (2011). Energy Inputs and Crop Yield Relationship in Potato Production in Hamadan Province of Iran. Energy, 36(5), 2367-71. https://doi.org/10.1016/j.energy.2011.01.013
  32. Hosseinzadeh Lotfi, F., Jahanshahloo, G. R., Khodabakhshi, M., Rostamy-Malkhlifeh, M., Moghaddas, Z., & Vaez-Ghasemi, M. (2013). A review of ranking models in data envelopment analysis. Journal of Applied Mathematics, 2013. https://doi.org/10.1155/2013/492421
  33. Huang, D., Shen, Z., Sun, C., & Li, G. (2021). Shifting from production-based to consumption-based nexus governance: evidence from an input–output analysis of the local water-energy-food nexus. Water Resources Management, 35(6), 1673-1688. https://doi.org/10.1007/s11269-021-02797-4
  34. (2006). 14040 International Standard. Environmental Management–Life Cycle Assessment–Principles and Framework, International Organization for Standardization, Geneva, Switzerland. 14040 International Standard. Environmental Management–Life Cycle Assessment–Principles and Framework, International Organization for Standardization, Geneva, Switzerland.
  35. Jan, P., Repar, N., Nemecek, T., & Dux, D. (2019). Production intensity in dairy farming and its relationship with farm environmental performance: Empirical evidence from the Swiss alpine area. Livestock Science, 224, 10-19. https://doi.org/10.1016/j.livsci.2019.03.019
  36. Karimi, M., RajabiPour, A., Tabatabaeefar, A., & Borghei, A. (2008). Energy analysis of sugarcane production in plant farms a case study in Debel Khazai Agro-industry in Iran. American-Eurasian Journal of Agricultural and Environmental Science, 4(2), 165-171.
  37. Khanali, M., Akram, A., Behzadi, J., Mostashari-Rad, F., Saber, Z., Chau, K., & Nabavi-Pelesaraei, A. (2021). Multi-Objective Optimization of Energy Use and Environmental Emissions for Walnut Production Using Imperialist Competitive Algorithm. Applied Energy, 284, 116342. https://doi.org/10.1016/j.apenergy.2020.116342
  38. Khoshroo, A., & Singh, S. (2021). Measuring Economic Efficiency of Kidney Bean Production using Non-Discretionary Data Envelopment Analysis. Advances in Mathematical Finance and Applications, 6(2), 233-244.
  39. Kitani, O., Jungbluth, T., Peart, R. M., & Ramdani, A. (1999). CIGR handbook of agricultural engineering. Energy and Biomass Engineering, 5, 330.
  40. Komleh, P. S., Omid, M., & Keyhani, A. (2011). Study on energy use pattern and efficiency of corn silage in Iran by using data envelopment analysis (DEA) technique. International Journal of Environmental Sciences1(6), 1094.
  41. Kumbar, N. (2015). Trakya Bolgesinde Buyykbas Hayvancilik isletmelerinin Etkinlik Analizi.
  42. Lindgren, E., Harris, F., Dangour, A. D., Gasparatos, A., Hiramatsu, M., Javadi, F., Loken, B., Murakami, T., Scheelbeek, P., & Haines, A. (2018). Sustainable food systems- a health perspective. Sustainability Science, 13(6), 1505-1517. https://doi.org/10.1007/s11625-018-0586-x
  43. Molaei, M., & Thani, F. (2015). Estimation of technical efficiency and environmental efficiency of dairy farms in Sarab city (data envelopment analysis approach). Animal Science Research (Agricultural Science), 25(4), 141-155. (In Persian).
  44. Nabavi-Pelesaraei, A., Rafiee, Sh., Mohtasebi, S. S., Hosseinzadeh-Bandbafha, H., & Chau, K. W. (2019). Assessment of optimized pattern in milling factories of rice production based on energy, environmental and economic objectives. Energy, 169, 1259-1273. https://doi.org/10.1016/j.energy.2018.12.106
  45. Nikkhah, A., Emadi, B., & Firouzi, S. (2015). Greenhouse gas emissions footprint of agricultural production in Guilan province of Iran. Sustainable Energy Technologies and Assessments, 12, 10-14. https://doi.org/10.1016/j.seta.2015.08.002
  46. Omid, M., Ghojabeige, F., Delshad, M., & Ahmadi, H. (2011). Energy use pattern and benchmarking of selected greenhouses in Iran using data envelopment analysis. Energy Conversion and Management, 52(1), 153-162. https://doi.org/10.1016/j.enconman.2010.06.054
  47. Ozkan, B., Akcaoz, H., & Fert, C. (2004). Energy input–output analysis in Turkish agriculture. Renewable Energy, 29(1), 39-51. https://doi.org/10.1016/s0960-1481(03)00135-6
  48. Pacheco, D., Waghorn, G., & Janssen, P. H. (2014). Decreasing methane emissions from ruminants grazing forages: a fit with productive and financial realities?. Animal Production Science, 54(9), 1141-1154. https://doi.org/10.1071/an14437
  49. Patra, A. K., & Yu, Z. (2015). Effects of garlic oil, nitrate, saponin and their combinations supplemented to different substrates on in vitro fermentation, ruminal methanogenesis, and abundance and diversity of microbial populations. Journal of Applied Microbiology, 119(1), 127-138. https://doi.org/10.1111/jam.12819
  50. Philippe, F. X., & Nicks, B. (2015). Review on greenhouse gas emissions from pig houses: Production of carbon dioxide, methane and nitrous oxide by animals and manure. Agriculture, Ecosystems & Environment, 199, 10-25. https://doi.org/10.1016/j.agee.2014.08.015
  51. Rafiee, S., Khoshnevisan, B., Mohammadi, I., Aghbashlo, M., & Clark. S. (2016). Sustainability evaluation of pasteurized milk production with a life cycle assessment approach: an Iranian case study. Science of the Total Environment, 562, 614-627. https://doi.org/10.1016/j.scitotenv.2016.04.070
  52. Ramedani, Z., Abdi, R., Omid, M., & Maysami, M. (2018). Evaluating the Energy Consumption and Environmental Impacts in Milk Production Chain (Case Study: Kermanshah City of Iran). Journal of Agricultural Machinery, 8(2), 435-447. (In Persian).
  53. Rattanatum, T., Frauzem, R., Malakul, P., & Gani, R. (2018). LCSoft as a tool for LCA: New LCIA methodologies and interpretation. In Computer Aided Chemical Engineering, 43, 13-18. Elsevier. https://doi.org/10.1016/b978-0-444-64235-6.50005-x
  54. Sefidpari, P., Rafiei, Sh., & Akram, A. (2012). Comparison of energy consumption indicators and greenhouse gas emissions in industrial units of dairy cattle and laying hens in Tehran province. First National Conference on Strategies for Achieving Sustainable Development, Tehran, Ministry of Interior. (In Persian).
  55. Shortall, O. K., & Barnes, A. P. (2013). Greenhouse gas emissions and the technical efficiency of dairy farmers. Ecological Indicators, 29, 478-488. https://doi.org/10.1016/j.ecolind.2013.01.022
  56. Siewert, J. M., Salfer, J. A., & Endres, M. I. (2018). Factors associated with productivity on automatic milking system dairy farms in the Upper Midwest United States. Journal of Dairy Science, 101(9), 8327-8334. https://doi.org/10.3168/jds.2017-14297
  57. Singh, P., Singh, G., Sodhi, G. P. S., & Sharma, S. (2021). Energy optimization in wheat establishment following rice residue management with Happy Seeder technology for reduced carbon footprints in north-western India. Energy, 230, 120680. https://doi.org/10.1016/j.energy.2021.120680
  58. Soltanali, H., Emadi, B., Rohani, A., Khojastehpour, M., & Nikkhah, A. (2015). Life cycle assessment modeling of milk production in Iran. Information Processing in Agriculture, 2(2), 101-108. https://doi.org/10.1016/j.inpa.2015.06.003
  59. Wattiaux, M. A., Uddin, M. E., Letelier, P., Jackson, R. D., & Larson, R. A. (2019). Invited Review: Emission and mitigation of greenhouse gases from dairy farms: The cow, the manure, and the field. Applied Animal Science, 35(2), 238-254. https://doi.org/10.15232/aas.2018-01803
  60. Yadav, G. S., Das, A., Lal, R., Babu, S., Datta, M., Meena, R. S., Patil, S. B., & Singh, R. (2019). Impact of no-till and mulching on soil carbon sequestration under rice (Oryza sativa)-rapeseed (Brassica campestris L. var. rapeseed) cropping system in hilly agro-ecosystem of the Eastern Himalayas, India. Agriculture, Ecosystems & Environment,275, 81-92. https://doi.org/10.1016/j.agee.2019.02.001
  61. Yaldiz, O., Ozturk, H. H., Zeren, Y., & Bascetincelik, A. (1993). October. Energy usage in production of field crops in Turkey. In 5th International Congress on Mechanisation and Energy Use in Agriculture. Turkey: Kusadasi 11-14.
CAPTCHA Image