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Abstract 

Due to the numerous variables that may influence the soil-machine interaction systems, predicting the 
mechanical response of soil interacting with off-road traction equipment is challenging. In this study, deep neural 
networks (DNNs) are chosen as a potential solution for explaining the varying soil sinkage rates because of their 
ability to model complex, multivariate, and dynamic systems. Plate sinkage tests were carried out using a 
Bevameter in a fixed-type soil bin with a 24 m length, 2 m width, and 1 m depth. Experimental tests were 
conducted at three sinkage rates for two plate sizes, with a soil water content of 10%. The provided empirical 
data on the soil pressure-sinkage relationship served as the basis for an algorithm capable of discerning the soil-
machine interaction. From the iterative process, it was determined that a DNN, specifically a feed-forward back-
propagation DNN with three hidden layers, is the optimal choice. The optimized DNN architecture is structured 
as 3-8-15-10-1, as determined by the Grey Wolf Optimization algorithm. While the Bekker equation had 
traditionally been employed as a widely accepted method for predicting soil pressure-sinkage behavior, it 
typically disregarded the influence of sinkage velocity of the soil. However, the findings revealed the significant 
impact of sinkage velocity on the parameters governing the soil deformation response. The trained DNN 
successfully incorporated the sinkage velocity into its structure and provided accurate results with an MSE value 
of 0.0871. 
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Introduction1 

A Bevameter can be used for calculating 
soil parameters through pressure-sinkage 
relationships. The obtained pressure-sinkage 
models are used to analyze the soil interaction 
with the vehicle tires. In this method, the 
investigation and analysis of soil-tire 
interaction also requires the measurement of 
the mechanical parameters of soil. The traction 
force created by the driving wheel, as well as 
the soil compaction due to vehicle traffic, are 
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the results of the interaction between soil and 
tire. Factors such as traction, performance 
prediction, design, and stability of off-road 
vehicles can be analyzed through pressure-
sinkage models (He, Wu, Ma, Wang, & Li, 
2019). Therefore, any improvement in soil-tire 
interaction has a direct effect on the 
performance of off-road vehicles and 
equipment and reduces fuel consumption. 

The experimental method is one of the 
essential methods for soil behavior modeling. 
In this research, the soil resistance versus 
penetration depth is measured. Researchers are 
interested in using these equations because 
many of the wheel and soil parameters are not 
included which results in ease of 
measurement. To develop pressure-sinkage 
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relationships of loading plates for 
homogeneous soil, Bekker presented Eq. 1 
using the Bevameter device (Bekker, 1957).  

𝑃 = (
𝐾𝑐
𝑏
+ 𝐾𝜑) . 𝑍

𝑛 (1) 

Where P is the vertical pressure (kPa), n is 
the deformation equation exponent, Kc is the 
modulus of cohesion of the deformed soil 
(kN/mn+1), Kφ is the modulus of friction of the 
deformed soil (kN/mn+2), Z is sinkage of the 
loading plate (cm), and b is the smallest 
dimension of the plate (m). To calculate the 
coefficients of Eq. 1 based on Bekker's 
method, two loading plates with different 
widths should be used to solve the equation. 

One popular method for soft computing is 
an artificial neural network (ANN), which is 
composed of interconnected neurons following 
specific algorithms. These networks are 
inspired by the human brain's structure and 
functioning and are used for pattern 
recognition (Taghavifar & Mardani, 2014b). 
Neural networks encompass machine learning 
algorithms that classify input data and produce 
desired outputs. They have multiple 
applications including pattern recognition, data 
classification, prediction, modeling, control, 
and robotics (Haykin, 1999; Roul et al., 2009). 
ANNs are utilized to facilitate solving 
complex problems in various scientific and 
engineering fields, mainly where conventional 
mathematical modeling is not successful 
(Taghavifar & Mardani, 2014a). Deep Neural 
Networks (DNNs) utilize deep architectures 
with multiple hidden layers and identify 
complex patterns and relationships in datasets. 
They are trained with experimental data and 
are then validated and tested using 
independent datasets. DNNs achieve high 
performance and accuracy by minimizing the 
mean square error. The iterative exploration 
process and backpropagation allow DNNs to 
establish the optimal input-output relationship. 
After training, the model can be extended with 
new input values to predict, simulate, and re-
establish the identified conditions of the test 
method. Fernandes et al. (2020), conducted 
experiments to evaluate the accuracy of ANN 
models in estimating soil infiltration resistance 

with standardized moisture. Based on soil 
infiltration resistance measured in the field and 
on soil moisture, the models used were 
obtained by multiple linear and nonlinear 
regression and ANNs. Pham et al. (2019), 
proposed a hybrid machine learning approach 
called MLP-BBO to predict the stabilization 
coefficient of soft soil. This method was based 
on the multilayer perceptron (MLP) neural 
network and Biogeography Based 
Optimization (BBO). Roul et al. (2009), used 
the ANN model to predict the behavior of 
tillage tools in different operating conditions 
and soil. Zhang & Kushwaha, (1999) used the 
radial basis function (RBF) in the artificial 
neural networks to estimate the draft force of 
thin blades in soil under multiple input 
variables. Taghavifar et al. (2013), used a 
neural network to investigate the wheel's 
behavior with soil under the influence of 
movement speed, vertical load, and tire 
pressure. To improve tractor performance on 
silty clay loam soil, Pieczarka et al. (2018) 
investigated the effects of soil moisture, soil 
compaction, horizontal soil deformation, and 
vertical load on traction force using MLP and 
RBF neural networks. The most efficient 
model was the MLP neural network. 

Bekker´s method is a standard method used 
by researchers to determine soil parameters on 
a large scale and is simple to calculate. 
However, it has some shortcomings in field 
tests. Although the penetration velocity of the 
plates in the soil affects the soil sinkage, its 
effect is not taken into account in Bekker's 
method and other methods that are developed 
based on it (Kruger, Els, & Hamersma, 2023). 
The purpose of this research is to model the 
pressure-sinkage relationship with deep 
artificial neural networks and to investigate the 
effect of sinkage rate (which is related to 
loading time and machine speed) on the soil 
parameters. Lastly, the results of the modeling 
are compared with the experimental results. 

 

Materials and Methods 

Data acquisition 
The plate sinkage experiments were carried 

out using a Bevameter installed on the carrier 



Golanbari et al., Modeling Soil Pressure-Sinkage Characteristic as Affected…      71 

unit of a soil bin in the Terramechanics 
laboratory of Urmia University, Iran. The soil 
bin is a fixed-linear type soil bin with a 24 m 
length, 2 m width, and 1 m depth soil channel 
and provides optimal conditions for 
conducting experiments by eliminating 
boundary effects (Gheshlaghi & Mardani, 
2021). The Bevameter utilized in this research 
consists of mechanical, electrical, and 
electronic parts. The mechanical part includes 
the chassis, worm gearbox, Rack and pinion 
gear mechanism, shell, shaft, one-way jack, 
and plates, as shown in Fig. 1. The mechanical 
part of the device works in such a way that the 
rotational movement of the gearbox is 
converted into linear movement by the Rack 
and pinion gear mechanism. The electrical and 
electronic parts control the system and apply 
the force to the soil, measure the pressure-
sinkage of soil data, and process, and record 
the measurement data. An electric motor with 
a power of 5.5 kW and a nominal speed of 
1430 rpm was utilized to start the system and 

supply the driving force. In addition to a worm 
gear reducer with three-speed reduction ratios 
(6, 12, and 19), an inverter (LS, produced by 
LG in South Korea) was used to control the 
rotational speed of the electric motor. By 
combining the 1:19 reduction ratio of the 
gearbox with the frequency adjustment of the 
inverter, three desired sinkage rates of 15, 30, 
and 45 mm/s were obtained for the 
experiments. To measure the force applied to 
the probes, an S-shaped load cell (Bongshin 
DBBP, made in South Korea) with a nominal 
capacity of 1000 kg and an accuracy of 0.02 
kg was used for the experiments. A linear 
encoder (ATEK MLC320, made in Turkey) 
was utilized to measure the amount of soil 
deformation (sinkage). The displacement 
measurement system of the linear encoder is 
magnetic with a measurement length of 400 
mm, a maximum movement speed of 300  
mm s-1, and a repeatability of ± 1 pulse 
(Mahboub Yangeje & Mardani Korani, 2021). 

 

 
Fig.1. Bevameter installed on the soil bin carrier 

 
Considering that the shape of the loading 

plates affects the pressure-sinkage 
relationship, the aspect ratio of the loading 
plates is considered in the standard range of 
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1.4-6, which is similar to Bekker's term 
pressure-sinkage patterns (Van et al., 2008). 
The dimensions of the rectangular plates for 
experimental tests were 175×70 and 105×70 
mm2. 

Eq. 2 is used to determine the output speed 
of the electric motor that is applied to the input 
of the gearbox to control the speed of the 
probe and the velocity value included in Eq. 2 
for obtaining the electric motor rotation value 
corresponds with this speed. 

𝑛 =
𝑖 × 𝑉 × 60

75
 (2) 

Where, n is the prediction of the rotational 
output speed of the electric motor, which is 
applied based on the sinkage rate of the plate 
to the gearbox input and is in revolutions per 
minute, i is the transmission ratio of the 
gearbox, and V is the optimal sinkage velocity 

for the test, for which three velocities of 15, 
30, and 45 mm s-1 were used in the tests. The 
number 75 is a constant in the formula and 
represents the displacement ratio of the rack 
per rotation of the pinion in millimeters. 

In this research, one of the Bekker loading 
plates was installed on the device at each stage 
of the experimental tests to measure soil 
parameters. Force is applied to the plates based 
on the defined conditions. The force-
displacement values were simultaneously 
recorded in the data logger by the load cell and 
the digital ruler. The files recorded by the data 
logger were extracted as text files and 
transferred to the MATLAB software (Version 
9.2.0.5, MathWorks) for processing. The 
dependent (output) variable and the 
independent variables (inputs) and their levels 
are shown in Table 1. 

 
Table 1- Summary of inputs and output variables ranges 

Input (Independent variables) Parameter Unit Levels 

1 Pressure kPa 0-250 

2 Velocity mm s-1 15 30 45 

3 Plate width mm 105 175 

  

Output (dependent variable)   

1 Sinkage mm    

 

The soil bin was filled with clay-loam soil, 
which has the same texture and characteristics 
(Table 2) as that of the natural soil in the 
geographical area of the laboratory where the 
study took place.  

 
Table 2- Physical characteristics of the soil in 

the test soil bins 
Parameter Value 

Sand 35% 

Silt 22% 

Clay 43% 

humidity 10% 

Bulk density 2630 kg m-3 

Young's modulus 0.3 MPa 

Poisson's ratio 0.29 

The angle of internal friction 32 

Liquid limit 42.7% 

Plasticity index  13.3% 

 
After preparing the test setup, experiments 

were performed in three repetitions for each 

level of sinkage rate. Each of the plates was 
installed on the Bevameter and the force was 
applied to the plate. The force-displacement 
values were recorded simultaneously with the 
load cell sensors and the linear encoder in the 
data logger. 

 

Deep neural network presentation 
The advanced capabilities of deep learning 

methods have made it possible to predict the 
interaction between soil and tools accurately 
without the need for simplification or the 
removal of influential factors. Predicting these 
interactions with DNNs using inputs 
(independent variables) has an undeniable 
advantage over traditional methods. The Gray 
Wolf Optimization (GWO) algorithm, known 
for its effectiveness in optimization tasks, was 
utilized to fine-tune the structure and 
hyperparameters of the DNN. In the 
methodology of deep neural networks (DNN) 
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used in this study, two approaches were 
employed to determine the hyperparameters of 
the neural network. In the first approach, a trial 
and error method was used to determine the 
total number of neurons in the hidden layers, 
as well as the learning rate and momentum. In 
the second approach, the GWO algorithm was 
utilized to determine the optimal architecture, 
momentum, and learning rate in the DNN. In 
the first approach, the number of hidden layers 
for each layer increased linearly from one to 
15, and the best topology with the lowest MSE 
was selected as the neural network 
architecture. This dataset consisted of 1488 
data points, and a total of 225 repetitions for 
each training was conducted with 1000 
iterations. 15 percent of the data were 
randomly separated as unseen data to assess 

the performance of the neural network after 
training. Of the remaining dataset, 68% of the 
data was used as training data, 17% as 
validation data, and 15% as test data. Since the 
actual outputs for performance assessment 
after training are available, this type of data 
division ensures that the network is not 
overtrained. In Table 3, the statistical 
information and the span of input data are 
shown for the training, validation, and test 
sections, respectively. According to this 
statistical data, it can be seen that the data used 
for each stage of training, validation, and 
testing are uniform and consistent under the 
effects of pressure, velocity, the width of 
plates, and sinkage. Additionally, the standard 
deviation values for each variable can be seen 
in Table 3. 

 
Table 3- Statistical properties of training, validation, and testing samples 

Partition Source Minimum Maximum Mean Standard deviation 

Training Pressure 3.04 249.88 118.34 66.39 

 Velocity 15 45 30 11.75 

 Plate width 105 175 140 35 

 Sinkage 0.87 70 34 20.26 

      

Validation Pressure 3.39 245.18 115.84 65.80 

 Velocity 15 45 30 12.7 

 Plate width 105 175 140 35.05 

 Sinkage 0.85 70 33.27 19.86 

      

Testing Pressure 3.96 249.30 126.67 69.26 

 Velocity 15 45 30 11.95 

 Plate width 105 175 140 35.10 

 Sinkage 0.78 70 36.66 21.24 

 

To train the network using the GWO 
algorithm, in the first step, the algorithm was 
applied to the hidden layers to achieve the best 
topology. Three different structures of the 
algorithm with 5, 10, and 15 gray wolves were 
used, with 20 iterations for each topology and 
500 iterations for network training. In the 
second step, the GWO algorithm was 
employed on the selected topology to 
determine the optimal values for the learning 

rate and momentum. The optimization 
algorithm design in this stage was similar to 
the first stage. The search range for the 
number of neurons in each hidden layer for the 
GWO algorithm was set to 30. The overall 
schematic of the DNN using the GWO 
algorithm to find the most optimal 
arrangement of neurons in the hidden layers 
and to find the best learning rate and 
momentum values is shown in Fig. 2.  
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Fig.2. General multilayer perceptron DNN forward configuration with three hidden layers and 

applying the gray wolf algorithm to obtain the best network topology and set the learning rate and 

momentum 
 
The performance of the DNN during the 

training, validation, and testing stages was 
evaluated using the Mean Squared Error 
(MSE), defined as Eq. 3. 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑌𝑖 − �̂�𝑖)

2
𝑛

𝑖=1

 (3) 

Here, Yi is the output from the field 
experiment (actual value) Ŷi is the output 
obtained by the neural network (predicted 
value), and n is the number of iterations used 
in each step. Smaller values of MSE indicate 
better performance of the DNN. Therefore, the 
values close to zero were the basis of decision-
making for the better performance of the 
neural network (Taghavifar et al., 2015). 

 

Results and Discussion 

The selection of the learning algorithm for 
the neural network, specifically using the 
backpropagation algorithm, along with the 
choice of the activation function, is among the 
most crucial settings of the DNNs to achieve 
suitable convergence. The sigmoid activation 
function was selected for all three hidden 
layers. To choose the learning algorithm, a 
trial and error approach was employed, testing 
seven back propagation-based learning 
algorithms. The algorithm that resulted in the 
lowest Mean Squared Error (MSE) was used 
as the learning algorithm in the network. The 
results of training the neural network with 
various learning algorithms are presented in 
Table 4. 
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Table 4- Training functions and performance of neural networks developed based on train functions 

Transfer function Training algorithms R MSE 

trainlm Levenberg-Marquardt backpropagation 0.99900 0.0837 
trainrp Resilient backpropagation 0.99965 0.2711 

traincgp Conjugate gradient backpropagation with Polak-Ribiére updates 0.99955 0.3821 

traingda Gradient descent with adaptive learning rate backpropagation 0.99349 4.5175 

traincgb Conjugate gradient backpropagation with Powell-Beale restarts 0.99966 0.2884 

trainoss One-step secant backpropagation 0.99961 0.3156 

trainbr Bayesian regularization backpropagation 0.99987 0.1084 

 

As inferred from Table 4, the Levenberg-
Marquardt learning function exhibited better 
performance compared to other learning 
functions. Therefore, this algorithm was 
selected as the learning algorithm. It should be 
mentioned that all the training steps of both 
types of networks used in this research are 
similar. 

As previously mentioned, one of the 
selected methods for determining the 
hyperparameters was the utilization of the 
GWO algorithm. The values obtained from the 
output of the GWO algorithm were compared 
with each other to select the best topology. 
Table 5 shows the output of the DNN from the 
output of the GWO algorithm. 

Table 5- Features obtained in DNN training with different combinations of the number of wolves 

and topologies 

DNN Property 
GWO-Numbers of wolf 

5 10 15 5 10 15 5 10 15 

DNN-Topology 3-8-15-10-1 3-15-10-29-1 3-23-4-18-1 

Best Momentum 0.8759 0.8646 0.2605 0.5323 0.1614 0.4105 0.3045 0.9566 0.9026 

Best Learning rate 0.2375 0.1263 0.5832 0.8797 0.3137 0.7187 0.6409 0.7538 0.2042 

Mse Training 0.0919 0.0837 0.0991 0.0918 0.1091 0.0986 0.0969 0.0934 0.0973 

 

As seen in Table 5, the best performance of 
the neural network corresponds to the topology 
3-8-15-10-1, which has three inputs consisting 
of the penetration rate of pages into the soil, 
page size, and the vertical pressure applied to 
the pages. The network structure includes 8 
neurons in the first hidden layer, 10 neurons in 
the second hidden layer, and 15 neurons in the 
third hidden layer, with the output representing 
soil deformation. Furthermore, the optimal 
values were found to be 0.864628 for 
momentum and 0.126314 for learning rate 
resulting in a mean squared error of 0.089405. 
The best results were achieved when the 
population of gray wolves in the GWO 
algorithm was set to 30. 

Table 6 shows the soil parameters using 
Bekker's method at different speeds which are 
extracted using Eq. 1 and the data obtained 
from the experimental tests. The Bevameter 
test method lacks standardized testing 
procedures and requires further investigation 

into the factors influencing the tests (Kruger et 
al., 2023). Sinkage rate is considered one of 
the key factors in modeling the dynamics of 
soft soil. Table 6 presents the effects of 
variations in sinkage rate on determining soil 
parameters. 

Table 6- Soil parameters with the Bekker's 

method at different velocities 
Bekker′s constant 

Velocity (mm s-1) 

15 30 45 

Kφ (kN/mn+2) 205.368 236.338 254.304 

Kc (kN/mn+1) 19.088 21.165 21.259 

n 0.745 0.713 0.748 

From Table 6, it can be concluded that the 
soil cohesion modulus (KC) and the soil 
friction modulus (Kφ) both increase with the 
increase in the penetration speed of the plates. 
However, the n (sinkage exponent) does not 
change significantly. These results confirm 
that soil constants are related to sinkage rate. 
Fig. 3 shows the neural network regression 
diagram for the training, validation, and test 
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data. Our regression analysis demonstrates the 
effectiveness of our DNN model in predicting 
changes in soil deformation resulting from 
Bevameter penetration, aimed at better-
characterizing soil parameters using the 
Bekker method. Figs 3. a-c depict scatter plots 
of predicted soil deformations against actual 
values for the training, validation, and testing 
datasets, respectively. Notably, the correlation 
coefficients (R) of these plots accentuate a 
strong linear relationship, with values of 

0.9999 for training, 0.99983 for validation, and 
0.99978 for testing. These high R values 
affirm the model's commendable performance 
in predicting soil deformation. It effectively 
converges, avoids significant overfitting, and 
generates unbiased predictions, as evidenced 
by the regression plots. This analysis 
emphasizes the potential of our model for 
accurately predicting soil deformation, with 
applications in soil parameter estimation using 
the Bekker method. 

 

 

Fig.3. Regression results for neural network a. training, b. validation, and c. test data 
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Before starting the neural network training 

process, we used a cautious approach to 
increase the generalization capabilities of the 
model. We did this by randomly setting aside 
15% of our data set, a common practice known 
as data partitioning, to serve as a validation 
set. By isolating a subset of the data that was 
not used in the model during training, we 
develop a measure to assess its ability to 
generalize beyond the examples it was 
exposed to during the learning phase. 
Essentially, the neural network was tested on 
this unseen data to assess its capacity to make 
accurate predictions beyond the scope of the 
training dataset. The successful results show 
that our model effectively learns the 

underlying patterns and relationships in the 
data without merely memorizing. Instead, it 
has understood the fundamental features, 
allowing it to generalize and make reliable 
predictions for new scenarios of soil 
deformation. This validation step is essential 
in any machine learning task, especially in the 
field of soil parameter estimation using 
Bekker's method. This strengthens our 
confidence in the model's capabilities and its 
potential for real-world application. 
Additionally, it protects the model against 
issues such as overfitting, where a model 
overfits the training data and performs poorly 
on new, unseen data (Fig. 4). 

 

 
Fig.4. Trend of experimental and predicted values for soil deformation with unseen data 

Figs. 5 and 6 show that sinkage increases 
with increased penetration velocity and 

pressure, for plates with 105 and 175 mm 
widths, respectively. 
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Fig.5. Pressure-sinkage diagrams for 105 × 70 (mm2) plate size and velocities of 15, 30, and 45  

mm s-1 
 

 
Fig.6. Pressure-sinkage diagrams for 175 × 70 (mm2) plate size and velocities of 15, 30, and 45  

mm s-1 
 
In Figs. 5 and 6, considering the trend of 

pressure-sinkage changes, empirical data has 
been utilized, and neural network-fitted 
(predicted) graphs have been employed. It is 
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observed that the neural network has been 
effectively trained and accurately predicts the 
pattern of empirical data. Furthermore, it 
shows that varying penetration rates result in 
different pressure-sinkage patterns. This 
notably indicates that the penetration rate plays 
a role in determining soil parameters. Another 
inference drawn from Figures 5 and 6 is that to 
achieve a consistent settlement after a depth of 
20 to 30 millimeters, the pressure on the plates 
must increase with the penetration rate. 
Therefore, by reducing the penetration rate, a 
lower pressure can be applied to the plates to 
achieve the same depth. 

In this study, three methods (Bekker model, 
deep neural network with hyperparameters 
tuning using trial and error, and deep neural 
network with hyperparameters determination 
using the Gray Wolf Optimization algorithm) 
were employed to determine the soil 
parameters at different speeds. The 
performance comparison of these three 
methods is presented in Table 7. 

 

Table 7- Comparison of three models to 

estimate soil parameters 
Method MSE RMSE 

DNN-GWO  0.0837 0.2893 

DNN-trial-error 1.18 1.0862 

Bekker  17.30 4.1593 

As it is clear from Table 7, the deep neural 
network achieved by adjusting the 
hyperparameters using the gray wolf method 
has performed significantly better than the 
other models. Using the GWO algorithm to 
determine the size of hidden layers in DNNs 
has significant advantages. It optimizes DNN 
architectures, which ultimately results in 
highly accurate models with lower mean 
squared error (MSE). This not only increases 
the predictive capability and performance of 
the neural network but also saves time and 
computational resources by automating the 
architecture optimization process. GWO also 
avoids overfitting, exploring a wide range of 
architectures that potentially yield superior 
results. Overall, GWO simplifies the process 
and makes DNN design more efficient and 
effective. 

Networks trained with GWO-optimized 
learning rates tend to generalize better and 
require less manual hyperparameter tuning. 
Similarly, GWO's role in optimizing 
momentum leads to faster convergence, 
improved generalization, and a reduction in 
manual tuning efforts, ultimately streamlining 
neural network training and enhancing model 
performance. 

 

Conclusion 

To investigate the impact of factors such as 
the sinkage rate of plates, applied pressure on 
the plates, and the size of the plates on soil 
parameters within a soil bin, a Bevameter was 
employed. Experiments were conducted at 
three levels of penetration velocity: 15, 30, and 
45 mm s-1, with two plate sizes, and under 
dynamic loading conditions. To predict the 
soil sinkage with different inputs, a Multi-
Layer Perceptron (MLP) deep neural network 
with the Backpropagation (BP) algorithm was 
optimized and trained using the Grey Wolf 
Optimization algorithm for neuron count, 
momentum, learning rate, and the trial and 
error method for learning algorithms. The 
optimal neural network topology had a 
structure of 3-8-10-15-1, consisting of three 
inputs and three hidden layers with the 
sigmoid transfer function. The development of 
the DNN yielded the following results: 
1. A deep neural network with a structure of 

3-8-15-10-1 with three inputs (sinkage 
rate, applied pressure on the plates, and 
plate size) successfully estimated sinkage 
with high accuracy. 

2. Increasing the sinkage rate of plates 
resulted in higher soil modulus values. 

3. A lower plate sinkage rate requires less 
force to reach a specific depth. In other 
words, for plates with fixed dimensions, to 
achieve the same sinkage after passing a 
depth of 20-30 millimeters, greater 
pressure on the plates is required for 
achieving higher plate sinkage rates. 

4. The Bekker equation, in its original form, 
does not account for the sinkage rate 
parameter of the soil. Based on this 
research's findings, it is advisable to 
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consider the influence of this factor and 
incorporate plate sinkage rate into the 
equation. For achieving more accurate and 

realistic Bekker equation parameters, a 
standard sinkage rate for the plates should 
be considered in this context. 
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نشست خاک تحت تأثیر سرعت نشست با استفاده از یادگیری عمیق  -سازی فشارمدل

 شده توسط الگوریتم گرگ خاکستریسازیبهینه

 
 2فر تقوی ، حمید1پور حسین ، عادل*1کرانی مردانی عارف ،1گلعنبری بهزاد

 81/60/8061تاریخ دریافت: 
 81/61/8061تاریخ پذیرش: 

 چکیده

های بینی پاسخ مکانیکی خاک در تعامل با دستگاههای اندرکنش خاک و ماشین تأثیرگذار هستند، پیشبا توجه به متغیرهای متعددی که بر سیستم
های پیچیده، چندمتغیره و سازی سیستمها در مدلبه دلیل توانایی آن های عصبی عمیقبرانگیز است. در این مطالعه، شبکهکششی خارج از جاده چالش 

نشست خاک -های فشارهای مختلف از بار عمودی انتخاب شد. آزمایشحل بالقوه برای توضیح میزان فرورفتگی خاک در نرخعنوان یک راهدینامیک به
های تجربی در سه سططح متر انجام شد. آزمایش 8متر و کانال خاک عمق  1متر، عرض  10در یک انباره خاک از نوع ثابت با طول  وامترب با استفاده از

کطرد. های تجربی در مورد روابط فشار و نشست خاک ارائه میدرصد انجام شد که داده 86سرعت نشست، دو سطح اندازه صفحه، در محتوای آب خاک 
عنوان مبنایی برای الگوریتمی بود که قادر به تشخیص تعامل بین خاک ماشین پس از یک فرآیند تکراری دقیق بود. مشخص شد کطه ها بهاین آزمایش

شطبکه  خور با سه لایه پنهان، انتخاب بهینه بطرای ایطن منرطور اسطت. معمطاریبا انتشار پیش شبکه عصبی عمیق ویژه یکشبکه عصبی عمیق، به یک
 بکر که معادلهتعیین شده است. در حالی سازی گرگ خاکستریشکل یافت که توسط الگوریتم بهینه 1-1-81-86-8صورت شده بهبهینه عصبی عمیق

گرفت. شود، تأثیر سرعت نشست در خاک را نادیده مینشست خاک استفاده می -بینی رفتار فشارشده برای پیشعنوان یک روش پذیرفتهطور سنتی بهبه
 توجهی از سرعت نشست بر پارامترهای حاکم بر پاسخ تغییر شطکل خطاک را نشطان داد. شطبکه عصطبی عمیطقهای تحقیق تأثیر قابلحال، یافتهبا این 

 .ارائه کرد 6188/6میانگین مربعات خطای  دیده با موفقیت سرعت نشست را در ساختار خود گنجاند و نتایج دقیقی با مقدارآموزش

 
 شبکه عصبی عمیق، وسیله نقلیه خارج از جادهترامکانیک، بوامتر، اره خاک، انب های کلیدی:واژه
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