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Abstract

Early diagnosis of plant diseases before the occurrence of symptoms can reduce the loss of the
yield and increase the quality of agricultural crops. It also reduces the consumption of pesticides,
environmental risks, and the cost of production. For this reason, the objectives of the present study
were non-destructive diagnosis of early blight of tomato plant and discrimination of the most
important agents of early blight (A. solani and A. alternate) in the primary stages of incidence of the
disease before appearing visual symptoms using Vis-NIR spectroscopy (400-900 nm). The spectral
data were acquired from the leaves of the plants infected with A. solani and A. alternate, 48 hours, 72
hours, 96 hours, and 120 hours after inoculation. To develop the recognition model based on the
spectral data, principal components analysis (PCA) coupled with artificial neural network (ANN) was
used. The results showed that the PCA-ANN model could diagnose the infected plants and pathogen
species with accuracy of 93-100% for test set samples. In 96 hours after inoculation, in addition to the
simpler model (8 PCs and 3 neurons in hidden layer), accuracy of 100% was obtained. At all times
after inoculation, there was no error in diagnosis of the plants infected with A. solani that is more
pathogenic and aggressive than other species, from healthy plants. Early blight in tomato plant and the
type of pathogen before visual symptoms, without any plant sample preparation, could be diagnosed
non-destructively (with accuracy of 93-100%) using Vis-NIR (400-900 nm) spectroscopy coupled
with PCA-ANN. It was concluded that this technology could be used for rapid, low-cost, and early
diagnosis of this disease in tomato plant instead of time-consuming, expensive, and destructive
laboratory methods.
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Introduction of its high nutritional value and are a
Tomato (Solanum lycopersicum L.) is one well-known source of vitamins and minerals.

of the most popular plants in the world and is They cadn be deaten as rawd veggtables or
grown in a wide range of climates (Song et al., processed products (Sigmund and Gustav,

2015). Tomatos are widely consumed because 1991; Minich et al., 2019). However, diseas_es
can affect the yield and quality of tomato fruits
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during the growing season (Chaerani and
Voorrips, 2006).

Early blight is a serious disease in tomato
growing regions and has been reported under a
wide range of climatic conditions. This disease
weakens tomato plants and increases
susceptibility of the plants to infection
(Adhikari et al., 2017; Zhang et al., 2018).
Leaf spots and leaf drop caused by early
blight, reduce the photosynthetic area and
increase the imbalance between nutrient
demand and nutrient supply (Ding et al.,
2019). Failure to control early blight at the
right time leads to foliar damage, the serious
losses of the yield and quality, and excessive
consumption of fungicides in tomato
production. Therefore, early diagnosis and
control of this disease has great economic
importance (Ershad, 2009; Adhikari et al.,
2017).

Species of the genus Alternaria causes
early blight in tomato plants. Alternaria solani
and A. alternata are the most important
pathogenic species of the genus Alternaria in
many countries such as lIran (Ershad, 2009;
Zhang et al., 2018). These two species are
different in terms of the secreted enzymes
involved in pathogenesis. Morphologically, A.
alternata produces small spores and A. solani
produces larger spores than those because of
A. alternata. In tomato plants, pathogenicity of
A. alternata is lower than that of A. solani
(Simmons, 2000).

Because of climatic conditions of tomato
cultivation, high humidity and moderate
temperatures may spread early Dblight,
especially in the southern and northern regions
of Iran (Ershad, 2009; Babagoli and Behdad,
2012). As mentioned above, different chemical
fungicides are used to control early blight.
Early diagnosis of this disease can reduce the
consumption of fungicides. On the other hand,
identifying the disease before its incidence
allows the application of biological fungicides
to prevent the spreading of the disease agents
(zitter et al., 2004).

Plant diseases, are usually diagnosed by
visual assessments or common laboratory
methods. Common diagnostic techniques such

as polymerase chain reaction (PCR), enzyme
linked immune sorbent assay (ELISA), and
fluorescence in situ hybridization (FISH) are
destructive, time-consuming, and expensive.
In addition, such diagnostic techniques require
highly skilled technicians and advanced
equipment (Xie et al, 2015; Ghanei
Ghooshkhaneh, 2018).

Some non-destructive methods have been
used to classify, forecast, diagnose or warn the
occurrence of crop diseases, and various
models have been developed for these non-
destructive techniques. Near-infrared (NIR)
spectroscopy as an advanced and innovative
technology utilizes the spectral range from 780
to 2,500 nm (12,800 cm™- 4,000 cm™) and
provides internal structural information of
organic materials in food, pharmaceutical,
chemical, and petrochemical industries (Cen
and He, 2007; Jamshidi et al., 2015). This
technology coupled with the advanced
mathematical and statistical methods has
become a reliable, fast, and powerful non-
destructive tool for analyzing the internal
properties of organic materials (Tey et al.,
2013; Nicolai et al., 2014).

NIR spectroscopy equipment (with a full
spectral range) is expensive and its use in rapid
detection systems depends on economic
feasibility. The equipment with a narrower
spectral range such as visible/near-infrared
(Vis-NIR) spectroscopy equipment are low
cost and more economically feasible for use in
rapid and on-line detection systems (Mouazen
et al., 2005). Some studies have confirmed the
fitness of Vis-NIR or NIR spectroscopy for the
classification of the leaves infected with citrus
canker (Sankaran and Ehsani, 2013), diagnosis
of the avocado leaves infected with laurel wilt
(Sankaran and Ehsani, 2012), diagnosis of
virus-infected soybean (Jinendra et al., 2010),
diagnosis of huanglongbing in citrus orchards
(Sankaran et al.,, 2011), and prediction of
disease ratings for leaf gall in sugarcane clones
(Purcell et al., 2009). However, relatively few
reports have been found about the non-
destructive diagnosis of crop diseases before
the onset of symptoms. No reports have been
found about the non-destructive diagnosis of
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early blight on tomato plants before appearing
visual symptoms using Vis-NIR or NIR
spectroscopy.

This research aimed to evaluate the
feasibility of non-destructive method of Vis-
NIR spectroscopy for diagnosis of early blight
diseases (A. solani and A. alternate, as the
main agents in tomato plants in Iran) in the
primary stages of the disease incidence before
occurrence of visual symptoms. Moreover,
different PCA-ANN models were also
developed for different times of establishment
and progression of pathogens to select
optimum diagnosis models for diagnosing the
disease and discrimination of pathogen type.

Material and Methods

Pathogenicity on tomato plants

Susceptible tomato seedlings (cv. Peto
Early CH), planted in trays containing peat
moss, were transferred to 1.5-liter pots in four-

leaf stage. Ten milliliters of spore suspension
of each of isolates of A. solani and A. alternata
were prepared with sterile distilled water.
Using a hemocytometer, the concentration of
the suspensions was adjusted to 10° and 10°
conidia per milliliter for A. solani and A.
alternate,  respectively,.  Spores  were
suspended in sterile distilled water. Plants
were inoculated with conidia suspensions one
month after transplanting. Each plant was
inoculated again after 24 hours. The control
treatment leaflets were sprayed with sterile
distilled water. The inoculated plants were
incubated at 20-22°C and 95% relative
humidity (Rotem, 1994; Fulton et al., 1995).
Figures 1(a) and 1(b) show the symptoms of
the disease in the leaves inoculated with A.
alternata and A. solani 10 to 12 days after
inoculation.

E

Fig.1. Symptoms of the disease in A. solani—inoculated leaf (a) and A. alternata—inoculated leaf (b)
10 to 12 days after inoculation.

Spectral data collection
Spectroscopy System

The Vis-NIR spectral data of tomato leaves
were acquired using a V700 UV-Vis-NIR
spectrophotometer (OPTC, Co., Iran) equipped
with a CCD sensor (Toshiba, Ltd., Japan) that
can operate in the spectral range of 350-1,100
nm at the resolution of 1.8 nm. The light
source was a 120W tungsten halogen lamp and
the spectroscopy mode was reflectance one.

Two optical fibers, which had a 45-degree
angle with the leaf sample, were used to guide
the light from the source to the leaf and from
the leaf to the spectrophotometer.
Samples and Spectroscopy times

Collecting the spectral data was performed
at four times after inoculation, including two
days (48 hours), three days (72 hours), four
days (96 hours), and five days (120 hours)
after inoculation. Occurrence of symptoms of
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early blight on tomato plants depends on many
factors and under the best condition; the
symptom is visualized for five to seven days
after conidia establishment on the leaves
(Sherf and MacNab 1986; Chaerani et al.,
2007).

The lower and upper leaves of each plant
were excluded from the experiment. For each
pathogenic species, the spectral data were
acquired from 50 leaves of the infected plants
(from 4-6 plants), in each day after
inoculation. On the fifth day (120 hours after
inoculation), five spectral samples of the
leaves infected with A. solani were lost
because of incorrect spectra collection, and the
total number of the samples infected with A.
solani in this day was 45. In each day of
spectroscopy, along with acquiring the spectra
from the inoculated samples, the spectral data
from the leaves of two healthy plants (control
treatment) were also acquired (approximately
23 leaves per day). In total, the number of
spectral samples of healthy leaves was 91.
Therefore, the total number of samples on each
of the second, third, and fourth days after
inoculation was 191, and in the fifth day was
186. For each leaf sample, five measurements
from five different points were obtained. The
average of these five spectra was used as a
representative spectrum for one leaf sample.
PCA-ANN models

In this experiment, the ANN method was
used for the classification of A. alternate-
inoculated, A. solani-inoculated, and healthy
leaves. An ANN is a non-linear computing
model inspired by biological neural networks
(Salchenberger et al., 1992; Kia, 2010; Castro
et al., 2017). ANNs modeling technique have
been widely used for prediction and
classification based on the spectral data
(Mireei et al., 2010; Pan et al., 2016; Dai et
al., 2015; Yoplac et al., 2019).

Multilayer feed forward network with back-
propagation (BP) learning algorithm, which is
the most popular neural network, was used for
the recognition of the leaf samples. One BP
network is a feed forward multilayer
perceptron network that consists of one input
layer with the neurons as independent

variables, one or more hidden layers, and one
output layer with the neurons as a dependent
variable (leaf classes in this study) (Kia, 2010;
Omid et al., 2010). In this study, a single-
hidden layer ANN was established for
classification. The transfer function was
tansig, the training function was trainscg, and
epoch was 1,000. Wavelengths shorter than
400 and longer than 900 nm were eliminated
to reduce the noise and thus, the spectral range
of 400 to 900 nm was used for developing the
model.

The spectral data in the range of 400-900
nm was used as the input layer in ANN, but
they were not directly used because of the
large number of the data for each spectrum
sample. In order to reduce the data in each
spectrum, PCA was used. PCA is a well-
known technique for the data mining and is
commonly used in spectroscopy (Wold et al.,
2101). PCA is an orthogonal linear
transformation that transforms the spectral
data to a new coordinate system whose axes
are the PCs. In this transformation, the greatest
variance of the data comes to lie on the first
coordinate  (called the first principal
component), the second greatest variation on
the second PC, and so on. This process
continues until the cumulative variance of the
principal components is equal to 100% of the
variance of the original data. In PCA, the data
components that have the greatest effect on the
variance, are selected and can be used instead
of the original data and reduce the data volume
(Nicolai et al., 2007). It is clear that the first
component, then the second component, and
the subsequent components have the greatest
impact on recognition, respectively. The
optimum number of PCs in the PCA-ANN
models was chosen based on the cumulative
explained data variance (Brown et al., 2005).

For the classification of the leaves in each
day based on PCs, the samples were divided
into a training (70%), validation (15%), and
test (15%) subsets, randomly. The training
datasets were used to fit the model, and the
validation datasets were used to stop the
training ones and avoid overfitting when the
error in the validation datasets increases. The
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test datasets were used to evaluate the model
fitted at the training stage. In this paper, the
developed models were also evaluated by
training and validation subsets, in addition to
evaluation by test subset.

The optimum number of neurons in the
hidden layer was determined by trial and error
and examining several networks with the
different number of neurons in the hidden
layer, and finding the optimum model. A 3-
byte binary code was assumed for the output
vectors of three output neurons (Kia, 2010;
Omid et al., 2010). Therefore, the output
vectors (100), (010), and (001) were denoted
as the healthy leaf, A. alternate-inoculated
leaf, and A. solani-inoculated leaf,
respectively.

In the PCA-ANN models, of the variance
explained by PCs should be at least 85% of
variance of the original data (Mireei et al.,

2010). The models with the lower number of
PCs have lower classification accuracy, while
using the higher number of PCs makes more
complex models without a significant
difference in the discrimination power (Nicolai
et al., 2007). In this study, the maximum
number of PCs as the input for ANN was
considered 10. Finally, the optimum number of
PCs as the input for ANN was selected by trial
and error. These PCs were selected instead of
the original spectral data.

For each time after inoculation (48 hours,
72 hours, 96 hours, and 120 hours), one PCA-
ANN model was developed to discriminate
healthy, A. -infected and A. solani -infected
leaves. In this paper, principal components
analysis and BP-ANN were carried out using
Matlab12.

The procedure of this study is shown in
Figure 2.

Planting and transplanting tomato
seedlings (o pots

Inoculation of the plants with
A. aftermate and A, solani
one month after transplanting

Spectral acquisition from leaves of infected and healthy plants at
48, 72, 96 and 120 hours after inoculation

Principal componenis analysis (PICA)

Developing the PCA -ANN models by selecting the optimum number
of PCs and optimum number of hidden layer neurons.

Models evaluation

Fig.2. Research procedure
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Results and Discussion

Effect of early blight pathogens and time on the
absorbance spectra

Figures 3(a), (b), (c), and (d) show the
mean absorbance spectrum of healthy, A.
alternata—inoculated, and A. solani-inoculated
leaves in 48 hours, 72 hours, 96 hours, and 120
hours after inoculation at the wavelength range
of 400-900 nm, respectively. For the better
interpretation of spectra, absorbance values
(Log (1/R)) of spectra are shown instead of
raw spectra in Figure 2 (Azadshahraki et al.,
2018).

All spectra had two broad peaks around 470
nm and 680 nm, which were due to the
chlorophyll of the photosystem 1 and Il
reaction centers (Taiz and Zeiger, 2002). In 48
hours and 72 hours after inoculation, the mean
absorbance spectra were clearly very similar.
As mentioned above, spores of A. solani are
larger than those of A. alternate. In 48 hours
after inoculation, the absorption (height of
spectrum) of A. solani samples was lower than
that of other samples and this might have been
due to the greater light reflection because of
large spores. Over time, as the spores multiply
and grow, the reaction between spores and
leaves increases, and the light absorption
(height of the spectrum) increases in both
species of diseases. At other times after
inoculation (96 hours and 120 hours after
inoculation), absorbance spectra of the
inoculated leaves changed and the shape of the
second peaks was quite different from that of
the second peaks of spectra in the second and
third day after inoculation. The height of the
mean absorbance spectra of the inoculated
leaves was increased in the fourth and fifth
days after inoculation, and these means were
higher than the mean absorbance spectrum of
healthy leaves. These changes in the spectra of
the infected leaves and the differences between
the spectra of the infected and healthy leaves
in fourth and fifth days could be due to the
impact of diseases on the leaves and might
have been effective in discriminating the

infected leaves. The absorption increment in
spectra of both A. alternata—infected and A.
Solani—infected leaves in 96 hours and 120
hours after inoculation indicated that early
blight disease increased the absorption of
chlorophyll over time, and this increment
around 470 nm was more than around 680 nm.
In general, the height changes in A. solani-
infected spectrum was more than that in A.
alternate-infected spectrum. Because the
pathogen (Alternaria spp.) is a necrotrophic
fungus, within 48 to 72 hours after inoculation,
it is possible that the fungal spores could be
plasmolyzed and the contents of them could be
transferred to the host cells. The reduction in
the spore volume caused in order that the
spectrum of the inoculated leaves could be
closer to the control treatment leaves.
However, 72 hours after inoculation, the
intracellular host changes were begun, and the
spectrum absorption increased in the infected
leaves. Research has shown that members of
the genus Alternaria cause quiescent
infections, in which the fungus enters the
tissue where it remains dormant until changed
conditions favor infection (Thomma, 2003).
Diagnosis of healthy and infected plants at each
time after inoculation

Tables 1, 2, 3, and 4 show the results of the
classification of training, validation and test
sample sets of healthy, A. alternate-infected,
and A. solani-infected leaves of tomato plants
for 48 hours, 72 hours, 96 hours, and 120
hours after inoculation using Vis-NIR
spectroscopy (400-900 nm) and the PCA-ANN
model. According to these Tables, the
optimum developed PCA-ANN model for
each time after inoculation had the specific
number of PCs as well as neurons in the
hidden layer. All selected PCs could explain
more than 99% of the variance of the original
data and had high power of discriminating the
infected leaves. In the second and third day
after inoculation, the models were more
complex (had more PCs and more hidden layer
neurons).
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Fig.3. The mean absorbance spectrum (Log (1/R)) of healthy, A. alternata—inoculated, and A.
solani-inoculated leaves of tomato plants in 48 hours (a), 72 hours (b), 96 hours (c), and 120 hours
(d) after inoculation

As mentioned above, with the impact of
pathogens on the inoculated leaves and
deformation of their absorbance spectra over
time, fewer PCs were needed to develop the
best model. At all times after inoculation, the
developed models were able to accurately
discriminate healthy, A. alternate-infected, and
A. solani-infected leaves from each other. In
48 hours, 72 hours, and 120 hours after
inoculation, the discrimination accuracy were
98.5%, 99.2%, and 98.5% for training sample
sets and 96.6%, 100%, and 100% for
validation sample sets. These models were
used for diagnosis of test sample sets, and
accuracy of 100%, 93.1%, and 96.4% were
obtained. In 96 hours after inoculation, the
discrimination accuracy for all subsets was

100%. In other words, Vis-NIR spectroscopy
with the developed PCA-ANN models could
diagnose early blight-infected leaves and the
type of pathogen at the accuracy of 93. 1%-
100% of test samples in the early stages of
disease before visual symptoms. The lowest
accuracy in the test samples was related to 72
hours after inoculation, which the absorbance
spectra of healthy samples and both infected
samples were more similar. For all samples,
discrimination accuracies were 98.4%, 98.4%,
100%, and 98.4% in the second, third, fourth,
and fifth days after inoculation, respectively.
The results showed that at all times after
inoculation and in all subset samples, there
was no error in the discrimination of the leaves
infected with A. solani pathogen (which is
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more pathogenic and more damaging in
tomato plants) and healthy leaves.

Occurrence of symptom of early blight
disease in tomato plants depends on many
factors, including temperature, relative
humidity, and host sensitivity. Two days after
infection, Alternaria conidia penetrates the
cells by producing germ tube. After
penetration and colonization, the pathogen
degrades the host cell wall by enzymes, and
the lesions become visible three days after

infection. Under the best condition, the
symptom visualized in five to seven days after
the establishment of conidia in the leaves
(Sherf and MacNab 1986; Chaerani et al.,
2007). After this relatively short period, the
disease cycle allows a polycyclic infection and
rapidly spreads in all leaves. Early diagnosis
can be prevented disease incidence before
colonization and spore production, allowing a
polycyclic infection (Sherf and MacNab
1986).

Table 1- Diagnosis results in training, validation and test sets of optimum PCA-ANN model at 48
hours after inoculation

The op;li—r%m Diagnosis results Overall
optimum - number of g oot | eaf class ACCSY  accuracy
of PCs  hidden No. Healthy A alternata A. solani (%0)
layer
Healthy 67 67 0 0 100
Training A. alternata 33 2 31 0 93.9 98.5
A. solani 33 0 0 33 100
Healthy 10 10 0 0 100
10 14 Validation  A.alternata 10 9 0 90 96.6
A. solani 9 0 0 9 100
Healthy 14 14 0 0 100
Test A. alternata 0 7 0 100 100
A. solani 8 0 0 8 100
All - - - - - - 98.4

Table 2- Diagnosis results in training, validation and test sets of optimum PCA-ANN model at 72
hours after inoculation

The
'I_'he optimum Diagnosis results Overall
Oan:m)ueT 2;?:2?12 ?r]: Subsets Leaf class AC?},}Z )acy accgracy
of PCs hidden No. Healthy A.alternata A. solani (%0)
layer
Healthy 59 59 0 0 100
Training A. alternata 40 0 40 0 100 99.2
A. solani 34 0 1 33 97.1
Healthy 21 21 0 0 100
10 9 Validation  A. alternata 4 0 4 0 100 100
A. solani 4 0 0 4 100
Healthy 11 10 1 0 90.9
Test A. alternata 6 0 6 0 100 93.1
A. solani 12 0 1 11 91.7
All - - - - - - 98.4
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Table 3- Diagnosis results in training, validation and test sets of optimum PCA-ANN model at 96
hours after inoculation

The Diagnosis results
The ;
optimum Overall
optimum  number Accuracy
of Subsets Leaf class . accuracy
number No. Healthy A.alternata A. solani (%)
neurons (%)
of PCs  in hidden
layer
Healthy 63 63 0 0 100 100
Training A. alternata 37 0 37 0 100 100
A. solani 33 0 33 100 100
Healthy 16 16 0 0 100 100
8 Validation  A.alternata 7 7 0 100 100
A. solani 6 0 0 6 100 100
Healthy 12 12 0 0 100 100
Test A.alternata 6 0 6 0 100 100
A. solani 11 0 11 100 100
All - - - - 100

Table 4- Diagnosis results in training, validation and test sets of optimum PCA-ANN model at 120
hours after inoculation

The
Th imum Diagnosis resul
optimeum nouprfwbel; of Subset Leaf cl agnosts results Accuracy Overall
number  neuronsin Uosets eaf class (%) acc‘;/racy
of PCs hidden No. Healthy A.alternata A. solani (%)
layer
Healthy 61 61 0 0 100
Training A. alternata 38 0 37 1 97.4 98.5
A. solani 31 0 1 30 96.8
Healthy 14 14 0 0 100
9 9 Validation A alternata 8 0 8 0 100 100
A. solani 6 0 0 6 100
Healthy 16 16 0 0 100
Test A alternata 4 0 4 0 100 96.4
A. solani 8 0 1 7 87.5
All - - - - - - 98.4

In present study, the accuracy of using Vis-
NIR spectroscopy and the PCA-ANN model
for early diagnosis of the tomato leaves
infected with early blight was close to that of
diagnosis of A. alternata in the eggplant leaves
(over 88.46% in the testing sets) using the
hyperspectral image technique reported by Xie
and He (2016). Yin and Zhao (2013) reported
the accuracy of 80.68% for recognition of
early blight in tomato plants using the
hyperspectral data and the support vector
machine. Atherton et al. (2015) reported that
hyperspectral spectroscopy could discriminate
more heavily the potato plants diseased with

early blight (A. solani) from healthy potato
plants in different growth stages. Atherton et
al. (2017) used hyperspectral remote sensing
spectroscopy for advanced diagnosis of early
blight (A. solani) in potato plants prior to
visual disease symptoms, and reported that the
technique could distinguish moderately the
diseased plants from healthy and minimally
diseased plants. An investigation of the
potential of using hyperspectral imaging for
diagnosing early blight and late blight diseases
in tomato leaves by Xie et al. (2015) showed
that using a hyperspectral imaging technique
and extreme learning machine (ELM)



90 Journal of Agricultural Machinery Vol. 12, No. 1, Spring 2022

classifier model or successive projection
algorithm (SPA) could excellently diagnose
the diseases at the accuracy of 97.1-100% in
the testing sets. Diagnosis accuracy of present
study for test set samples (93.1-100%) was
close to the results reported by Xie et al.
(2015). However, different studies for non-
destructive diagnosis of diseases have different
results because of different instruments, stage

of diseases, plant types and varieties. Because
of the high cost of hyperspectral imaging
equipment and good results of present study,
Vis—-NIR spectroscopy can be recommended
for diagnosis of early blight disease prior to
visual symptoms. The results of this research
compared to other studies are summarized in
Table 5.

Table 5- Comparison of the performance of early and nondestructive diagnosis of early blight
disease in this study with other studies

Research

Vegetable Accuracy (%)

Tis research
Xie et al., 2015
Gold et al., 2020
Xie and He, 2016

Yin and Zhao, 2013

Tomato
Tomato

93.1-100

97.1-100
Potato 89-95
Eggplant 88.46
Tomato 80.68

Conclusion

This study evaluated the feasibility of
utilizing Vis—NIR spectroscopy (range of 400-
900nm) using a CCD spectrometer coupled
with the PCA-ANN modeling method for early
and non-destructive diagnosis of early blight
disease in tomato plants and diagnosis of type
of pathogen (A. alternate and A. solani) before
the appearance of the symptoms. The results of
this study indicated that, when optimum PCs
and optimum number of neurons in the hidden
layer of ANN were selected, the PCA-ANN
model could accurately diagnose the infected
plants and type of pathogen (accuracy of 93.1-
100%). Over time, the shape of the infected
spectra changed and this change was effective
in diagnosing the infected leaves. At all times
after inoculation, the developed models could
discriminate A. solani-infected plants from
healthy leaves at the accuracy of 100%. This
was a noticeable result because of more
pathogenicity and more damage of A. solani
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