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Abstract 

Fractional vegetation cover (FVC) and normalized difference vegetation index (NDVI) are the 
most important indicators of greenness and have a strong correlation with green biomass. The 
objective of this study was to evaluate a hand-held GreesnSeeker (GS) active remote sensing 
instrument to estimate NDVI and FVC in the spinach plant. In this study, the color indices of the G-B 
index and Excess Green (ExG) were used as color vegetation indices to discriminate leaves from soil 
background. During 28 to 44 days after emergence (DAG), the results showed good correlations 
between chlorophyll yield and NDVI (R = 0.61 to 0.91), and the correlation between NDVI of GS and 
biomass was significant. In addition, in this growth stage, the results showed a good coefficient of 
correlation between NDVI of GS and FVC (R = 0.67 to 0.82). In assessing the nitrogen rate on the 
NDVI of GS, the results showed significant differences only at the short period of growth stage (28 to 
36 DAG). The results revealed that GreenSeeker performed well for estimation both chlorophyll and 
biomass yield of spinach crop and it could be used as a suitable instrument for estimation of leaf area 
index in the middle of the plant growth period. 
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Introduction 
1
  

The main challenges for global food 
security and sustainable development are how 
to increase food production whereas 
improving resource use efficiencies and 
reducing risks of environmental contamination 
(Guo et al., 2010; Chen et al., 2014). Blanket 
fertilizer nitrogen (N) recommendations lead 
to low N use efficiency (NUE) due to field-to-
field variability in soil N supply (Cao et al., 
2016). Traditionally, pre-plant nitrogen 
requirements have been estimated by using 
soil samples and crop yield levels from 
previous years. The estimated rate is then 
applied uniformly to the field (Sawyer, 1994). 
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Many farmers often apply fertilizer N in doses 
higher than the blanket recommendations to 
ensure that there is no yield loss because of N 
deficiency (Purba et al., 2015). Using fertilizer 
over plant demand may result in surface runoff 
and pollution of streams. Under-application of 
nitrogen may diminish crop production and 
result in low economic returns to the producer 
(Miao et al., 2011).     

Advances in technology have led to 
development of active remote sensing systems 
that are now available commercially (Inman et 
al., 2007). In principle, they can be mounted 
on a VRT fertilizer system that is used to vary 
the amount of fertilizer for a given area in 
'real-time (Williams, 2006).  
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Recently, farmers using precision 
agriculture tools and technologies such as leaf 
color chart (LCC), chlorophyll meter (SPAD), 
GreenSeeker, and real-time on-the-go optical 
sensing measurements (OPM) based variable 
rate (VRT) fertilizer application. These tools 
and technologies can reduce under or over-
application of N (Boyer et al., 2011; 
Bagherpour et al., 2017). Raun et al. (2002) 
analyzed optical sensing and VRT for 
Oklahoma, USA winter wheat production. 
They showed that the extra income owning to 
an increase in NUE (N use efficiency) can 
cover the expected costs of the technology and 
that OPM-based VRT would be most 
profitable in areas of high spatial variability.  

Leaf color chart has been used successfully 
to optimize fertilizer N application in wheat 
and rice (Ladha et al., 2007). SPAD 
chlorophyll meter was confirmed to provide a 
quick, simple, and nondestructive estimation 
of leaf chlorophyll content (Chapman and 
Barreto, 1997). The use of SPAD with grain 
(Ramesh et al., 2002) and vegetables (cabbage 
and carrot) has recently been tried (Westerveld 
et al., 2004). Normalized difference vegetation 
index (NDVI) as a spectral vegetation index is 
useful for acquiring crop information 
indirectly, such as productivity potential, 
photosynthetic efficiency, and potential yield 
(Raun et al., 2001; Inman et al., 2007, Thind et 
al., 2017 ). 

Both NIR and red irradiance are strongly 
influenced by plant cover. NIR irradiance 
increases and red irradiance decreases with 
increasing plant cover. Given these 
relationships, NDVI from vegetated surfaces is 
heavily influenced by chlorophyll content in 
the vegetation. A deficiency in nutrients such 
as nitrogen decreases pigment formation, 
which subsequently increases red reflectance 
(Jones et al., 2007). 

NDVI is a broadband index that has a good 
correlation with green biomass and leaf area 
index (Pen˜uelas et al., 1994).  Raun et al. 
(2001) showed that the expected yield 
determined from NDVI had a strong relation 
with actual grain yield in winter wheat. Bausch 
and Diker (2001) investigated the remote 

sensing techniques to increase the nitrogen use 
efficiency of corn. Their results showed that 
the NIR could well predict the plant N at the 9-
leaf to 12-leaf crop growth stages. However, 
the effects of the soil background on 
reflectance had a negative effect on these 
relations. 

Site-specific N management strategy using 
GreenSeeker™ optical sensor (GS) was 
evaluated in dry direct-seeded rice (DDSR) in 
north-western India. N use efficiency was 
improved by more than 12% when N fertilizer 
management was guided by GS as compared 
to when the general N fertilizer 
recommendation was followed (Ali et al., 
2014 ). 

Sharma et al. (2011) observed that high N 
use efficiency in irrigated wheat grown in 
Northwest India can be achieved by replacing 
general fertilizer recommendation with an 
optical sensor-based N management strategy. 
Enciso et al. (2017) evaluated current 
commercially available sensor technology for 
use in a ground-based platform for plant 
phenol typing and crop management decisions. 
Results showed that the Normalized 
Difference Vegetation Index (NDVI) data 
collected using the GreenSeeker sensors were 
more consistent and presented less variability 
when compared to the Decagon SRS sensor. 

Currently, most of the methods available 
for measuring leaf area index are based on 
manual measurements, which are time-
consuming, laborious, and destructive (Fuentes 
et al., 2014). Aerial and ground-based remote 
sensors have emerged as an important source 
of information on vegetative canopy through 
vegetation indices. The NDVI is related to the 
quantitative biomass and can be used to 
monitor vegetative growth and to determine 
biophysical variables such as leaf area (Junges 
et al., 2019). Ter‐Mikaelian and Parker (2000) 
estimated the biomass of white spruce 
seedlings with vertical photo imagery. The 
accuracy of this technique was comparable to 
the traditional methods using seedling basal 
diameter. Lukina et al. (1999) evaluated the 
use of a digital image to estimate vegetation 
coverage and a multispectral radiometer to 



Hashemi Jozani et al., Investigation on the Capability of GreenSeeker Sensor in …     97 

 

 

measure NDVI index in winter wheat. The 
results of this study showed a strong 
correlation between NDVI and vegetation 
coverage (r

2
 = 0.66 to 0.96). In addition, NDVI 

have a strong correlation with dry biomass (r
2
 

= 0.52) and with nitrogen content (r
2
 = 0.66). 

Spinach (Spinacia oleracea) is a leafy green 
flowering plant native to central and western 
Asia. Its leaves are a common edible vegetable 
consumed either fresh, or after storage using 
preservation techniques by canning, freezing, 
or dehydration. Spinach is rich with vitamins 
such as vitamin C, vitamin A, vitamin E, 
minerals like magnesium, manganese, iron, 
calcium, and folic acid. Spinach is also a good 
source of chlorophyll, which is known to aid 
in digestion (FAO, 2020). Along with these 
advantages, to increase crop yield, it needs 
high N fertilizer and in the commercial 
production of this plant, the recovery of N is 
poor, which may result in environmental 
contamination. To increase spinach yield and 
decrease its environmental consequence, there 
is a need to optimize nitrogen consumption 
(Navarrete et al., 2016). Therefore, this study 
aimed to investigate the relationship of 
nitrogen rate, leaf area index, and biomass 
with NDVI to find an effective, fast and non-
destructive way to estimate leaf N in spinach 
plants and to test the potential linkage between 
FVC and biomass with NDVI of GS. 

Materials and Methods 

Plant material and experimental setup 

This study was conducted at the agricultural 
research station, faculty of agriculture, 
university of Bu-Ali Sina (35°1’ N, 48°31’ E, 

1690 m alt) during the 2019 growing season. 
This site has a semi-arid and cold climate, an 
average annual rainfall of 333 mm and an 
average temperature of 24° C in the warmest 
month (Hamzei et al., 2012).  

Spinach seeds ‘native cultivar of Nahavand’ 
was planted on March 10

th
 with 20 plants per 

m
2
 density. The experiment was laid out as 

Randomized Complete Block Design with 
three replications including four levels of 
nitrogen (0, 75, 150, and 300 kg ha

-1
). Each 

experimental unit contained six lines a 
distance of 30 cm and a length of 6 m, and the 
distance between each block was 1 m. Three 
random soil sample cores were obtained from 
each plot prior to fieldwork using a 3 cm 
diameter hand probe to a depth of 0-15 cm for 
potassium (K), phosphorus (P), pH, and 
organic matter and 0-30 cm in depth for 
nitrate. Soil samples were air-dried, ground to 
pass through a 2 mm screen, and were mixed 
before analysis for soil pH, available P, K, and 
organic matter. Soil pH was measured in a 1:1 
ratio of soil to deionized H2O solution 
(Watson and Brown, 1998), P by the Olsen 
method (Olsen et al., 1954), K was analyzed 
using the 1-N ammonium acetate method 
(Thomas, 1982), soil nitrogen was determined 
using O'Brain and Flore (1962) method and 
organic matter was measured using the loss 
following ignition method (Schulte and 
Hopkins, 1996). Plots in all experiments were 
irrigated with flood irrigation. 
The result of soil analysis was presented in 
Table 1. 

 

Table 1- The result of soil analysis in the research site 

Unit Quantity Soil characteristic  
- sandy clay loam  Texture  
- 7.15 pH 

% 2.38 Organic carbon 
% 4.10 Organic matter 
% 0.20 Total N 

mg kg-1 57.84 Available P  
mg kg-1  703.30 Available K 

 

NDVI and SPAD Value Measurements Canopy reflectance was measured during 
20 to 56 days after emergence with a 
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GreenSeeker hand‐held optical sensor unit 
(Trimble Navigation Ltd., Sunnyvale, 
California, USA) over 12 plots of field. 
 According to the Instructions for Use (Figure 
1), the GreenSeeker was held at 65 cm above 
the crop canopy using an adjustable shoulder 
harness. Readings were taken for the defined 
area of each plot every four days throughout 
the experimental period. Spectral 
measurements were collected from each plot 
by moving the sensor across the center of each 
plot with an area of 1.8×2 m

2
. To analyze the 

chlorophyll content of leaves, leaf samples 
were taken from areas located at both sides of 
each plot with a length of 1.5 m along the 
length. The SPAD readings were taken as an 
average of three different leaf readings located 
in the middle to the upper level of the plant 
excluding the midrib. In this study, a portable 
chlorophyll meter SPAD-502 (Minolta Co., 
LTD. Japan) was used to assess the nitrogen 
status of spinach leaves at various growth 
stages. 

 

 
Fig.1. The Handheld Greemseeker and height of the sensor 

 
Determination of Chlorophylls and total 
Carotenoids in Leaves 

After reading the NDVI of the central 
section of each plot with the GreenSeeker 
sensor and imaging with the visual imaging 
system, one leaf located in the middle to the 
upper level of the four plants at the inside of 
the two side sections were hand-harvested. 
The spinach samples were placed in plastic 
bags, weighed, labeled, carefully closed, and 
then refrigerated for later processing in the 
laboratory. In the laboratory, samples were 
washed, frozen, and dried. The chlorophyll 
and carotenoid pigments were extracted in 
99% acetone by macerating the leaves with a 
mortar and pestle. The absorption of the 
extracts at wavelengths of 470 nm, 645 nm, 
and 664 nm was measured by 
spectrophotometer UV/visible (Varian-
carry 100) according to the spectrophotometric 
method of Inskeep and Bloom (1985). 
 

Measuring crop biomass 

The main objective of this measuring was 
to estimate final crop biomass by NDVI of GS 
in the period of growth stages. At each 
sampling location, spinach biomass was 
measured by cutting all plants at ground level 
from within a 1-m

2
 quadrat at the end of 

growth stages. Biomass samples were 
transported to the laboratory where fresh 
weight was recorded. 
 
Acquiring visual images  

After reading, the NDVI of the sample area 
using the GreenSeeker sensor, a 
corresponding visual image was acquired 
using a Samsung digital camera with a 
resolution of 8 Mpixels (3264×2248). The 
imaging system was mounted to a pole on a 
platform held horizontally 1.5 m above the 
ground. For each plot, three photographs were 
taken and the area photographed was approx. 
1.8×2 m

2
. All the images were taken between 
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at cloudy conditions or on areas shaded with a 
sheet to eliminate the effect of sunlight on 
image quality. All images were saved in 
JPEG-Format. The 
images were processed by LabView 2014 
(National Instruments Corporation, Austin, 
TX, USA) and MatLab 2016a (MathWorks, 
Inc., Natick, Massachusetts, US). 
 
Image segmentation 

This section aims to separate the soil 
background from the canopy representing 
green plant parts. This allowed determining 
the ground cover of living plant leaves. 
Several methods have been developed for 
segmenting crop canopy images. The common 
segmentation technologies used for this 
purpose are color index-based segmentation, 
threshold-based segmentation, and learning-
based segmentation (Hamuda et al., 2016). 
Most researchers have used color to separate 
soil from a plant (Meyer and Camargo-Neto, 
2008; Kirk et al., 2009). In a recent study at 

the early stage of growing, according to 
Woebbecke et al. (1995), the G-B (green-blue) 
index was used as a color index-based 
segmentation to discriminate leaves from soil 
background. Nevertheless, in the flowering 
period, the Excess Green (ExG), according to 
Equation 1, the index showed good results 
than G-B (Soontranon et al., 2014). Because of 
unreliable results in the auto threshold, fixed 
threshold values were used for each series of 
images, which were taken under similar light 
conditions. After segmentation of images, the 
fractional vegetation cover (FVC) was 
calculated as the ratio of the number of pixels 
of all vegetation to the total number of pixels 
in the image (Song et al., 2015). The temporal 
segmentation results of the crops were shown 
in Figure 2. In this Figure, it can be observed 
that the color indices of G-B and ExG perform 
well in segregating this crop from its 
background. 

 

    

     
       a (G-B)            b (G-B)        c (ExG)         d (ExG) 

Fig.2. The segmentation results of the crop at a different stage of growth. a and b are early stage, c 
and d are the late stages of growing 

 

       (   )                                    ( ) 
 

Results and Discussion 

Changing NDVI during growing stages 

The change of GS readings in the canopy of 
spinach was shown in Figure 3. The GS 
readings for all treatments (N0 to N300) 

increased until 44 DAG and then decreased. 
With increasing the length of growth period, 
spinach leaves with a high concentration of N 
fertilizer always had higher GS values than 
those with a low concentration of N fertilizer. 
For all days of growth period value of 
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treatment, N300 was higher than that of other 
N treatments. These changes indicated that it is 
possible to predict the nitrogen level of the 
canopy for all days of the growth stage. This 
Figure also shows that for all nitrogen levels, 
the GS reading peaking at 44 DAG. After 44 
days, for all treatment, GS readings were 
dramatically declined due to the maturation of 
plants. Changes in SPAD readings in leaves of 
spinach were shown in Figure 3. Similar to GS 
readings, the SPAD readings have high 
variance at the early stage of plant growth, 
whereas at the late stage of growing, these data 
have low variance. Data collection overlapped 
with plants' anthesis, which interfered with the 
GreenSeeker™ NDVI values and decreased 
readings in the later phases of growing 

(Basyouni et al., 2015). Additionally, the 
flowering progress might have consumed leaf 
N, which decreased sensor readings at later 
stages (Lawrie and Wheeler, 1974). 

Liu et al. (2006) reported similar results for 
the SPAD reading changes during the growth 
stage of 25 to 35 days after sowing. However, 
they did not investigate the SPAD reading 
changes at the late stage of growth. Junges et 
al. (2019) studied a vineyard in Brazil using 
the GreenSeeker remote sensor and reported 
similar results for the GS readings. The index 
increases rapidly at first (September to 
November), followed by a relative 
stabilization (December to February), and 
decreases in the final stage (March to May). 

 

 
Fig.3. Effects of N levels on GreenSeeker and SPAD values at different days after emergence 

 

Table 2 demonstrates the Pearson’s 
correlation coefficients between GreenSeeker 
NDVI and the other variables. These results 
showed that NDVI has a good correlation with 
chlorophyll yield and biomass with correlation 
coefficients (R) ranging from 0.61 to 0.91 and 
from 0.69 to 0.87, respectively. The highest 
correlation between these variables was 
obtained at the growth period of 32-40 days. 
After 44 days, nutrition deficiency in the plant 
leads to yellowing leaves. These changes in 
leaves color and preliminary mature of spinach 
plants can be the main reason for the 
decreasing of correlation coefficients between 
NDVI and these variables. This relationship 

concurs with work done by Raun et al. (1998) 
and Basyouni et al. (2016). 

As Table 2 shows, NDVI correlations with 
leaf N and fertilizer rate were not significant 
(P < 0.05) at 20 and 24 DAG. This can be 
related to the small size of plants at the early 
stages of growth, which results in background 
noise interfering with the NDVI readings 
(Basyouni et al., 2015). As plants grew and 
filled the plots with time, these correlations 
were strong. This corresponds with the results 
of Wang et al. (2012), Dunn and Goad (2015), 
and Ali et al. (2020) showed a strong 
correlation between GreenSeeker NDVI 
readings and chlorophyll yield in geranium 
and ornamental cabbage and wheat.  
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Table 2- Mean correlation coefficient of plots between GS NDVI- chlorophyll yield, NDVI - 
Biomass, and NDVI - FVC during the growth period 

Day After Emergence NDVI vs. chlorophyll yield NDVI vs. biomass 

20 0.47 0.51 
24 0.74** 0.53 
28 0.88** 0.73** 
32 0.90** 0.76** 
36 0.91** 0.85** 
40 0.86** 0.87** 
44 0.61* 0.69* 
48 0.41 0.45 
52 0.42 0.46 
56 0.42 0.46 

*, **, representing correlation coefficient (r), significant at P ≤ 0.05, P ≤ 0.01, respectively. 

 
NDVI correlations with biomass were also 

not significant at the early stage of 
establishment. In addition, there was no 
significant correlation between these variables 
at the last stage of plant growth. The 
decreasing NDVI values at the end of the cycle 
were expected due to the senescence and 
yellowing of the plant leaves. This result was 
similar to previous literature findings in 
dianthus (Basyouni et al., 2016) and grape 
(Junges et al., 2017). 
Effects of fertilizer rate on NDVI  

Table 3 shows GS readings during the 
growth followed linear trends as fertilizer rates 
increased. With increasing N rate, the linear 

trends of NDVI and leaf N rates were 
significant. Comparing the mean value of the 
GreenSeeker™ NDVI indicated that there are 
significant differences among N rates. 
However, after 44 DAG there are no 
significant differences between N treatments. 
For the early growth stage, the result of this 
study was similar to the result of Basyouni et 
al. (2016) that investigated the use of non-
destructive sensors to assess nitrogen status in 
potted dianthus production. However, during 
the late growth stage, these results are in 
contrast to their finding.  

 
Table 3- GreenSeeker™ NDVI means, and trend analysis at six dates of days after emergence 

(DAG) and five N fertilizer rates 

Total N applied (kg ha
-1

) 
   DAG    

20 24 28 36 44 52 56 

0 0.415 0.430
a
 0.441

a
 0.390

a
 0.690 0.575 0.525 

75 0.415 0.481
ab

 0.530
b
 0.540

b
 0.745 0.591 0.535 

150 0.39 0.475
ab

 0.535
b
 0.635

c
 0.752 0.620 0.565 

300 0.385 0.515
b
 0.595

c
 0.710

d
 0.761 0.625 0.575 

 
N.S L

*
 L

**
 L

**
 N.S N.S N.S 

*, **, linear (L) response across treatments at P ≤ 0.05, P ≤ 0.01, respectively. N.S: Non-Significant difference 

 
Estimate FVC using NDVI of GS  

The traditional method of estimating FVC 
is to harvest vegetation and measure all the 
one-sided leaf areas directly. In this study, the 
relation between FVC and GS NDVI was done 
to investigate the capability of GS to measure 
FVC in spinach. As Figure 4 shows, at the 
early stage of the growing period from 28 to 
40 DAG, there were significant correlations 
between GS-NDVI and FVC extracted by the 

low-cost camera. However, before 28 and after 
44 DAG there were no significant correlations 
between these variables.  Figure 5 showed GS 
NDVI and FVC regression at 28, 40, and 52 
DAG. As this figure showed, although the 
FVC was higher at the late growth stage, 
because of N deficiency in leaves the GS 
NDVI and FVC correlation was low. Results 
indicated that at the early stage of growth, the 
GS NDVI was a good index for the estimation 
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of canopy leaf area. Whereas at the late period 
of growing, it is not a good estimator of 
canopy leaf area. This result was similar to the 
previous study that investigated the 
relationship between NDVI and FVC in 
semiarid grassland (Fan et al., 2009; Tang et 
al., 2020). Also at the late stage of growth and 
at the higher ranges of FVC, when the 

vegetation canopy tends to be closed, NDVI 
saturates and can no longer be used to detect 
any differences in FVC (Pontailler et al., 
2003). The findings of Lukina et al. (1999) 
and Sembiring et al. (1998) on estimating 
vegetation coverage in wheat using digital 
images and spectral radiance, respectively, 
were also supported the results in his work.      

 

 
Fig.4. Coefficient of correlations between GS-NDVI and FVC at a different growing stage. 

(**: significant at P ≤ 0.01, ns: non-significant) 

 

 
Fig.5. NDVI from sensor vs. FVC measured by the visual camera at three growth stages (22, 40, 

and 52 DAG) 

 

Conclusion 

The NDVI data acquired using the GS 
sensor and the visual imaging system were 
sensitive to changes in plant chlorophyll yield 
and plant biomass in row crop spinach. 
Correlations between NDVI and biomass were 
approximately the same as the correlation of 
NDVI and chlorophyll yield in the period of 
growth. Each growing stage demonstrated a 
different response relationship between sensor 
response and plant characteristics. At the early 

and late stages of growth, there were no 
significant correlations among NDVI with 
biomass, chlorophyll yield, and FVC. The best 
growth stage for investigating and estimating 
the chlorophyll yield and biomass using GS 
was the period of 28 to 40 DAG, in this period 
the high values of coefficient of correlation 
were obtained between NDVI of GS with 
chlorophyll yield and biomass. To estimate the 
FVC of spinach, the period of 36 to 40 DAG 
was considered as a recommended period for 
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measuring FVC using GS. Results of this 
study showed that the GreenSeeker has high 
reliability and capability for the estimation of 

chlorophyll yield, biomass, and FVC in the 
middle of the plant growth period. 
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 مقاله پژوهشی
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در برآورد وضعیت نیتروژن و تخمین مقدار شاخص  Greenseekerارزیابی قابلیت حسگر 

FVC گیاه اسفناج 

 3یا حمزه جواد ،*2باقرپور نیحس ،1یجوزان یهاشم مهران

 50/11/1911دریافت: تاریخ 
 11/59/1055تاریخ پذیرش: 

 چکیده
باشند و  از شاخص بسیار مهم سبزینگی می (NDVIگیاهی ) پوشش تفاضل شده نرمال شاخص( و FVCپوشش گیاهی سبز کسری ) شاخص

در   Greesnseeker (GS)حاصل از حسگر دستی NDVIتوده سبز دارند. هدف اصلی این پژوهش، ارزیابی شاخص  ارتباط بسیار قوی با زیست
های  باشد. در این پژوهش برای جداسازی مناسب زمینه خاک از گیاه از شاخص در گیاه اسفناج می FVCتوده، کلروفیل و شاخص  تخمین مقدار زیست

ارتباط خوبی  GSحاصل از  NDVIزنی گیاه، نتایج تحقیق نشان داد که  روز بعد از جوانه 00تا  12استفاده شد. در طول دوره رشد  ExGو  G-Bرنگی 
دار بود. علاوه بر این، نتایج نشان داد که در این دوره رشد  توده نیز معنی ( و ارتباط بین این شاخص با زیستR = 0.61 to 0.91با کلروفیل داشته )

رزیابی تاثیر نرخ نیتروژن بر . در حسگر در اR = 0.67 to 0.82)وجود دارد ) FVCبا شاخص  GSحاصل از  NDVIارتباط خوبی بین شاخص 
داری بین این دو متغیر وجود دارد. نتایج نشان  زنی ارتباط خطی معنی روز پس از جوانه 93تا  12، مشخص شد که تنها در دوره کوتاه NDVIشاخص 

در میانه رشد گیاه، مقدار شاخص پوشش توان  توده گیاه دارد و از آن می توانایی خوبی در تخمین کلروفیل و مقدار زیست Greenseedkeداد که حسگر 
 خوبی برآورد کرد.  هگیاهی سبز کسری را ب

  لیکلروف ،یبند قطعه ،یحسگر نور ،یاهیپوشش گهای کلیدی:  واژه
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