##plugins.themes.bootstrap3.article.main##

سید حسین پیمان عادل بخشی پور زیارتگاهی عبدالعباس جعفری

چکیده

در مباحث نوین کشاورزی، بررسی روش‌های سریع، خودکار، ارزان و دقیق برای تشخیص بیماری‌های گیاه از اهمیت زیادی برخوردار است. تشخیص به موقع و دقیق بیماری در مزارع، از مهمترین فاکتورهای مقابله با بیماری‌های گیاهی می‌باشد. در این تحقیق توانایی تکنیک پردازش تصویر در تشخیص دو بیماری مهم برنج (لکه قهوه‌ای و بلاست برگ برنج) مورد بررسی قرار گرفت. تصاویر دیجیتال از برگ‌های گیاه برنج آلوده تهیه شدند. تصاویر در جعبه ابزار پردازش تصویر نرم افزار متلب پردازش شدند. از پردازش رنگی به‌منظور جداسازی لکه‌های ظاهری قسمت‌های آلوده از سطح برگ استفاده شد. نتایج نشان داد که الگوریتم ارائه شده توانست نقاط آلوده را در نمونه تصاویر مورد آزمایش با دقت 94/4% تشخیص دهد. تمایز بین دو نوع بیماری به دلیل شباهت‌های رنگی علائم بیماری‌ها تقریباً غیر ممکن بود. بنابراین به منظور بهبود تشخیص، خصوصیات شکلی از تصاویر سیاه و سفید برگ‌ها آلوده استخراج شدند. ویژگی‌های بدون بعد مانند گردی، نسبت ظاهری، فشردگی و نسبت سطح قسمت‌های آلوده مربوط به بیماری لکه قهوه‌ای و بلاست برگ برنج استخراج شده و مورد بررسی قرار گرفتند. دقتی معادل با 96/6% برای الگوریتم به‌دست آمد که نشان‌دهنده توانایی در تشخیص دو بیماری لکه قهوه‌ای و بلاست برگ برنج بود.

جزئیات مقاله

مراجع
1. Agahi, K., M. H. Fotokian, and Z. Younesi. 2012. Study of genetic diversity and important correlations of agronomic traits in rice genotypes (Oryza sativa L.). Iranian Journal of Biology 25 (1): 97-110. (In Farsi).
2. Aglave, V. A., S. B. Patil, and N. B. Sambre. 2012. Imaging technique to measure leaf area, disease severity and chlorophyll content: asurvey paper. Computing Technologies 1 (3).
3. Al-Bashish, D., M. Braik, and S. Bani-Ahmad. 2011. Detection and classification of leaf diseases using K-means-based segmentation and neural-networks-based classification. Information Technology Journal 10: 267-275.
4. Bock, C. H., G. H. Poole, P. E. Parker, and T. R. Gottwald. 2010. Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging. Critical Reviews in Plant Science 29: 59-107.
5. Boese, B. L., and B. D. Robbins. 2008. Effects of erosion and macroalgae on intertidal eelgrass (zostera marina) in a northeastern Pacific estuary (USA). Botanica Marina 51: 247-257.
6. Camargo, A., and J. S. Smith. 2009. An image-processing based algorithmtoautomatically identify plant disease visual symptoms. Biosystems Engineering 102 )1): 9-21.
7. Chen, Y. R., K. Chao, and S. K. Moon. 2002. Machine vision technology for agricultural applications. Computers and Electronics in Agriculture 36 (2–3): 173-191.
8. El-Hally, M., A. Refea, S. Al-Gamal, and R. A. Al-Whab. 2004. Integrating diagnostic expert system with image processing via loosely coupled technique. 2nd International conference on inpormation and systems 1-15.
9. FAOSTAT, 2010. Rice production. Available from: http://faostat.fao.org. Accessed: 20-11-2012.
10. Gomathinayagam, S., M. Rekha, S. Sakthivel Murugan, and R. C. Jagessar. 2009. Biological control of rice disease (blast) by using Trichoerma viride in laboratory conditions. Proceedings of the Caribbean Food Crops Society 45: 79-86.
11. Hemming, J., and T. Rath. 2001. Computer-vision-based weedidentification under field conditions using controlled lighting. Journal of Agricultural Engineering 78 (3): 233-243.
12. Liu, Z., C. Fang, Y. Yi-bin, and R. Xiu-qin. 2005. Identification of rice seed varieties using neural network. Journal of Zhejiang University Science 6 (11): 1095-1100.
13. Moumeni, A., B. Yazdi-samadi, and H. Leung. 2003. An assessment of partial resistance to Pyricularia grisea in rice cultivars. Iranian Journal of Agricultural Science 34 (2): 483-493. (In Farsi).
14. Moya, E. A., L. R. Barrales, and G. E. Apablaza. 2005. Assessment of the disease severity of squash powdery mildew through visual analysis, digital image analysis and validation of these methodologies. Crop Protection 24 (9): 785-789.
15. Nithya, A., and V. Sundaram. 2011. Identifying the rice diseases using classification andbiosensor techniques. International Journal of Advanced Research in Technology 1 (1): 76-81.
16. Onyango, C. M. 2003. Segmentation of row crop plants from weeds using colour and morphology. Computers and Electronics in Agriculture 39: 141-155.
17. Otsu, N. 1979. A threshold selection method from gray-level histograms. IEEE transactions on systems, man and cybernetics 9: 62-66.
18. Ou, S. H. 1985. Rice diseases. Common Wealth Mycological Institute. Second Edition. 380p.
19. Sanjay, B., S. B. Patil, and S. K. Bodhe. 2011. Leaf disease severity measurement using image processing. International Journal of Engineering and Technology 3 (5): 297-301.
20. Shouche S. P., R. Rastogi, S. G. Bhagwat, and J. K. Sainis. 2001. Shape analysis ofgrains of Indian wheat varieties. Computers and Electronics in Agriculture 33: 55-76.
21. Skaloudova, B., V. Krivan, and R. Zemek. 2006. Computer-assisted estimation of leaf damage caused by spider mites. Computer and Electronics in Agriculture 53 (2): 81-91.
22. Steddom, K., W. M. Bredehoeft, M. Khan, and M. C. Rush. 2005. Comparison of visual and multispectral radiometric disease evaluations of Cercospora leaf spot of sugar beet. Plant Disease 89: 153-158.
23. Wang, D., M. S. Ramandm, and F. E. Dowell. 2002. Classification of damaged soybean seeds using near-infrared spectroscopy. American Society of Agricultural Engineers 4 (6): 1943-1948.
ارجاع به مقاله
پیمانس. ح., بخشی پور زیارتگاهیع., & جعفریع. (2014). بررسی امکان به‏‌کارگیری روش پردازش تصاویر دیجیتال جهت تشخیص بیماری‏‌های سطح برگ برنج. ماشین‌های کشاورزی, 6(1), 69-79. https://doi.org/10.22067/jam.v6i1.32031
نوع مقاله
مقاله کامل پژوهشی

مقالات بیشتر خوانده شده از همین نویسنده