با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه کردستان، سنندج، ایران

چکیده

استفاده از سامانه‌های آب‌شیرین‌کن خورشیدی یک راهکار مناسب، با صرفه اقتصادی برای تولید آب شرب از منابع آب شور است. هدف از انجام این تحقیق افزایش عملکرد آب‌شیرین‌کن خورشیدی با استفاده از سامانه ذخیره‌ساز گرمای نهان انرژی خورشیدی و سامانه ردیاب پنلی است. با توجه به این‌که به دلیل نوسانات شدت تابش خورشیدی هدررفت حرارتی از جمع‌کننده خورشیدی افزایش می‌یابد، استفاده از مواد تغییرفازدهنده راه‌حل مناسبی برای ذخیره‌سازی انرژی در ساعات اوج و آزاد نمودن در زمان کاهش و یا نبود شدت تابش خورشیدی است. به این منظور ماده تغییرفازدهنده به‌صورت لوله‌ی مارپیچ 6 میلی‌متری با گام 7 سانتی‌متر درون لوله کانونی قرار گرفت. جهت ارزیابی عملکرد حرارتی سه دبی جریان برای سیال کاری 1.9، 3.1 و 4.2 لیتر بر دقیقه (با مواد تغییرفازدهنده) و حالت بدون مواد تغییرفازدهنده در چهار روز متوالی از ساعت 10:00 تا 14:00 در نظر گرفته شد. نتایج بررسی‌ها نشان داد که سامانه آب‌شیرین‌کن خورشیدی مجهز به مواد تغییرفازدهنده بیشترین راندمان حرارتی را در دبی 4.2 لیتر بر دقیقه و کمترین آن با دبی 1.9 لیتر بر دقیقه بوده است. نتایج نشان داد استفاده از مواد تغییرفازدهنده باعث بهبود راندمان حرارتی به میزان 3.05 درصد می‌گردد. آب شیرین تولیدی در مدت زمان 4 ساعت، 0.722 لیتر بر مترمربع در چهار ساعت بود و به‌طور قابل‌ملاحظه‌ای باعث کاهش سختی موجود در آب شرب شده بود.

کلیدواژه‌ها

موضوعات

©2023 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0).

  1. Abdessemed, A., Bougriou, Ch., Guerraiche, D., & Abachi, R. (2018). Effects of tray shape of a multi-stage solar still coupled to a parabolic concentrating solar collector in Algeria. Renewable Energy, 132, 1134-1140. https://doi.org/10.1016/j.renene.2018.08.074
  2. Abu-Arabi, M., Al-harahsheh, M., Mousa, H., & Alzghoul, Z. (2018). Theoretical investigation of solar desalination with solar still having phase change material and connected to a solar collector. Desalination, 448, 60-68. https://doi.org/10.1016/j.desal.2018.09.020
  3. Alimohammadi, Z., Samimi Akhijahani, H., & Salami, P. (2020). Thermal analysis of a solar dryer equipped with PTSC and PCM using experimental and numerical methods. Solar Energy, 201, 157-177. https://doi.org/10.1016/j.solener.2020.02.079
  4. Alwan, N. T., Shcheklein, S. E., & Ali, O. M. (2021). Evaluation of distilled water quality and production costs from a modified solar still integrated with an outdoor solar water heater. Case Studies in Thermal Engineering, 27, 101216. https://doi.org/10.1016/j.csite.2021.101216
  5. Bakos, G. C. (2006). Design and construction of a two-axis Sun tracking system for parabolic trough collector (PTC) efficiency improvement. Renewable Energy, 31, 2411-2421. https://doi.org/10.1016/j.renene.2005.11.008
  6. Chaabane, M., Mhiri, H., & Bournot, P. (2014). Thermal performance of an integrated collector storage solar water heater (ICSSWH) with phase change materials (PCM). Energy Conversion and Management, 78, 897-903. https://doi.org/10.1016/j.enconman.2013.07.089
  7. Cheng, P., & Zhan, X. (2016). Stability of organic solar cells: challenges and strategies. Chemical Society Reviews, 45, 25442582. https://doi.org/10.1039/C5CS00593
  8. Duong, H. C., Cooper, P., Nelemans, B., Cath, T. Y., & Nghiem, L. D. (2015). Optimising thermal efficiency of direct contact membrane distillation by brine recycling for small-scale seawater desalination, Desalination, 374, 1-9. https://doi.org/10.1016/j.desal.2015.07.009
  9. Edalati, S., Ameri, M., & Iranmanesh, M. (2015). Comparative performance investigation of mono-and poly-crystalline silicon photovoltaic modules for use in grid-connected photovoltaic systems in dry climates. Applied Energy160, 255-265. https://doi.org/10.1016/j.apenergy.2015.09.064
  10. Elarem, R., Alqahtani, , Mellouli, S., Aich, W., Ben Khedher, N., Kolsi, L., & Jemni, A. (2021). Numerical study of an evacuated tube solar collector incorporating a nano-pcm as a latent heat storage system. Case Studies in Thermal Engineering, 24, 1000859. https://doi.org/10.1016/j.csite.2021.100859
  11. Eltawil, M., Mostafa, A., Azam, M., & Alghannam, A. O. (2018). Solar PV powered mixed-mode tunnel dryer for drying potato chips. Renewable Energy, 116, 594-605. https://doi.org/10.1016/j.renene.2017.10.007
  12. Esakkimuthu, S., Hassabou, A. H., Palaniappan, C., Spinnler, M., Blumenberg, J., & Velraj, R. (2013). Experimental investigation on phase change material based thermal storage system for solar air heating applications. Solar Energy, 88, 144-153. https://doi.org/10.1016/j.solener.2012.11.006
  13. Goudarzi, K., Shojaeizadeh, E., & Nejati, F. (2014). An experimental investigation on the simultaneous effect of CuO–H2O nanofluid and receiver helical pipe on the thermal efficiency of a cylindrical solar collector. Applied Thermal Engineering, 73, 1236-1243. https://doi.org/10.1016/j.applthermaleng.2014.07.067
  14. Goyal, R. K., Tiwari, G. N., & Garg, H. P. (1998). Effect of thermal storage on the performance of an air collector: a periodic analysis. Energy Conversion Management, 39, 193-202. https://doi.org/10.1016/S0196-8904(96)00226-9
  15. Jean, J., Brown, P. R., Jaffe, R. L., Buonassisi, T., & Bulovic, V. (2015). Pathways for solar photovoltaics. Energy and Environmental Science, 8, 1200-1219. https://doi.org/10.1039/C4EE04073B
  16. Kalogirou, S. A. (2005). Use of artificial intelligence for the optimal design of solar systems. International Journal of Computer Applications in Technology22, 90-103. https://doi.org/10.1504/IJCAT.2005.006940
  17. Khosravi, A., Malekan, M., & Assad, M. E. H. (2019). Numerical analysis of magnetic field effects on the heat transfer enhancement in ferrofluids for a parabolic trough solar collector. Renewable Energy, 134, 54-63. https://doi.org/10.1016/j.renene.2018.11.015
  18. Khan, Z. U., Moronshing, M., Shestakova, M., Al-Othman, A., Sillanpaa, M., Zhan, Z., Song, B., & Lei, Y. (2023). Electro-deionization (EDI) technology for enhanced water treatment and desalination: A review. Desalination, 548, 116254. https://doi.org/10.1016/j.desal.2022.116254
  19. Koca, A., Oztopb, H. F., Koyunc, T., & Varol, Y. (2008). Energy and exergy analysis of a latent heat storage system with phase change material for a solar collector. Renewable Energy, 33, 567-574. https://doi.org/10.1016/j.renene.2007.03.012
  20. Kumar, B. S., Vijayan, V., & Baskar, N. (2016). Burr dimension analysis on varic material for conventionally and CNC drilled holes. Mechanical Engineering, 20, 347-354.
  21. Li, P., Li, J., Pei, G., Munir, A., & Ji, J. (2016). A cascade organic Rankine cycle power generation system using hybrid solar energy and liquefied natural gas. Solar Energy, 127, 136-146. https://doi.org/10.1016/j.solener.2016.01.029
  22. Lim, E. L., Yap, C. C., Teridi, M. A. M., Teh, C. H., Mohd Yusoff, A. R., & Jumali, M. H. H. (2016). A review of recent plasmonic nanoparticles incorporated P3HT: PCBM organic thin film solar cells. Organic Electronics, 36, 12-28. https://doi.org/10.1016/j.orgel.2016.05.029
  23. Morad, M., El-Maghawry, H. A., & Wasfy, K. I. (2017). A developed solar-powered desalination system for enhancing fresh water productivity. Solar Energy, 146, 20-29. https://doi.org/10.1016/j.solener.2017.02.002
  24. Motevali, A. (2013). Design and Evaluation of a Parabolic Sun Tracking Collector for Drying of Mint [Ph.D. Thesis.], TarbiatModares University, Tehran, Iran.
  25. Mousa, H., & Abu Arabi, M. (2012). Desalination and hot water Production using solar still enhanced dy external solar collector. Desalination Water Treat, 51, 1296-1301. https://doi.org/10.1080/19443994.2012.699237
  26. Muñoz, M., Rovira, A., Sánchez, C., & Montes, M. J. (2017). Off-design analysis of a hybrid Rankine-brayton cycle used as the power block of a solar thermal power plant. Energy, 134, 369-381. https://doi.org/10.1016/j.energy.2017.06.014
  27. Nasri, B., Benatiallah, A., Kalloum, S., & Benatiallah, D. (2019). Improvement of glass solar still performance using locally available materials in the southern region of Algeria. Groundwater for Sustainable Development, 9, 100213. https://doi.org/10.1016/j.gsd.2019.100213
  28. Panchal, H., Patel, K., Elkelawy, M., & Bastawissi, H. A. E. (2019). A use of various phase change materials on the performance of solar still: a review. International Jornal of Ambient Energy, 125, 1-6. https://doi.org/10.1080/01430750.2019.1594376
  29. Pielichowska, K., & Pielichowski, K. (2014). Phase change materials for thermal energy storage. Progress in Material Science, 65, 67-123. https://doi.org/10.1016/j.pmatsci.2014.03.005
  30. Rehman, H. M., Shakir, S., Razaq, A., Saqib, H., & Tahir, S. (2018). Decentralized and cost-effective solar water purification system for remote communities. in IOP Conference Series: Earth and Environmental Science. 154. https://doi.org/10.1088/1755-1315/154/1/012004
  31. Rehman, S. H., & Mohandes, M. (2008). Artificial neural network estimation of global solar radiation using air temperature and relative humidity. Energy Policy, 36, 571-576. https://doi.org/10.1016/j.enpol.2007.09.033
  32. Reif, J. H., & Alhalabi, W. (2015). Solar-thermal powered desalination: Its significant challenges and potential. Renewable and Sustainable Energy Reviews, 48, 152-165. https://doi.org/10.1016/j.desal.2015.07.009
  33. Rostamizadeh, M., Khanlarkhani, M., & Sadrameli, S. M. (2012). Sadrameli, Simulation of energy storage system with phase change material (PCM). Energy and Buildings, 49, 419-422. https://doi.org/10.1016/j.enbuild.2012.02.037
  34. Serale, G., Goia, F., & Perino, M. (2016). Numerical model and simulation of a solar thermal collector with slurry Phase Change Material (PCM) as the heat transfer fluid. Solar Energy, 134, 429-444. https://doi.org/10.1016/j.solener.2016.04.030
  35. Yang, L., Zhang, X., & Xu, G. (2014). Thermal performance of a solar storage packed bed using spherical capsules filled with PCM having different melting points. Renewable Energy, 64, 26-33. https://doi.org/10.1016/j.enbuild.2013.09.045
  36. Zhao, M., Liu, Z., & Zhang, Q. (2009). Feasibility analysis of constructing parabolic trough solar thermal power plant in inner Mongolia of China. In: Proc. Asia– Pacific power and energy engineering conference, 1-4. https://doi.org/10.1109/APPEEC.2009.4918378
CAPTCHA Image