نوع مقاله : مقاله پژوهشی
نویسندگان
گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه کردستان، سنندج، ایران
چکیده
استفاده از سامانههای آبشیرینکن خورشیدی یک راهکار مناسب، با صرفه اقتصادی برای تولید آب شرب از منابع آب شور است. هدف از انجام این تحقیق افزایش عملکرد آبشیرینکن خورشیدی با استفاده از سامانه ذخیرهساز گرمای نهان انرژی خورشیدی و سامانه ردیاب پنلی است. با توجه به اینکه به دلیل نوسانات شدت تابش خورشیدی هدررفت حرارتی از جمعکننده خورشیدی افزایش مییابد، استفاده از مواد تغییرفازدهنده راهحل مناسبی برای ذخیرهسازی انرژی در ساعات اوج و آزاد نمودن در زمان کاهش و یا نبود شدت تابش خورشیدی است. به این منظور ماده تغییرفازدهنده بهصورت لولهی مارپیچ 6 میلیمتری با گام 7 سانتیمتر درون لوله کانونی قرار گرفت. جهت ارزیابی عملکرد حرارتی سه دبی جریان برای سیال کاری 1.9، 3.1 و 4.2 لیتر بر دقیقه (با مواد تغییرفازدهنده) و حالت بدون مواد تغییرفازدهنده در چهار روز متوالی از ساعت 10:00 تا 14:00 در نظر گرفته شد. نتایج بررسیها نشان داد که سامانه آبشیرینکن خورشیدی مجهز به مواد تغییرفازدهنده بیشترین راندمان حرارتی را در دبی 4.2 لیتر بر دقیقه و کمترین آن با دبی 1.9 لیتر بر دقیقه بوده است. نتایج نشان داد استفاده از مواد تغییرفازدهنده باعث بهبود راندمان حرارتی به میزان 3.05 درصد میگردد. آب شیرین تولیدی در مدت زمان 4 ساعت، 0.722 لیتر بر مترمربع در چهار ساعت بود و بهطور قابلملاحظهای باعث کاهش سختی موجود در آب شرب شده بود.
کلیدواژهها
موضوعات
©2023 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0).
- Abdessemed, A., Bougriou, Ch., Guerraiche, D., & Abachi, R. (2018). Effects of tray shape of a multi-stage solar still coupled to a parabolic concentrating solar collector in Algeria. Renewable Energy, 132, 1134-1140. https://doi.org/10.1016/j.renene.2018.08.074
- Abu-Arabi, M., Al-harahsheh, M., Mousa, H., & Alzghoul, Z. (2018). Theoretical investigation of solar desalination with solar still having phase change material and connected to a solar collector. Desalination, 448, 60-68. https://doi.org/10.1016/j.desal.2018.09.020
- Alimohammadi, Z., Samimi Akhijahani, H., & Salami, P. (2020). Thermal analysis of a solar dryer equipped with PTSC and PCM using experimental and numerical methods. Solar Energy, 201, 157-177. https://doi.org/10.1016/j.solener.2020.02.079
- Alwan, N. T., Shcheklein, S. E., & Ali, O. M. (2021). Evaluation of distilled water quality and production costs from a modified solar still integrated with an outdoor solar water heater. Case Studies in Thermal Engineering, 27, 101216. https://doi.org/10.1016/j.csite.2021.101216
- Bakos, G. C. (2006). Design and construction of a two-axis Sun tracking system for parabolic trough collector (PTC) efficiency improvement. Renewable Energy, 31, 2411-2421. https://doi.org/10.1016/j.renene.2005.11.008
- Chaabane, M., Mhiri, H., & Bournot, P. (2014). Thermal performance of an integrated collector storage solar water heater (ICSSWH) with phase change materials (PCM). Energy Conversion and Management, 78, 897-903. https://doi.org/10.1016/j.enconman.2013.07.089
- Cheng, P., & Zhan, X. (2016). Stability of organic solar cells: challenges and strategies. Chemical Society Reviews, 45, 25442582. https://doi.org/10.1039/C5CS00593
- Duong, H. C., Cooper, P., Nelemans, B., Cath, T. Y., & Nghiem, L. D. (2015). Optimising thermal efficiency of direct contact membrane distillation by brine recycling for small-scale seawater desalination, Desalination, 374, 1-9. https://doi.org/10.1016/j.desal.2015.07.009
- Edalati, S., Ameri, M., & Iranmanesh, M. (2015). Comparative performance investigation of mono-and poly-crystalline silicon photovoltaic modules for use in grid-connected photovoltaic systems in dry climates. Applied Energy, 160, 255-265. https://doi.org/10.1016/j.apenergy.2015.09.064
- Elarem, R., Alqahtani, , Mellouli, S., Aich, W., Ben Khedher, N., Kolsi, L., & Jemni, A. (2021). Numerical study of an evacuated tube solar collector incorporating a nano-pcm as a latent heat storage system. Case Studies in Thermal Engineering, 24, 1000859. https://doi.org/10.1016/j.csite.2021.100859
- Eltawil, M., Mostafa, A., Azam, M., & Alghannam, A. O. (2018). Solar PV powered mixed-mode tunnel dryer for drying potato chips. Renewable Energy, 116, 594-605. https://doi.org/10.1016/j.renene.2017.10.007
- Esakkimuthu, S., Hassabou, A. H., Palaniappan, C., Spinnler, M., Blumenberg, J., & Velraj, R. (2013). Experimental investigation on phase change material based thermal storage system for solar air heating applications. Solar Energy, 88, 144-153. https://doi.org/10.1016/j.solener.2012.11.006
- Goudarzi, K., Shojaeizadeh, E., & Nejati, F. (2014). An experimental investigation on the simultaneous effect of CuO–H2O nanofluid and receiver helical pipe on the thermal efficiency of a cylindrical solar collector. Applied Thermal Engineering, 73, 1236-1243. https://doi.org/10.1016/j.applthermaleng.2014.07.067
- Goyal, R. K., Tiwari, G. N., & Garg, H. P. (1998). Effect of thermal storage on the performance of an air collector: a periodic analysis. Energy Conversion Management, 39, 193-202. https://doi.org/10.1016/S0196-8904(96)00226-9
- Jean, J., Brown, P. R., Jaffe, R. L., Buonassisi, T., & Bulovic, V. (2015). Pathways for solar photovoltaics. Energy and Environmental Science, 8, 1200-1219. https://doi.org/10.1039/C4EE04073B
- Kalogirou, S. A. (2005). Use of artificial intelligence for the optimal design of solar systems. International Journal of Computer Applications in Technology, 22, 90-103. https://doi.org/10.1504/IJCAT.2005.006940
- Khosravi, A., Malekan, M., & Assad, M. E. H. (2019). Numerical analysis of magnetic field effects on the heat transfer enhancement in ferrofluids for a parabolic trough solar collector. Renewable Energy, 134, 54-63. https://doi.org/10.1016/j.renene.2018.11.015
- Khan, Z. U., Moronshing, M., Shestakova, M., Al-Othman, A., Sillanpaa, M., Zhan, Z., Song, B., & Lei, Y. (2023). Electro-deionization (EDI) technology for enhanced water treatment and desalination: A review. Desalination, 548, 116254. https://doi.org/10.1016/j.desal.2022.116254
- Koca, A., Oztopb, H. F., Koyunc, T., & Varol, Y. (2008). Energy and exergy analysis of a latent heat storage system with phase change material for a solar collector. Renewable Energy, 33, 567-574. https://doi.org/10.1016/j.renene.2007.03.012
- Kumar, B. S., Vijayan, V., & Baskar, N. (2016). Burr dimension analysis on varic material for conventionally and CNC drilled holes. Mechanical Engineering, 20, 347-354.
- Li, P., Li, J., Pei, G., Munir, A., & Ji, J. (2016). A cascade organic Rankine cycle power generation system using hybrid solar energy and liquefied natural gas. Solar Energy, 127, 136-146. https://doi.org/10.1016/j.solener.2016.01.029
- Lim, E. L., Yap, C. C., Teridi, M. A. M., Teh, C. H., Mohd Yusoff, A. R., & Jumali, M. H. H. (2016). A review of recent plasmonic nanoparticles incorporated P3HT: PCBM organic thin film solar cells. Organic Electronics, 36, 12-28. https://doi.org/10.1016/j.orgel.2016.05.029
- Morad, M., El-Maghawry, H. A., & Wasfy, K. I. (2017). A developed solar-powered desalination system for enhancing fresh water productivity. Solar Energy, 146, 20-29. https://doi.org/10.1016/j.solener.2017.02.002
- Motevali, A. (2013). Design and Evaluation of a Parabolic Sun Tracking Collector for Drying of Mint [Ph.D. Thesis.], TarbiatModares University, Tehran, Iran.
- Mousa, H., & Abu Arabi, M. (2012). Desalination and hot water Production using solar still enhanced dy external solar collector. Desalination Water Treat, 51, 1296-1301. https://doi.org/10.1080/19443994.2012.699237
- Muñoz, M., Rovira, A., Sánchez, C., & Montes, M. J. (2017). Off-design analysis of a hybrid Rankine-brayton cycle used as the power block of a solar thermal power plant. Energy, 134, 369-381. https://doi.org/10.1016/j.energy.2017.06.014
- Nasri, B., Benatiallah, A., Kalloum, S., & Benatiallah, D. (2019). Improvement of glass solar still performance using locally available materials in the southern region of Algeria. Groundwater for Sustainable Development, 9, 100213. https://doi.org/10.1016/j.gsd.2019.100213
- Panchal, H., Patel, K., Elkelawy, M., & Bastawissi, H. A. E. (2019). A use of various phase change materials on the performance of solar still: a review. International Jornal of Ambient Energy, 125, 1-6. https://doi.org/10.1080/01430750.2019.1594376
- Pielichowska, K., & Pielichowski, K. (2014). Phase change materials for thermal energy storage. Progress in Material Science, 65, 67-123. https://doi.org/10.1016/j.pmatsci.2014.03.005
- Rehman, H. M., Shakir, S., Razaq, A., Saqib, H., & Tahir, S. (2018). Decentralized and cost-effective solar water purification system for remote communities. in IOP Conference Series: Earth and Environmental Science. 154. https://doi.org/10.1088/1755-1315/154/1/012004
- Rehman, S. H., & Mohandes, M. (2008). Artificial neural network estimation of global solar radiation using air temperature and relative humidity. Energy Policy, 36, 571-576. https://doi.org/10.1016/j.enpol.2007.09.033
- Reif, J. H., & Alhalabi, W. (2015). Solar-thermal powered desalination: Its significant challenges and potential. Renewable and Sustainable Energy Reviews, 48, 152-165. https://doi.org/10.1016/j.desal.2015.07.009
- Rostamizadeh, M., Khanlarkhani, M., & Sadrameli, S. M. (2012). Sadrameli, Simulation of energy storage system with phase change material (PCM). Energy and Buildings, 49, 419-422. https://doi.org/10.1016/j.enbuild.2012.02.037
- Serale, G., Goia, F., & Perino, M. (2016). Numerical model and simulation of a solar thermal collector with slurry Phase Change Material (PCM) as the heat transfer fluid. Solar Energy, 134, 429-444. https://doi.org/10.1016/j.solener.2016.04.030
- Yang, L., Zhang, X., & Xu, G. (2014). Thermal performance of a solar storage packed bed using spherical capsules filled with PCM having different melting points. Renewable Energy, 64, 26-33. https://doi.org/10.1016/j.enbuild.2013.09.045
- Zhao, M., Liu, Z., & Zhang, Q. (2009). Feasibility analysis of constructing parabolic trough solar thermal power plant in inner Mongolia of China. In: Proc. Asia– Pacific power and energy engineering conference, 1-4. https://doi.org/10.1109/APPEEC.2009.4918378
ارسال نظر در مورد این مقاله