با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله مروری لاتین

نویسندگان

1 گروه مهندسی، دانشکده مهندسی کامپیوتر، موسسه آموزش عالی گلستان، گرگان، ایران

2 گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

امروزه تقریباً نیمی از کل نیازهای غذایی انسان به‌ویژه در آسیا مستقیماً از غلات تأمین می‌شود و نزدیک به 70 درصد از سطح زیرکشت جهان که یک میلیارد هکتار است را غلات اشغال می‌کنند. بنابراین یافتن روش‌های غیرمخرب برای افزایش کیفیت بذر در کشاورزی و صنعت باید توسعه یابد. پلاسمای سرد روشی جدید و کارآمد در بخش کشاورزی و غذایی است که می‌توان از آن برای غیرفعال کردن میکروارگانیسم‌های سطحی و تحریک بذر استفاده کرد. این بررسی خلاصه‌ای از اثربخشی درمان با پلاسمای سرد بر ویژگی‌های چهار گیاه مهم غلات: گندم، برنج، ذرت و جو را ارائه می‌کند. تمرکز بر روی اثرات این تیمار بر روی جوانه‌زنی بذر، تغییرات خواص سطحی و جذب آب بذر، پارامترهای رشد ریشه، طول ساقه و نهال، پارامترهای زیست‌توده و فعالیت‌های متابولیکی است. با بررسی تحقیقات انجام‌شده توسط محققان مشاهده می‌شود که بذر غلات تیمارشده با پلاسمای سرد دارای قدرت جوانه‌زنی، جذب آب، طول ساقه و اندام هوایی، راندمان رشد، وزن اندام هوایی و ریشه و فعالیت متابولیکی بهتری بودند. این بررسی می‌تواند روندهای بالقوه امیدوارکننده‌ای را در استفاده از پلاسما به‌عنوان روشی برای کاهش شیوع بیماری‌های مضر گیاهی که از طریق بذر منتقل می‌شود و خواب دانه‌های سخت را کاهش دهد، ارائه دهد.

کلیدواژه‌ها

موضوعات

©2023 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0).

  1. Adhikari, B., Adhikari, M., Ghimire, B., Adhikari, B. C., Park, G., & Choi, E. H. (2020). Cold plasma seed priming modulates growth, redox homeostasis and stress response by inducing reactive species in tomato (Solanum lycopersicum). Free Radical Biology and Medicine, 156, 57-69. https://doi.org/10.1016/j.freeradbiomed.2020.06.003
  2. Ahn, C., Gill, J., & Ruzic, D. N. (2019). Growth of plasma-treated corn seeds under realistic conditions. Scientific reports, 9(1), 4355. https://doi.org/10.1038/s41598-019-40700-9
  3. Ali, Q., Daud, M., Haider, M. Z., Ali, S., Rizwan, M., Aslam, N., Noman, A., Iqbal, N., Shahzad, F., & Deeba, F. (2017). Seed priming by sodium nitroprusside improves salt tolerance in wheat (Triticum aestivum) by enhancing physiological and biochemical parameters. Plant Physiology and Biochemistry, 119, 50-58. https://doi.org/10.1016/j.plaphy.2017.08.010
  4. Amnuaysin, N., Korakotchakorn, H., Chittapun, S., & Poolyarat, N. (2018). Seed germination and seedling growth of rice in response to atmospheric air dielectric-barrier discharge plasma. Songklanakarin Journal of Science & Technology, 40(4).
  5. Bormashenko, E., Grynyov, R., Bormashenko, Y., & Drori, E. (2012). Cold radiofrequency plasma treatment modifies wettability and germination speed of plant seeds. Scientific Reports, 2(1), 741. https://doi.org/10.1038/srep00741
  6. Butscher, D., Schlup, T., Roth, C., Müller-Fischer, N., Gantenbein-Demarchi, C., & von Rohr, P. R. (2015). Inactivation of microorganisms on granular materials: Reduction of Bacillus amyloliquefaciens endospores on wheat grains in a low pressure plasma circulating fluidized bed reactor. Journal of Food Engineering, 159, 48-56. https://doi.org/10.1016/j.jfoodeng.2015.03.009
  7. Butscher, D., Zimmermann, D., Schuppler, M., & von Rohr, P. R. (2016). Plasma inactivation of bacterial endospores on wheat grains and polymeric model substrates in a dielectric barrier discharge. Food Control, 60, 636-645. https://doi.org/10.1016/j.foodcont.2015.09.003
  8. Chalise, R., Bhandari, P., Sharma, S., Basnet, S., Subedi, D. P., & Khanal, R. (2023). Enhancement of wheat yield by atmospheric pressure plasma treatment. AIP Advances, 13(6). https://doi.org/10.1063/5.0156552
  9. Chen, H. H., Chang, H. C., Chen, Y. K., Hung, C. L., Lin, S. Y., & Chen, Y. S. (2016). An improved process for high nutrition of germinated brown rice production: Low-pressure plasma. Food Chemistry, 191, 120-127. https://doi.org/10.1016/j.foodchem.2015.01.083
  10. Chen, H. H., Chen, Y. K., & Chang, H. C. (2012). Evaluation of physicochemical properties of plasma treated brown rice. Food Chemistry, 135(1), 74-79. https://doi.org/10.1016/j.foodchem.2012.04.092
  11. Chen, H. H., Hung, C. L., Lin, S. Y., & Liou, G. J. (2015). Effect of low-pressure plasma exposure on the storage characteristics of brown rice. Food and Bioprocess Technology, 8, 471-477. https://doi.org/10.1007/s11947-014-1415-6
  12. Coutinho, N. M., Silveira, M. R., Rocha, R. S., Moraes, J., Ferreira, M. V. S., Pimentel, T. C., Freitas, M. Q., Silva, M. C., Raices, R. S., & Ranadheera, C. S. (2018). Cold plasma processing of milk and dairy products. Trends in Food Science & Technology, 74, 56-68. https://doi.org/10.1016/j.tifs.2018.02.008
  13. Dobrin, D., Magureanu, M., Mandache, N. B., & Ionita, M. D. (2015). The effect of non-thermal plasma treatment on wheat germination and early growth. Innovative Food Science & Emerging Technologies, 29, 255-260. https://doi.org/10.1016/j.ifset.2015.02.006
  14. Fang, Z., Wang, X., Shao, R., Qiu, Y., & Edmund, K. (2011). The effect of discharge power density on polyethylene terephthalate film surface modification by dielectric barrier discharge in atmospheric air. Journal of Electrostatics, 69(1), 60-66. https://doi.org/10.1016/j.elstat.2010.11.003
  15. Feizollahi, E., Iqdiam, B., Vasanthan, T., Thilakarathna, M. S., & Roopesh, M. (2020). Effects of atmospheric-pressure cold plasma treatment on deoxynivalenol degradation, quality parameters, and germination of barley grains. Applied Sciences, 10(10), 3530. https://doi.org/10.3390/app10103530
  16. Fereydooni, M., & Alizadeh, H. H. A. (2022). Microscopic investigation of cold plasma effect on chickpea seed germination. Journal of Agricultural Machinery, 12(2), 231-240. (in Persian with English abstract). https://doi.org/10.22067/jam.v12i2.88718
  17. Filatova, I., Azharonok, V., Goncharik, S., Lushkevich, V., Zhukovsky, A., & Gadzhieva, G. (2014). Effect of RF plasma treatment on the germination and phytosanitary state of seeds. Journal of Applied Spectroscopy, 81, 250-256. https://doi.org/10.1007/s10812-014-9918-5
  18. Ghaly, T., & Sutherland, J. (1984). Heat damage to grain and seeds. Journal of Agricultural Engineering Research, 30, 337-345. https://doi.org/10.1016/S0021-8634(84)80034-7
  19. Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., Pretty, J., Robinson, S., Thomas, S. M., & Toulmin, C. (2010). Food security: the challenge of feeding 9 billion people. Science, 327(5967), 812-818. https://doi.org/10.1126/science.1185383
  20. Gómez-Ramírez, A., López-Santos, C., Cantos, M., García, J. L., Molina, R., Cotrino, J., Espinós, J., & González-Elipe, A. R. (2017). Surface chemistry and germination improvement of Quinoa seeds subjected to plasma activation. Scientific Reports, 7(1), 5924. https://doi.org/10.1038/s41598-017-06164-5
  21. Gujral, H. S., Sharma, P., Kumar, A., & Singh, B. (2012). Total phenolic content and antioxidant activity of extruded brown rice. International Journal of Food Properties, 15(2), 301-311. https://doi.org/10.1080/10942912.2010.483617
  22. Guo, J., He, Z., Ma, C., Li, W., Wang, J., Lin, F., Liu, X., & Li, L. (2023). Evaluation of cold plasma for decontamination of molds and mycotoxins in rice grain. Food Chemistry, 402, 134159. https://doi.org/10.1016/j.foodchem.2022.134159
  23. Guo, Q., Meng, Y., Qu, G., Wang, T., Yang, F., Liang, D., & Hu, S. (2018). Improvement of wheat seed vitality by dielectric barrier discharge plasma treatment. Bioelectromagnetics, 39(2), 120-131. https://doi.org/10.1002/bem.22088
  24. Guo, Q., Wang, Y., Zhang, H., Qu, G., Wang, T., Sun, Q., & Liang, D. (2017). Alleviation of adverse effects of drought stress on wheat seed germination using atmospheric dielectric barrier discharge plasma treatment. Scientific Reports, 7(1), 16680. https://doi.org/10.1038/s41598-017-16944-8
  25. Hasan, M., Sohan, M. S. R., Sajib, S. A., Hossain, M. F., Miah, M., Maruf, M. M. H., Khalid-Bin-Ferdaus, K. M., Kabir, A. H., Talukder, M. R., & Rashid, M. M. (2022). The effect of low-pressure dielectric barrier discharge (lpdbd) plasma in boosting germination, growth, and nutritional properties in wheat. Plasma Chemistry and Plasma Processing, 42(2), 339-362. https://doi.org/10.1007/s11090-021-10217-z
  26. Henselová, M., Slováková, Ľ., Martinka, M., & Zahoranová, A. (2012). Growth, anatomy and enzyme activity changes in maize roots induced by treatment of seeds with low-temperature plasma. Biologia, 67, 490-497. https://doi.org/10.2478/s11756-012-0046-5
  27. Hui, Y., Wang, D., You, Y., Shao, C., Zhong, C., & Wang, H. (2020). Effect of low temperature plasma treatment on biological characteristics and yield components of wheat seeds (Triticum aestivum). Plasma Chemistry and Plasma Processing, 40, 1555-1570. https://doi.org/10.1007/s11090-020-10104-z
  28. Jiang, J., He, X., Li, L., Li, J., Shao, H., Xu, Q., Ye, R., & Dong, Y. (2014). Effect of cold plasma treatment on seed germination and growth of wheat. Plasma Science and Technology, 16(1), 54. https://doi.org/10.1088/1009-0630/16/1/12
  29. Kabir, A. H., Rahman, M. M., Das, U., Sarkar, U., Roy, N. C., Reza, M. A., Talukder, M. R., & Uddin, M. A. (2019). Reduction of cadmium toxicity in wheat through plasma technology. PLoS One, 14(4), e0214509. https://doi.org/10.1371/journal.pone.0214509
  30. Keener, K., & Misra, N. (2016). Future of cold plasma in food processing. In Cold plasma in food and agriculture (pp. 343-360). Elsevier. https://doi.org/10.1016/B978-0-12-801365-6.00014-7
  31. Kikuchi, K., Koizumi, M., Ishida, N., & Kano, H. (2006). Water uptake by dry beans observed by micro-magnetic resonance imaging. Annals of Botany, 98(3), 545-553. https://doi.org/10.1093/aob/mcl145
  32. Kusano, Y., Salewski, M., Leipold, F., Zhu, J., Ehn, A., Li, Z., & Aldén, M. (2014). Stability of alternating current gliding arcs. The European Physical Journal D, 68, 1-9. https://doi.org/10.1140/epjd/e2014-50343-8
  33. Lee, K. H., Kim, H. J., Woo, K. S., Jo, C., Kim, J. K., Kim, S. H., Park, H. Y., Oh, S. K., & Kim, W. H. (2016). Evaluation of cold plasma treatments for improved microbial and physicochemical qualities of brown rice. LWT, 73, 442-447. https://doi.org/10.1016/j.lwt.2016.06.055
  34. Lee, K. H., Woo, K. S., Yong, H. I., Jo, C., Lee, S. K., Lee, B. W., Oh, S. K., Lee, Y. Y., Lee, B., & Kim, H. J. (2018). Assessment of microbial safety and quality changes of brown and white cooked rice treated with atmospheric pressure plasma. Food Science and Biotechnology, 27, 661-667. https://doi.org/10.1007/s10068-017-0297-6
  35. Li, Y., Wang, T., Meng, Y., Qu, G., Sun, Q., Liang, D., & Hu, S. (2017). Air atmospheric dielectric barrier discharge plasma induced germination and growth enhancement of wheat seed. Plasma Chemistry and Plasma Processing, 37, 1621-1634. https://doi.org/10.1007/s11090-017-9835-5
  36. Liao, X., Cullen, P., Muhammad, A. I., Jiang, Z., Ye, X., Liu, D., & Ding, T. (2020). Cold plasma–based hurdle interventions: New strategies for improving food safety. Food Engineering Reviews, 12, 321-332. https://doi.org/10.1007/s12393-020-09222-3
  37. Liu, J., Wang, R., Chen, Z., & Li, X. (2021). Effect of cold plasma treatment on cooking, thermomechanical and surface structural properties of Chinese milled rice. Food and Bioprocess Technology, 14(5), 866-886. https://doi.org/10.1007/s11947-021-02614-1
  38. Liu, Q., Wu, H., Luo, J., Liu, J., Zhao, S., Hu, Q., & Ding, C. (2021). Effect of dielectric barrier discharge cold plasma treatments on flavor fingerprints of brown rice. Food Chemistry, 352, 129402. https://doi.org/10.1016/j.foodchem.2021.129402
  39. Los, A., Ziuzina, D., Akkermans, S., Boehm, D., Cullen, P. J., Van Impe, J., & Bourke, P. (2018). Improving microbiological safety and quality characteristics of wheat and barley by high voltage atmospheric cold plasma closed processing. Food Research International, 106, 509-521. https://doi.org/10.1016/j.foodres.2018.01.009
  40. Los, A., Ziuzina, D., Boehm, D., Cullen, P. J., & Bourke, P. (2019). Investigation of mechanisms involved in germination enhancement of wheat (Triticum aestivum) by cold plasma: Effects on seed surface chemistry and characteristics. Plasma Processes and Polymers, 16(4), 1800148. https://doi.org/10.1002/ppap.201800148
  41. Lutts, S., Benincasa, P., Wojtyla, L., Kubala, S., Pace, R., Lechowska, K., Quinet, M., & Garnczarska, M. (2016). Seed priming: new comprehensive approaches for an old empirical technique. New Challenges in Seed Biology-basic and Translational Research Driving Seed Technology, 46.
  42. Maghsoudi, H., Balvardi, M., Ganjovi, A., & Amir-Mojahedi, M. S. (2023). Investigating the Effect of Cold Plasma on some Chemical Properties of Date Fruits (Phoenix dactylifera). Biomechanism and Bioenergy Research, 2(1), 56-67. https://doi.org/10.22103/BBR.2023.20459.1044
  43. Mazandarani, A., Goudarzi, S., Ghafoorifard, H., & Eskandari, A. (2020). Evaluation of DBD plasma effects on barley seed germination and seedling growth. IEEE Transactions on Plasma Science, 48(9), 3115-3121. https://doi.org/1109/TPS.2020.3012909
  44. McDonald, M. B. (1994). Seed germination and seedling establishment. Physiology and Determination of Crop Yield, 37-60. https://doi.org/10.2134/1994.physiologyanddetermination.c3
  45. Mendis, D., Rosenberg, M., & Azam, F. (2000). A note on the possible electrostatic disruption of bacteria. IEEE Transactions on Plasma Science, 28(4), 1304-1306. https://doi.org/1109/27.893321
  46. Meng, Y., Qu, G., Wang, T., Sun, Q., Liang, D., & Hu, S. (2017). Enhancement of germination and seedling growth of wheat seed using dielectric barrier discharge plasma with various gas sources. Plasma Chemistry and Plasma Processing, 37, 1105-1119. https://doi.org/10.1007/s11090-017-9799-5
  47. Nalwa, C., Thakur, A. K., Vikram, A., Rane, R., & Vaid, A. (2017). Studies on plasma treatment and priming of seeds of bell pepper (Capsicum annuum). Journal of Applied and Natural Science, 9(3), 1505-1509. https://doi.org/10.31018/jans.v9i3.1392
  48. Niemira, B. A. (2012). Cold plasma decontamination of foods. Annual Review of Food Science and Technology, 3, 125-142. https://doi.org/10.1146/annurev-food-022811-101132
  49. Nonogaki, H. (2014). Seed dormancy and germination—emerging mechanisms and new hypotheses. Frontiers in Plant Science, 5, 233. https://doi.org/10.3389/fpls.2014.00233
  50. Park, H., Puligundla, P., & Mok, C. (2020). Cold plasma decontamination of brown rice grains: Impact on biochemical and sensory qualities of their corresponding seedlings and aqueous tea infusions. LWT, 131, 109508. https://doi.org/10.1016/j.lwt.2020.109508
  51. Park, Y., Oh, K. S., Oh, J., Seok, D. C., Kim, S. B., Yoo, S. J., & Lee, M. J. (2018). The biological effects of surface dielectric barrier discharge on seed germination and plant growth with barley. Plasma Processes and Polymers, 15(2), 1600056. https://doi.org/10.1002/ppap.201600056
  52. Penado, K. N. M., Mahinay, C. L. S., & Culaba, I. B. (2017). Effect of atmospheric plasma treatment on seed germination of rice (Oryza sativa). Japanese Journal of Applied Physics, 57(1S), 01AG08. https://doi.org/10.7567/JJAP.57.01AG08
  53. Pérez-Pizá, M. C., Cejas, E., Zilli, C., Prevosto, L., Mancinelli, B., Santa-Cruz, D., Yannarelli, G., & Balestrasse, K. (2020). Enhancement of soybean nodulation by seed treatment with non–thermal plasmas. Scientific Reports, 10(1), 4917. https://doi.org/10.1038/s41598-020-61913-3
  54. Radjabian, T., Saboora, A., Hhasani, B., & Fallah-Hosseini, H. (2007). Effects of GA3 and chilling on seed germination of Ferula assa-foetida, as a medicinal plant. Researches on Medicinal and Aromatic Plants of Iran, 23(3).
  55. Ranieri, P., Sponsel, N., Kizer, J., Rojas‐Pierce, M., Hernández, R., Gatiboni, L., Grunden, A., & Stapelmann, K. (2021). Plasma agriculture: Review from the perspective of the plant and its ecosystem. Plasma Processes and Polymers, 18(1), 2000162. https://doi.org/10.1002/ppap.202000162
  56. Rasooli, Z., Barzin, G., Mahabadi, T. D., & Entezari, M. (2021). Stimulating effects of cold plasma seed priming on germination and seedling growth of cumin plant. South African Journal of Botany, 142, 106-113. https://doi.org/10.1016/j.sajb.2021.06.025
  57. Ray, D. K., Mueller, N. D., West, P. C., & Foley, J. A. (2013). Yield trends are insufficient to double global crop production by 2050. PloS one, 8(6), e66428. https://doi.org/10.1371/journal.pone.0066428
  58. Roy, N., Hasan, M., Talukder, M., Hossain, M., & Chowdhury, A. (2018). Prospective applications of low frequency glow discharge plasmas on enhanced germination, growth and yield of wheat. Plasma Chemistry and Plasma Processing, 38, 13-28. https://doi.org/10.1007/s11090-017-9855-1
  59. Saberi, M., Sanavy, M., Zare, R., & Ghomi, H. (2019). Improvement of photosynthesis and photosynthetic productivity of winter wheat by cold plasma treatment under haze condition. Journal of Agricultural Science and Technology, 21(7), 1889-1904. https://doi.org/20.1001.1.16807073.2019.21.7.8.9
  60. Sabularse, V., Liuzzo, J., Rao, R., & Grodner, R. (1991). Cooking quality of brown rice as influenced by gamma irradiation, variety and storage. Journal of Food Science, 56(1), 96-98. https://doi.org/10.1111/j.1365-2621.1991.tb07984.x
  61. Sajib, S. A., Billah, M., Mahmud, S., Miah, M., Hossain, F., Omar, F. B., Roy, N. C., Hoque, K. M. F., Talukder, M. R., & Kabir, A. H. (2020). Plasma activated water: The next generation eco-friendly stimulant for enhancing plant seed germination, vigor and increased enzyme activity, a study on black gram (Vigna mungo). Plasma Chemistry and Plasma Processing, 40, 119-143. https://doi.org/10.1007/s11090-019-10028-3
  62. Sarangapani, C., Devi, Y., Thirundas, R., Annapure, U. S., & Deshmukh, R. R. (2015). Effect of low-pressure plasma on physico-chemical properties of parboiled rice. LWT-Food Science and Technology, 63(1), 452-460. https://doi.org/10.1016/j.lwt.2015.03.026
  63. Sarangapani, C., Keogh, D. R., Dunne, J., Bourke, P., & Cullen, P. (2017). Characterisation of cold plasma treated beef and dairy lipids using spectroscopic and chromatographic methods. Food Chemistry, 235, 324-333. https://doi.org/10.1016/j.foodchem.2017.05.016
  64. Selcuk, M., Oksuz, L., & Basaran, P. (2008). Decontamination of grains and legumes infected with Aspergillus spp. and Penicillum spp. by cold plasma treatment. Bioresource Technology, 99(11), 5104-5109. https://doi.org/10.1016/j.biortech.2007.09.076
  65. Sera, B., Spatenka, P., S̆erý, M., Vrchotova, N., & Hruskova, I. (2010). Influence of plasma treatment on wheat and oat germination and early growth. IEEE Transactions on Plasma Science, 38(10), 2963-2968. https://doi.org/10.1109/TPS.2010.2060728
  66. Shi, H., Ileleji, K., Stroshine, R. L., Keener, K., & Jensen, J. L. (2017). Reduction of aflatoxin in corn by high voltage atmospheric cold plasma. Food and Bioprocess Technology, 10, 1042-1052. https://doi.org/10.1007/s11947-017-1873-8
  67. Sidik, M. A. B., Buntat, Z., Nawawi, Z., Jambak, M. I., Buntat, Y., & Musa, F. N. (2018). Effects of cold plasma treatment on the growth rate of corn and eggplant plants. 2018 International Conference on Electrical Engineering and Computer Science (ICECOS), 441-446. https://doi.org/10.1109/ICECOS.2018.8605250
  68. Sivachandiran, L., & Khacef, A. (2017). Enhanced seed germination and plant growth by atmospheric pressure cold air plasma: combined effect of seed and water treatment. RSC advances, 7(4), 1822-1832. https://doi.org/10.1039/C6RA24762H
  69. Sookwong, P., Yodpitak, S., Doungkaew, J., Jurithayo, J., Boonyawan, D., & Mahatheeranont, S. (2014). Application of oxygen-argon plasma as a potential approach of improving the nutrition value of pre-germinated brown rice. Journal of Food and Nutrition Research, 2(12), 946-951. https://doi.org/10.12691/jfnr-2-12-14
  70. Starič, P., Grobelnik Mlakar, S., & Junkar, I. (2021). Response of two different wheat varieties to glow and afterglow oxygen plasma. Plants, 10(8), 1728. https://doi.org/10.3390/plants10081728
  71. Starič, P., Mravlje, J., Mozetič, M., Zaplotnik, R., Šetina Batič, B., Junkar, I., & Vogel Mikuš, K. (2022). The influence of glow and afterglow cold plasma treatment on biochemistry, morphology, and physiology of wheat seeds. International Journal of Molecular Sciences, 23(13), 7369. https://doi.org/10.3390/ijms23137369
  72. Suhem, K., Matan, N., Nisoa, M., & Matan, N. (2013). Inhibition of Aspergillus flavus on agar media and brown rice cereal bars using cold atmospheric plasma treatment. International Journal of Food Microbiology, 161(2), 107-111. https://doi.org/10.1016/j.ijfoodmicro.2012.12.002
  73. Ten Bosch, L., Pfohl, K., Avramidis, G., Wieneke, S., Viöl, W., & Karlovsky, P. (2017). Plasma-based degradation of mycotoxins produced by Fusarium, Aspergillus and Alternaria species. Toxins, 9(3), 97. https://doi.org/10.3390/toxins9030097
  74. Thirumdas, R., Deshmukh, R., & Annapure, U. (2015). Effect of low temperature plasma processing on physicochemical properties and cooking quality of basmati rice. Innovative Food Science & Emerging Technologies, 31, 83-90. https://doi.org/10.1016/j.ifset.2015.08.003
  75. Tian, S., Nakamura, K., & Kayahara, H. (2004). Analysis of phenolic compounds in white rice, brown rice, and germinated brown rice. Journal of agricultural and food chemistry, 52(15), 4808-4813. https://doi.org/10.1021/jf049446f
  76. Velichko, I., Gordeev, I., Shelemin, A., Nikitin, D., Brinar, J., Pleskunov, P., Choukourov, A., Pazderů, K., & Pulkrábek, J. (2019). Plasma jet and dielectric barrier discharge treatment of wheat seeds. Plasma Chemistry and Plasma Processing, 39, 913-928. https://doi.org/10.1007/s11090-019-09991-8
  77. Wang, J., Cheng, J. H., & Sun, D. W. (2023). Enhancement of wheat seed germination, seedling growth and nutritional properties of wheat plantlet juice by plasma activated water. Journal of Plant Growth Regulation, 42(3), 2006-2022. https://doi.org/10.1007/s00344-022-10677-3
  78. Wang, Y., Thorup-Kristensen, K., Jensen, L. S., & Magid, J. (2016). Vigorous root growth is a better indicator of early nutrient uptake than root hair traits in spring wheat grown under low fertility. Frontiers in Plant Science, 7, 865. https://doi.org/10.3389/fpls.2016.00865
  79. Yodpitak, S., Mahatheeranont, S., Boonyawan, D., Sookwong, P., Roytrakul, S., & Norkaew, O. (2019). Cold plasma treatment to improve germination and enhance the bioactive phytochemical content of germinated brown rice. Food Chemistry, 289, 328-339. https://doi.org/10.1016/j.foodchem.2019.03.061
  80. Yong, H. I., Lee, S. H., Kim, S. Y., Park, S., Park, J., Choe, W., & Jo, C. (2019). Color development, physiochemical properties, and microbiological safety of pork jerky processed with atmospheric pressure plasma. Innovative Food Science & Emerging Technologies, 53, 78-84. https://doi.org/10.1016/j.ifset.2017.09.005
  81. Zahoranová, A., Henselová, M., Hudecová, D., Kaliňáková, B., Kováčik, D., Medvecká, V., & Černák, M. (2016). Effect of cold atmospheric pressure plasma on the wheat seedlings vigor and on the inactivation of microorganisms on the seeds surface. Plasma Chemistry and Plasma Processing, 36, 397-414. https://doi.org/10.1007/s11090-015-9684-z
  82. Zulfiqar, F. (2021). Effect of seed priming on horticultural crops. Scientia Horticulturae, 286, 110197. https://doi.org/10.1016/j.scienta.2021.110197
CAPTCHA Image