##plugins.themes.bootstrap3.article.main##

ابوالفضل ضیاءالدینی حمید مرتضی پور محسن شمسی امیر صرافی

چکیده

تغییرات درجه حرارت به‌طور قابل ملاحظه‌ای بر کیفیت و کمیت محصول تولید شده در گلخانه اثر می‌گذارد. از این رو، یکی از مهمترین نیازهای کشت گلخانه‌ای در فصل‌های سرد، سامانه‌ی تأمین حرارت است. در تحقیق حاضر، یک سامانه‌ی ترکیبی گرمایش خورشیدی برای گلخانه، به‌صورت تئوری و تجربی، مورد بررسی قرار گرفت. سامانه‌ی مورد نظر دارای یک متمرکزکننده‌ی سهموی خطی، یک جمع‌کننده‌ی صفحه تخت خورشیدی و مخزن ذخیره حرارت بود. جمع‌کننده‌ی صفحه تخت در داخل گلخانه نصب شد تا در شب نقش تبادل حرارت ذخیره شده در مخزن، با محیط گلخانه را برعهده داشته باشد. تحلیل انرژی و اکسرژی سامانه انجام و معادلات به‌دست‌آمده با استفاده از داده‌های تجربی اعتبارسنجی شدند. نتایج تحقیق نشان داد که با توجه به معیارهای آماری ضریب همبستگی و ریشه‌ی میانگین مربعات خطا، داده‌های نظری با دقت قابل قبولی نتایج تجربی را پیش‌بینی کردند. افزایش دبی سیال عبوری در متمرکزکننده موجب افزایش دمای خروجی آن و کاهش دمای خروجی جمع‌کننده‌ی صفحه تخت شد. بیشترین بازده اکسرژی متمرکزکننده و جمع‌کننده‌ی صفحه تخت، به‌ترتیب در دبی‌های 5/1 و 5/0 کیلوگرم بر دقیقه به‌دست آمدند. در مجموع، بالاترین مقدار ذخیره انرژی در مخزن، در دبی سیال عبوری 5/0 کیلوگرم بر دقیقه مشاهده گردید. بنابراین، استفاده از این دبی جریان در متمرکزکننده، برای کار با سامانه‌ی مورد نظر، پیشنهاد گردید.

جزئیات مقاله

کلمات کلیدی

اعتبارسنجی, انتقال حرارت, بازده اکسرژی, ذخیره انرژی, متمرکزکننده ی سهموی خورشیدی

مراجع
1. Akpinar, E. K., and F. Koçyiğit. 2010. Energy and exergy analysis of a new flat-plate solar air heater having different obstacles on absorber plates. Applied Energy 87: 3438-3450.
2. Alpuche, M. G., C. Heard, R. Best, and J. Rojas. 2005. Exergy analysis of air cooling systems in buildings in hot humid climates. Applied Thermal Engineering 25: 507-517.
3. Anifantis, A. S., A. Colantoni, and S. Pascuzzi. 2017. Thermal energy assessment of a small scale photovoltaic, hydrogen and geothermal stand-alone system for greenhouse heating. Renewable Energy 103: 115-127.
4. Attar, I. and, A. Farhat. 2015. Efficiency evaluation of a solar water heating system applied to the greenhouse climate. Solar Energy 119: 212-224.
5. Bahrehmand, D., M. Ameri, and M. Gholampour. 2015. Energy and exergy analysis of different solar air collector systems with forced convection. Renewable Energy 83: 1119-1130.
6. Benli, H., and A. Durmuş. 2009. Performance analysis of a latent heat storage system with phase change material for new designed solar collectors in greenhouse heating. Solar Energy 83: 2109-2119.
7. Bergman, T. L. 2012. Adrienne S. lavine, Frank P. Incropera, David, Introduction to Heat Transfer: John Wiley & Sons. Inc.
8. Bot, G., N. van de Braak, H. Challa, S. Hemming, T. Rieswijk, G. Van Straten, and I. Verlodt. 2005. The solar greenhouse: state of the art in energy saving and sustainable energy supply. Acta Horticulturae 691: 501-508.
9. Bouadila, S., M. Lazaar, S. Skouri, S. Kooli, and A. Farhat. 2014. Assessment of the greenhouse climate with a new packed-bed solar air heater at night, in Tunisia. Renewable and Sustainable Energy Reviews 35: 31-41.
10. Dincer, I., and Y. A. Cengel. 2001. Energy, entropy and exergy concepts and their roles in thermal engineering. Entropy 3: 116-149.
11. Dincer, I., and M. A. Rosen. 2012. Exergy: energy, environment and sustainable development. Newnes.
12. Duffie, J. A., and W. A. Beckman. 1974. Solar energy thermal processes. University of Wisconsin-Madison, Solar Energy Laboratory, Madison, WI. Report no.
13. Dutta Gupta, K., and S. K. Saha. 1990. Energy analysis of solar thermal collectors. Renewable Energy and Environment, Himanshu Publications, New Delhi, India: 283-287.
14. Esen, M., and T. Yuksel. 2013. Experimental evaluation of using various renewable energy sources for heating a greenhouse. Energy and Buildings 65: 340-351.
15. Farahat, S., F. Sarhaddi, and H. Ajam. 2009. Exergetic optimization of flat plate solar collectors. Renewable Energy 34: 1169-1174.
16. Ge, Z., H. Wang, H. Wang, S. Zhang, and X. Guan. 2014. Exergy analysis of flat plate solar collectors. Entropy 16: 2549-2567.
17. Ghosal, M., and G. Tiwari. 2004. Mathematical modeling for greenhouse heating by using thermal curtain and geothermal energy. Solar energy 76: 603-613.
18. Hepbasli, A. 2012. Low exergy (LowEx) heating and cooling systems for sustainable buildings and societies. Renewable and Sustainable Energy Reviews 16: 73-104.
19. Jafari, M., H. Mortezapour, K. Jafari Naeimi, and M. H. Maharlooei. 2017. Performance Investigation of a Solar Greenhouse Heating System Equipped with a Parabolic Trough Solar Concentrator and a Double-Purpose Heat Exchanger. Journal of Agricultural Machinery 7 (2): 364-378. (In Farsi).
20. Jafarkazemi, F., and E. Ahmadifard. 2013. Energetic and exergetic evaluation of flat plate solar collectors. Renewable Energy 56: 55-63.
21. Jaramillo, O., M. Borunda, K. Velazquez-Lucho, and M. Robles. 2016. Parabolic trough solar collector for low enthalpy processes: An analysis of the efficiency enhancement by using twisted tape inserts. Renewable Energy 93: 125-141.
22. Joudi, K. A., and A. A. Farhan. 2014. Greenhouse heating by solar air heaters on the roof. Renewable Energy 72: 406-414.
23. Kahrobaian, A., and H. R. Malekmohammadi. 2013. Exergy Optimization Applied to Linear Parabolic. Journal of Algorithms and Computation 42: 131-144.
24. Kalogirou, S. A. 2013. Solar energy engineering: processes and systems. Academic Press. Elsevier.
25. Kalogirou, S. A., S. Karellas, V. Badescu, and K. Braimakis. 2016. Exergy analysis on solar thermal systems: a better understanding of their sustainability. Renewable Energy 85: 1328-1333.
26. Karsli, S. 2007. Performance analysis of new-design solar air collectors for drying applications. Renewable Energy 32: 1645-1660.
27. Mehrpooya, M., H. Hemmatabady, and M. H. Ahmadi. 2015. Optimization of performance of combined solar collector-geothermal heat pump systems to supply thermal load needed for heating greenhouses. Energy Conversion and Management 97: 382-392.
28. Mortezapour, H., B. Ghobadian, M. Khoshtaghaza, and S. Minaee. 2012. Performance analysis of a two-way hybrid photovoltaic/thermal solar collector. Journal of Agricultural Science and Technology 14: 767-780.
29. Nayak, S., and G. Tiwari. 2008. Energy and exergy analysis of photovoltaic/thermal integrated with a solar greenhouse. Energy and Buildings 40: 2015-2021.
30. Padilla, R. V., A. Fontalvo, G. Demirkaya, A. Martinez, and A. G. Quiroga. 2014. Exergy analysis of parabolic trough solar receiver. Applied Thermal Engineering 67: 579-586.
31. SABA. 2013. Iran Energy Balance Sheet.
32. Santamouris, M., A. Argiriou, and M. Vallindras. 1994. Design and operation of a low energy consumption passive solar agricultural greenhouse. Solar Energy 52: 371-378.
33. Shrivastava, R., V. Kumar, and S. Untawale. 2017. Modeling and simulation of solar water heater: A TRNSYS perspective. Renewable and Sustainable Energy Reviews 67: 126-143.
34. Taki, M., Y. Ajabshirchi, S. F. Ranjbar, A. Rohani, and M. Matloobi. 2017. Evaluation of heat transfer mathematical models and multiple linear regression to predict the inside variables in semi-solar greenhouse. Journal of Agricultural Machinery 7 (1): 204-220. (In Farsi).
35. Tiwari, G. 2003. Greenhouse technology for controlled environment. Alpha Science Int'l Ltd.
36. Utlu, Z., and A. Hepbasli. 2007. A review on analyzing and evaluating the energy utilization efficiency of countries. Renewable and Sustainable Energy Reviews 11: 1-29.
ارجاع به مقاله
ضیاءالدینیا., مرتضی پورح., شمسیم., & صرافیا. (2019). تحلیل انرژی و اکسرژی سامانه‌ی گرمایش گلخانه مجهز به متمرکزکننده‌ی سهموی خطی و جمع‌کننده‌ی صفحه-تخت خورشیدی. ماشین‌های کشاورزی, 9(2), 439-453. https://doi.org/10.22067/jam.v9i2.65174
نوع مقاله
مقاله کامل پژوهشی