with the collaboration of Iranian Society of Mechanical Engineers (ISME)

Document Type : Research Article

Authors

Biosystems Engineering Dept., Shiraz University, Shiraz, Iran

Abstract

Introduction
Cereals as one of the most important sources of food plants could provide more than 70% of the food for the human population. Passing of water from the magnetic field is among approachable methods in order to reduce the total amount of water used for irrigation. Moreover, magnetized water is a new concept for increasing the water efficiency. Therefore, this study was aimed to investigate the effects of the magnetized water on some of features containing dry weight, germination velocity and percentage, length and weight vigor indices of five common wheat cultivars including Roshan, Sardari, Shiraz, Falat and Yavarus, to introduce the best cultivar considering the growth and germination indices as well as water and energy efficiency.
Materials and Methods
To perform this experiment, a device with a magnetic field of 500 millitesla was constructed to accommodate both the water path and the placement of seeds in the magnetic field. To perform the experiments, 10 seeds in 4-kg vases and 25 seeds in each Petri dish were cultivated in the greenhouse and laboratory, respectively. The experiments were carried out in the form of completely randomized factorial design. The factors are considered as the duration time of keeping the water in the magnetic field (three levels of 30, 60 and 120 minutes), the intensity of the magnetic field (three levels of 100, 150, and 200 millitesla), and five wheat cultivars (Roshan, Sardari, Shiraz, Falat and Yavarus) in three replications.
Experiments related to the both of rate and percent of germination and for dry weight were performed at room temperature in the laboratory and greenhouse under controlled conditions, respectively. The measured data were analyzed using SAS software. The F test was used to determine the significant level of treatments. The comparison of the means was evaluated using LSD test.
 Results and Discussion
The obtained results, showed that the effect of magnetic water on all growth and germination indices compared to control samples was significant. Under the 150 millitesla and 120 minutes treatment, the Yavarus, Roshan and Sardari cultivar had maximum dry weight, respectively. The Roshan cultivar had the maximum germination velocity at 100 and 150 millitesla and duration time of 30 minutes. Moreover, the maximum germination percentage was found in the Roshan cultivar, which did not have a significant difference with Yavarus cultivar. The Roshan cultivar in 200 millitesla field and duration time of 60 minutes, had the maximum percentage of length vigor index, which showed a significant difference with other averages.
In general, Roshan and Sardari cultivars had more length vigor index than other cultivars. Sardari cultivar had maximum percentage of weight vigor index under 200 millitesla and 120 minutes duration time, which had no significant difference with the percentage of weight vigor index at the same field level and with duration time of 60 minutes.
Conclusion
According to the obtained results to achieve the maximum value of dry weight, it is better to use the Yavarus cultivar. It is recommended to use the Roshan cultivar with the lower level of magnetic field and duration time to attain the maximum value of the germination velocity and percentage. To get the maximum value of the length vigor index and the weight vigor index the Roshan and Sardari cultivars, and the Sardari cultivar with field of 200 milli Tesla and lower duration time are preferred.

Keywords

Open Access

©2020 The author(s). This article is licensed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

1. Abdul-Baki, A. A., and J. D. Anderson 1973. Vigour determination in soybean seeds by multiple criteria. Crop Science 13 (6): 630-637.
2. Amaya, J. M., M. V. Carbonell, E. Martinez, and A. Raya. 1996. Effects of stationary magnetic fields on germination and growth of seeds. Horticultural Abstracts 6: 1363.
3. Belov, G. D., N. G. Sidorevich, and V. T. Golovarev. 1988. Irrigation of farm crops with water treated with magnetic field. Soviet Agricultural Sciences, USA.
4. Chibowski, E., and A. Szczes. 2018. Magnetic water treatment- A review of the latest approaches, Chemosphere 203: 54-67.
5. Danilov, V., T. Bas, M. Eltez, and A. Rizakulyeva. 1994. Artificial magnetic field effects on yield & quality of tomatoes. Acta Horticulture 366: 279-285.
6. Duarte Diaz, C. E., J. A. Riquenes, B. Sotolongo, M. A. Portuondo, E. O. Quintana, and R. Perez. 1997. Effects of magnetic treatment of irrigation water on the tomato crop. Horticulture Abstracts 69: 494.
7. Ellis R. H., and E. H. Roberts. 1981. The quantification of ageing and survival in orthodox seeds. Seed Science and Technology 9: 373-409.
8. Emam, Y. 2007. Crop Growing (3th ed.). Shiraz University Publication Center. Iran, Shiraz. (In Farsi).
9. Esitken, A., M. Turan. 2004. Alternating magnetic field effects on yield and plant nutrient element composition of strawberry (Fragaria- ananassa cv. Camarosa). Acta Agriculturae Scandinavica, Section B-Soil & Plant Science 54 (3): 135-139.
10. Eskandari, I., and V. Feiziasl. 2016. Influence of Conservation Tillage on some Soil Physical Properties and Crop Yield in Vetch-Wheat Rotation in Dryland Cold Region. Journal of Agricultural Machinery 7 (2): 451-467. (In Farsi).
11. Fathi, A., T. Mohameda, G. Claudeb, G. Maurinb, and B. A. Mohameda. 2006. Magnetic water treatment on homogeneous and heterogeneous precipitation of calcium carbonate. Water Research 40 (10): 1941-950.
12. Florez, M., M. V. Carbonell, and E. Mart’inez. 2007. Exposure of maize seeds to stationary magnetic fields: Effects on germination & early growth. Environmental and Experimental Botany 59: 6-75.
13. Ghodsipour, S. H., S. M. Abtahi, and F. Lotfian Delouei. 2016. A Study on Modern Agricultural Irrigation Methods with the Approach to Introducing Modern Irrigation Technology. The First National Water Management Conference on Optimal Water Consumption in Agriculture. Iran, Hamadan. (In Farsi).
14. Gyulakhmedov, Kh., and N. Seiidaliev. 1991. Irrigation with magnetically treated water. CAB Abstracts Khlopok 5: 57-58.
15. Hassan Oghli, A. 2008. Applications of wastewater and recycled water. In: 1th National Seminar on Recovered Water Wastewater in Water Resources Management, Mashhad. (In Farsi).
16. Hilal, M. H., and M. M. Hilal. 2000. Application of magnetic technologies in dessert agriculture. Seed germination & seedling emergence of some crops in a saline calcareous soil. Egyptian Journal of Soil Science 40 (3): 413-422.
17. Khoshravesh, M., and F. Emamighara. 2015. Effect of Magnetic Water on Wheat yield under Irrigation Condition, Third Agricultural and Sustainable Natural Resources Conference. Iran, Tehran, Mehr-e Aravand Educational Institute, Promotion Group of Environmental Lovers. (In Farsi).
18. Kiani, A. 2003. Magnetic water New phenomena in promoting water productivity. Agricultural and Natural Resources Research Center of Golestan Province. Zaytun Magazine 183: 1-9. (In Farsi).
19. Leather Wood, W. R. 2005. Influence of salt stress on germination, root elongation and carbohydrate content of five salt tolerant and sensitive taxa. MSc. Thesis, Department of Horticultural Science, North Carolina State University, USA.
20. Maguire, I. D. 1982. Speed of germination - Aid in selection and evaluation for seedling emergence and vigor. Crop Science 2 (2):176-177.
21. Martinez, E., M. Carbonell, and M. Florez. 2002. Magnetic biostimulation of initial growth stages of wheat (Triticum aestivum L.). Electromagnetic Biology and Medicine 21 (1): 43-53.
22. Nasher, S. H. 2008. The Effect of Magnetic Water on Growth of Chick-Pea Seeds. Engineering and Technology 26 (9): 1125-1130.
23. Podleoeny, J., S. Pietruszewski., and A. Podleoena. 2004. Efficiency of the magnetic treatment of broad bean seeds cultivated under experimental plot Conditions. International Agrophysics 18 (1): 65-72.
24. Poinapen, D., D. C. Brown, and G. K. Beeharry. 2013. Seed orientation & magnetic field strength have more influence on tomato seed performance than relative humidity & duration of exposure to non-uniform static magnetic fields. Journal of Plant Physiology 170 (14): 1251-1258.
25. Rhoades, J., A. Kandiah, and A. M. Mashali. 1992. The use of salirle waters for crop production. FAO Irrigation and Drainage paper 48. Rome, Italy.
26. Sadeghi, H. 2010. Design, construction and evaluation of magnetic water supply for agricultural use. Master's Thesis, University of Tehran, Tehran. (In Farsi).
27. Selima, Dalia Abdel-Fattah H., R. M. A. Nassar, M. S. Boghdad, and M. Bonfill. 2019. Physiological and anatomical studies of two wheat cultivars irrigated with magnetic water under drought stress conditions. Plant Physiology and Biochemistry 135: 480-488.
28. Vashisth, A., and S. Nagarajann 2010. Effect on germination and early growth characteristics in sunflower (Helianthus annuus) seeds exposed to static magnetic field. Journal of Plant Physiology 167 (2): 149-156.
29. Vasilevski, G. 2003. Perspectives of the application of biophysical methods in sustainable agriculture Bulg. Journal Plant Physiol 29 (3): 179-186.
30. Zarei, S. 2017. Impact of Magnetized Water by a New System on the Growth and Germination of Five Wheat Grain Seeds, Master's Thesis, University of Shiraz, Shiraz. (In Farsi).
CAPTCHA Image