با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته دکترای مهندسی مکانیزاسیون کشاورزی، دانشگاه تبریز، ایران

2 گروه مهندسی بیوسیستم، دانشگاه تبریز، ایران

3 گروه مهندسی بیوسیستم، دانشگاه فردوسی مشهد، ایران

4 گروه مهندسی شیمی، دانشگاه صنعتی سهند تبریز، ایران

چکیده

در چند دهه اخیر منابع تجدیدپذیر انرژی که باعث آلودگی کمتر محیط‌زیست شوند بسیار مورد توجه قرار گرفته‌اند. در این میان استحصال زیست‌گاز از ضایعات آلی جامد شهری برای تولید انرژی به دلیل کنترل گازهای گلخانه‌ای و کاهش آلودگی‌های زیست‌محیطی از اهمیت ویژه‌ای برخوردار است. اگرچه هضم بی‌هوازی به‌عنوان یکی از بهترین روش‌های مواجهه با پسماندهای آلی جامد شهری مطرح است، با این حال، این فرآیند دارای محدودیت‌هایی نیز می‌باشد. از این‌رو پیش‌فرآوری‌های مختلفی به‌منظور بهبود فرآیند هضم بی‌هوازی و افزایش تولید زیست‌گاز از هضم پسماندهای آلی مورد بررسی قرار گرفته‌اند. پیش‌فرآوری حرارتی از موثرترین روش‌ها جهت حذف عوامل بیماری‌زای موجود در مواد زائد آلی است. در همین حال این پیش‌فرآوری می‌تواند تاثیر به‌سزایی در بهبود هضم بی‌هوازی و تسریع هیدرولیز مواد داشته باشد. بنابراین یافتن شرایط بهینه این پیش‌تیمار برای دستیابی به بالاترین مقدار تولید زیست‌گاز حائز اهمیت به‌سزایی است. هدف از این تحقیق دستیابی به بهترین دما و زمان و غلظت در هضم مواد آلی موجود در پسماند شهری است. در این مطالعه، دما و مدت اعمال پیش‌تیمار حرارتی به‌ترتیب در سه سطح 70، 90 و 110 درجه سانتی‌گراد و 30، 90 و 150 دقیقه و غلظت نیز در سطوح 8، 12 و 16 درصد مورد بررسی قرار گرفتند. به این منظور 15 آزمایش به روش سطح پاسخ باکس‌بنکن طراحی شدند. نتایج آزمایش‌ها نشان دادند که اثر متغیرهای دما و زمان در سطح 1 درصد بر تولید زیست‌گاز معنی‌دار هستند در حالی‌که تغییرات غلظت در محدوده مورد مطالعه اثر کمتری در تولید این گاز داشته است. همچنین، بهترین سطوح متغیرهای دما و زمان پیش‌تیمار و غلظت مواد هضم‌شونده برای تولید زیست‌گاز به‌ترتیب 95 درجه سانتی‌گراد، 104 دقیقه و غلظت 12 درصد بوده که پیش‌بینی می‌شود اعمال پیش‌تیمار حرارتی در شرایط بهینه متغیرهای مورد ارزیابی موجب تولید 445 میلی‌لیتر زیست‌گاز به ازای هر گرم ماده آلی جامد فرار موجود در پسماندهای آلی شود که بدین ترتیب با اعمال پیش‌تیمار حرارتی در شرایط بهینه، افزایش 31.17 درصدی تولید زیست‌گاز نسبت به میزان زیست‌گاز ناشی از هضم مواد بدون اعمال پیش‌تیمار (6.18±339.33 میلی‌لیتر) قابل انتظار خواهد بود.

کلیدواژه‌ها

موضوعات

Open Access

©2022 The author(s). This article is licensed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

  1. Aboudi, K., C. J. Alvarez-Gallego, and L. I. Romero-García. 2017. Influence of total solids concentration on the anaerobic co-digestion of sugar beet by-products and livestock manures. Science of the Total Environment 586: 438-445. DOI: 1016/j.scitotenv.2017.01.178.
  2. American Public Health Association (APHA). Standard methods for the examination of water and wastewater. 22. Washington DC (USA): American Public Health Association/American Water Works Association/Water Environment Federation.
  3. Angelidaki, I., M. Alves, D. Bolzonella, L. Borzacconi, J. L. Campos, A. J. Guwy, and J. B. Van Lier. 2009. Defining the biomethane potential (BMP) of solid organic wastes and energy crops: A proposed protocol for batch assays. Water Science and Technology 59 (5): 927-934. DOI: 2166/wst.2009.040.
  4. Appels, L., J. Degreve, B. Van der Bruggen, J. Van Impe, and R. Dewil. 2010. Influence of low temperature thermal pre-treatment on sludge solubilisation, heavy metal release and anaerobic digestion. Bioresource Technology 101 (15): 5743-5748. https://doi.org/10.1016/j.biortech.2010.02.068.
  5. Ariunbaatar, J., A. Panico, G. Esposito, F. Pirozzi, and P. N. Lens. 2014. Pretreatment methods to enhance anaerobic digestion of organic solid waste. Applied Energy 123: 143-156. https://doi.org/10.1016/j.apenergy.2014.02.035.
  6. Barjenbruch, M., and O. Kopplow. 2003. Enzymatic, mechanical and thermal pre-treatment of surplus sludge. Advances in Environmental Research 7 (3): 715-720. https://doi.org/10.1016/S1093-0191(02)00032-1.
  7. Bien, J. B., G. Malina, J. D. Bien, and L. Wolny. 2004. Enhancing anaerobic fermentation of sewage sludge for increasing biogas generation. Journal of Environmental Science and Health Part A 39 (4): 939-949. DOI: 1081/ese-120028404.
  8. Bougrier, C., C. Albasi, J. P. Delgenès, and H. Carrere. 2006. Effect of ultrasonic, thermal and ozone pre-treatments on waste activated sludge solubilisation and anaerobic biodegradability. Chemical Engineering and Processing: Process Intensification 45 (8): 711-718. https://doi.org/10.1016/j.cep.2006.02.005.
  9. Bougrier, C., J. P. Delgenes, and H. Carrere. 2008. Effects of thermal treatments on five different waste activated sludge samples solubilisation, physical properties and anaerobic digestion. Chemical Engineering Journal 139 (2): 236-244. https://doi.org/10.1016/j.cej.2007.07.099.
  10. Carlsson, M., A. Lagerkvist, and F. Morgan-Sagastume. 2012. The effects of substrate pre-treatment on anaerobic digestion systems: A review. Waste Management 32 (9): 1634-1650. https://doi.org/10.1016/j.wasman.2012.04.016.
  11. Carrere, H., C. Dumas, A. Battimelli, D. J. Batstone, J. P. Delgenes, J. P. Steyer, and I. Ferrer. 2010. Pretreatment methods to improve sludge anaerobic degradability: A review. Journal of Hazardous Materials 183 (1-3): 1-15. https://doi.org/10.1016/j.jhazmat.2010.06.129.
  12. Chamchoi, N., H. Garcia, and I. Angelidaki. 2011. Methane potential of household waste; Batch assays determination. Applied Environmental Research 33 (1): 13-26.
  13. Climent, M., I. Ferrer, M. del Mar Baeza, A. Artola, F. Vazquez, and X. Font. 2007. Effects of thermal and mechanical pretreatments of secondary sludge on biogas production under thermophilic conditions. Chemical Engineering Journal 133 (1-3): 335-342. https://doi.org/10.1016/j.cej.2007.02.020.
  14. Edelmann, W., U. Baier, and H. Engeli, 2005. Environmental aspects of the anaerobic digestion of the organic fraction of municipal solid wastes and of solid agricultural wastes. Water Science and Technology 52 (1-2): 203-208.
  15. Elliot, A., and T. Mahmood. 2012. Comparison of mechanical pretreatment methods for the enhancement of anaerobic digestion of pulp and paper waste. Water Science Technology 84: 497-505. DOI: 2175/106143012x13347678384602.
  16. Fernandez, J., M. Perez, and L. I. Romero. 2008. Effect of substrate concentration on dry mesophilic anaerobic digestion of organic fraction of municipal solid waste (OFMSW). Bioresource Technology 99 (14): 6075-6080. DOI: 1016/j.biortech.2007.12.048.
  17. Ferrer, I., S. Ponsa, F. Vazquez, and X. Font. 2008. Increasing biogas production by thermal (70 ) sludge pre-treatment prior to thermophilic anaerobic digestion. Biochemical Engineering Journal 42 (2): 186-192. DOI: 1016/j.bej.2008.06.020.
  18. Ge, X., F. Xu, and Y. Li. 2016. Solid-state anaerobic digestion of lignocellulosic biomass: Recent progress and perspectives. Bioresource Technology 205: 239-249. https://doi.org/10.1016/j.biortech.2016.01.050.
  19. Li, C., P. Champagne, and B. C. Anderson. 2011. Evaluating and modeling biogas production from municipal fat, oil, and grease and synthetic kitchen waste in anaerobic co-digestions. Bioresource Technology 102 (20): 9471-9480. https://doi.org/10.1016/j.biortech.2011.07.103.
  20. Li, Y., S. Y. Park, and J. Zhu. 2011. Solid-state anaerobic digestion for methane production from organic waste. Renewable and Sustainable Energy Reviews 15 (1): 821-826. https://doi.org/10.1016/j.rser.2010.07.042.
  21. Li, Y., Y. Jin, J. Li, H. Li, and Z. Yu. 2016. Effects of thermal pretreatment on the biomethane yield and hydrolysis rate of kitchen waste. Applied Energy 172: 47-58. https://doi.org/10.1016/j.apenergy.2016.03.080.
  22. Liu, G., R. Zhang, H. M. El-Mashad, and R. Dong. 2009. Effect of feed to inoculum ratios on biogas yields of food and green wastes. Bioresource Technology 100 (21): 5103-5108. https://doi.org/10.1016/j.biortech.2009.03.081.
  23. Liu, X., W. Wang, X. Gao, Y. Zhou, and R. Shen. 2012. Effect of thermal pretreatment on the physical and chemical properties of municipal biomass waste. Waste Management 32 (2): 249-255. DOI: 1016/j.wasman.2011.09.027.
  24. Maghanaki, M. M., B. Ghobadian, G. Najafi, and R. J. Galogah. 2013. Potential of biogas production in Iran. Renewable and Sustainable Energy Reviews 28: 702-714. https://doi.org/10.1016/j.rser.2013.08.021.
  25. Marin, J., K. J. Kennedy, and C. Eskicioglu. 2010. Effect of microwave irradiation on anaerobic degradability of model kitchen waste. Waste Management 30 (10): 1772-1779. https://doi.org/10.1016/j.wasman.2010.01.033.
  26. McLeod, J. D., M. Z. Othman, D. J. Beale, and D. Joshi. 2015. The use of laboratory scale reactors to predict sensitivity to changes in operating conditions for full-scale anaerobic digestion treating municipal sewage sludge. Bioresource Technology 189: 384-390. https://doi.org/10.1016/j.biortech.2015.04.049.
  27. Mirmasoumi, S., R. K. Saray, and S. Ebrahimi. 2018. Evaluation of thermal pretreatment and digestion temperature rise in a biogas fueled combined cooling, heat, and power system using exergo-economic analysis. Energy Conversion and Management 163: 219-238. https://doi.org/10.1016/j.enconman.2018.02.069.
  28. Mottet, A., J. P. Steyer, S. Deleris, F. Vedrenne, J. Chauzy, and H. Carrere. 2009. Kinetics of thermophilic batch anaerobic digestion of thermal hydrolysed waste activated sludge. Biochemical Engineering Journal 46 (2): 169-175. https://doi.org/10.1016/j.bej.2009.05.003.
  29. Neyens, E., and J. Baeyens. 2003. A review of thermal sludge pre-treatment processes to improve dewaterability. Journal of Hazardous Materials 98 (1-3): 51-67. https://doi.org/10.1016/S0304-3894(02)00320-5.
  30. Panda, S., and N. P. Padhy. 2008. Comparison of particle swarm optimization and genetic algorithm for FACTS_based controller design. Applied Soft Computing 8 (4): 1418-1427. https://doi.org/10.1016/j.asoc.2007.10.009.
  31. Pavan, P., P. Battistoni, J. Mata-Alvarez, and F. Cecchi. 2000. Performance of thermophilic semi-dry anaerobic digestion process changing the feed biodegradability. Water Science and Technology 41 (3): 75-81.
  32. Penaud, V., J. P. Delgenes, and R. Moletta. 1999. Thermo-chemical pretreatment of a microbial biomass: Influence of sodium hydroxide addition on solubilization and anaerobic biodegradability. Enzyme and Microbial Technology 25 (3-5): 258-263. https://doi.org/10.1016/S0141-0229(99)00037-X.
  33. Prorot, A., L. Julien, D. Christophe, and L. Patrick. 2011. Sludge disintegration during heat treatment at low temperature: A better understanding of involved mechanisms with a multiparametric approach. Biochemical Engineering Journal 54 (3): 178-184. https://doi.org/10.1016/j.bej.2011.02.016.
  34. Rafique, R., T. G. Poulsen, A. S. Nizami, J. D. Murphy, and G. Kiely. 2010. Effect of thermal, chemical and thermo-chemical pre-treatments to enhance methane production. Energy 35 (12): 4556-4561. https://doi.org/10.1016/j.energy.2010.07.011.
  35. Raposo, F., M. A. De la Rubia, V. Fernandez-Cegri, and R. Borja. 2012. Anaerobic digestion of solid organic substrates in batch mode: An overview relating to methane yields and experimental procedures. Renewable and Sustainable Energy Reviews 16 (1): 861-877. https://doi.org/10.1016/j.rser.2011.09.008.
  36. Skiadas, I. V., H. N. Gavala, J. Lu, and B. K. Ahring. 2005. Thermal pre-treatment of primary and secondary sludge at 70 prior to anaerobic digestion. Water Science and Technology 52 (1-2): 161-166.
CAPTCHA Image