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Abstract 

The main objective of this paper is to develop a seven-link dynamic model of the operator’s body while 
working with a motorized backpack sprayer. This model includes the coordinates of the sprayer relative to the 
body, the rotational inertia of the sprayer, the muscle moments acting on the joints, and a kinematic coupling that 
keeps the body balanced between the two legs. The constraint functions were determined and the non-linear 
differential equations of motion were derived using Lagrangian equations. The results show that undesirable 
fluctuations in the ankle force are noticeable at the beginning and end of a swing phase. Therefore, injuries to the 
ankle joint are more likely due to vibrations. The effects of engine speed and sprayer mass on the hip and ankle 
joint forces were then investigated. It is found that the engine speed and sprayer mass have significant effects on 
the hip and ankle forces and can be used as effective control parameters. The results of the analysis also show 
that increasing the engine speed increases the frequency of the hip joint force. However, no significant effects on 
the frequency of the ankle joint force are observed. The results of this study may provide researchers with insight 
into estimating the allowable working hours with the motorized backpack sprayers, prosthesis design, and load 
calculations of hip implants in the future. 

 
Keywords: Lagrange equation, Operator, Vibration, Weight of sprayer 

Introduction1 

One of the most popular ways of crop 
protection against weeds and pests is applying 
motorized backpack sprayers. The use of the 
motorized backpack sprayer eliminates the 
need for hand pumping and is suitable for 
small-scale farms. However, the major 
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disadvantage of motorized backpack sprayers 
is the external forces acting on the operator’s 
body (Kouchakzadeh, & Beigzadeh, 2015). 

Forces acting on the human body are 
important factors in the initiation and 
progression of joint disease (Astephen, 
Deluzio, Caldwell, & Dunbar, 2008). Force 
analysis of hip and ankle joints can be useful 
in the development of strategies to avoid and 
manage conditions such as osteoarthritis and 
deterioration of femoroacetabular (Correa, 
Crossley, Kim, & Pandy, 2010). Force analysis 
of hip and ankle joints requires multi-segment 
models.  
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Several researches have been done on the 
dynamic modeling of the human body. Kuo 
(2001) applied a simple model of bipedal 
walking to evaluate simple hypotheses for the 
metabolic cost of muscle activity. Tlalolini, 
Chevallereau, & Aoustin (2010) optimized the 
walking motions of a bipedal model by 
minimizing the value of the torque. The 
optimization process was carried out with and 
without the rotation of the supporting foot 
about the toe. Huang, Wang, Chen, Xie, & 
Wang (2012) employed a seven-link dynamic 
bipedal walking model with flat feet to analyze 
the dynamics of walking. The results indicated 
that ankle stiffness plays different roles in 
different gaits. Martin & Schmiedeler (2014) 
proposed four and six link planar biped models 
with knees and rigid circular feet; The ankle 
was not considered in the four link model. The 
results showed that the model with ankles is 
more accurate in predicting energy 
consumption during normal human walking at 
different speeds. Sharbafi & Seyfarth (2015) 
utilized a five link model with a rigid upper 
body and two segmented legs to extract 
internal relations between the joints’ angles 
and stance leg orientation which hold the 
configuration harmonized during the gaits. 
Jena, Kumar, Singh, & Mani (2016) developed 
a biomechanical model to predict metabolic 
energy consumption for carrying load 
manually by varying modes (head, shoulder, 
and back), loads, and ground inclinations. The 
results indicated that frontal torque (in 
shoulder mode) requires higher physiological 
energy than sagittal torque. Ma, Xu, Fang, Lv, 
& Zhang (2022) present the dynamic model of 
the human-prosthesis heterogeneous coupled 
system. Ma, Xu, & Zhang (2023) also applied 
control strategies for prosthesis walking on 
stochastically uneven terrain. 

Mechanical actions of muscles are 
necessary for dynamical modeling of the 
human body and can be considered as 
moments applied at the joints. Weiss, Kearney, 
& Hunter (1986) indicated that the moment–
angle relationships in the hip, knee, and ankle 
joints are similar to that of a non-linear spring. 
Maletsky & Hillberry (2005) designed a 

dynamic knee simulator to reproduce the 
loading and kinematics of the human knee 
during different activities. Lim & Park (2018) 
developed a model for human locomotion with 
a curvy foot connected to a leg by a springy 
segment. Thus, the oscillations of the center of 
mass during walking can be described by the 
mechanics of a simple passive Spring Loaded 
Inverted Pendulum (SLIP). Kim, Lee, & Koo 
(2018) simulated joint reaction forces, active 
moments by muscles, and passive moments by 
connective tissues. They found that, at Chopart 
and Lisfranc joints, passive moments were 
responsible for large portions of the net 
moment. The passive structures and passive 
moments in the midfoot joints provide strength 
and prevent injuries. 

Carrying backpack loads for long distances 
is common in a range of human activities. As a 
result, the influence of backpack carriage on 
physical performance has been investigated to 
establish guidelines for safe load limits. Liu 
(2007) analyzed the effect of backpack load 
position, walking speed, and surface grade on 
the physiological responses of infantry 
soldiers. The results confirmed that positioning 
the backpack mass center as near as possible to 
the body mass center resulted in the lowest 
energy consumption. Alamoudi, Travascio, 
Onar-Thomas, Eltoukhy, & Asfour (2018) 
determined the effect of different carrying 
methods on walking stability using motion 
capture analysis. The results confirmed that 
the lack of stability in the frontal carriage 
forced the body to increase the cadence to 
maintain stability. Additionally, to minimize 
the moment generated by both the upper body 
and the heavy load, participants tended to 
decrease the length of their stride. Walsh, 
Low, & Arkesteijn (2018) studied the effect of 
stable and unstable load carriage on walking 
gait variability, dynamic stability, and muscle 
activity of older adults. The results showed 
that unstable load carriage reduces dynamic 
stability compared to unloaded walking. 

Reviewing the literature reveals that the 
investigation of the joint forces during load 
carrying is important for preventing joint 
injuries. However, to date, no research has 
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been published on the joint forces during the 
working with the motorized backpack 
sprayers. Therefore, the initial objective of the 
present study is to develop a seven-link 
dynamic model of the operator’s body while 
working with a motorized backpack sprayer. 
The secondary goal of this research is to 
examine the effects of different working 
conditions (engine speed and mass of sprayer) 
on the hip and ankle joint forces. This is a 
continuation of our previous work, where the 
torque–angle relationships in the hip, knee, 
and ankle joints for the backpack sprayer 
operator body were discussed (Karimi 
Avargani, Maleki, Besharati, & Ebrahimi, 
2020). 

 

Materials and Methods 

In this section, the principle of the Lagrange 
equation for nonholonomic constraints is 
introduced. The total kinetic energy, potential 
energy, generalized forces, and constraints are 
expressed for the proposed model. The non-
linear equations of motion are formulated 
using Lagrangian equations and solved using 
Maple software (Ver 2015). 

 

Lagrange Equation for Nonholonomic 

Constraints 

Lagrangian equations have a special place 
in analytical mechanics. They represent 
equations of motion in terms of generalized 
coordinates. A holonomic constraint in the 
system of n generalized coordinates qi can be 
written as Eq. 1. 

(1) 1 2( , ,..., , ) 0j ng q q q t   
For nonholonomic constraints, Eq. 1 

changes into a differential form in Eq. 2 
(D'Souza & Garg, 1984; Greenwood, 1988): 

(2) 
1

0
n

l lta dq a dt      l=1, 2, ... , s 


   

Where ν=1, 2, …, n and l=1, 2, …, s are the 

number of coordinates and number of 
constraints, respectively (n>s). Eq. 3 expresses 
Lagrange’s equation for constrained systems. 

(3) 
1

( ) 1,
s

l l

l

d T T V
a Q       2, ... , n

dt q q q
 

  

 


  
    

  
  

Where T, V, λl, and Qν are kinetic energy, 
potential energy, Lagrange's coefficients, and 
generalized force related to generalized 
coordinate qi, respectively. These n equations 
have n+s unknowns, namely the n coordinates 
(qv) and the s Lagrange multipliers (λl). The 
additional equations (Eq. 2) are needed for the 
s constraint which is coupled with the qv. 
However, as shown in Eq. 4, these are 
considered as differential equations. 

(4) 
1

0
n

l lta q a      l=1, 2, ... , s 


   

 

Dynamic model of operator’s body during 

spraying 

Fig. 1 shows the proposed dynamical model 
of the operator’s body during working with a 
motorized backpack sprayer. This model 
includes two rigid legs connected to the rigid 
upper body with hinges at the hips. Each leg 
includes the thigh, shank, and foot. The thigh 
and the shank are connected at the knee joint 
and the foot and the shank are connected at the 
ankle joint. A point mass mh at the hip 
represents the pelvis. The mass of upper body 
mb, leg ml, thigh mt, shank ms, and foot mf are 
considered lumped parameters. Longitudinal 
parameters cb, cf, cl, cs, ct, l, ls, and lt are 
distances from the hip joint to the Center of 
Mass (CoM) of upper body, from the ankle 
joint to CoM of foot, from the hip joint to 
CoM of stance leg, from knee joint to CoM of 
shank, from the hip joint to CoM of thigh, 
stance leg length, shank length, and thigh 
length, respectively. The motorized backpack 
sprayer is located at position (xsp, ysp) from the 
CoM of the upper body. 
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Fig.1. The proposed dynamical model of the operator’s body while working with a motorized 

backpack sprayer 
 

The total kinetic energy, potential energy, 
generalized forces, and constraints are 
expressed using the following assumptions 
(Wisse, Schwab, & van der Helm, 2004): 

 The joints have no damping or friction. 

 Bones do not suffer from flexible 
deformation. 

 A kinematic coupling has been used in the 
model to keep the body midway between 
the two legs. 

 The shank of the foot stance is always 
locked and the whole leg can be modeled 
as one rigid stick. 

 There is enough friction between the 
walker and the ground. Thus, a flat foot 
does not deform or slip. 

 The muscle moments acting on the hip, 
knee, and ankle joints are modeled as non-
linear torsional springs. 

 The sprayer engine is an unbalanced 
force. This can be caused by the 
deposition or erosion of the rotational 
parts. 

 

Kinetic Energy 
As shown in Fig. 1, it is assumed that the x-

axis is along the ground while the y-axis is 

vertical to the ground pointing upward. The 
dynamic model for the operator’s body while 
working with a motorized backpack sprayer 
can be described by the generalized 
coordinates (Eq. 5). 

(5) T

h h 1 2 3 2s 2fq =[x , y , θ , θ , θ , θ , θ ]  
Where xh, yh, θ1, θ2, θ3, θ2s, and θ2f are the 

horizontal coordinate of hip joint, vertical 
coordinate of hip joint, the angle between 
vertical axis and the stance leg, the swing 
angle between vertical axis and the thigh, the 
angle between vertical axis and the upper 
body, the swing angle between vertical axis, 
and the shank and the angle between 
horizontal axis and foot, respectively. The 
positive direction of all the angles is 
counterclockwise. The total kinetic energy of 
the system is defined as the sum of the kinetic 
energy of the point masses, and the 
translational and rotational kinetic energy of 
the motorized backpack sprayer. The 
expression for the kinetic energy is obtained in 
Eq. 6. 
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(6) 
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2
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      +

2
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s s

T T T T T T T T
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I m c m c y x

m c m

 



      

      

      

     

      
    

  

   

    

2 2 2 2

2 2 1 1 1

2 2 2 3 3 3

3 3 3

1
cos sin

2

     cos sin + cos sin

     cos sin

f s s f f f l l h h

t t h h b b h h

sp b sp h sp h sp h b sp h

l m c m c x y
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    
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     

  

           

 

  
     

2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2

2 2 2

      + cos cos cos sin sin

     cos sin sin

               cos c
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x l l

           

           

  

          

     

 


2 2 2

2 2 2 2 2 2

os sin

               sin sin cos

s f f f

h t s s s f f f

c

y l l c
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Where Isp is the mass moment of inertia of 
the sprayer about its principal axis. 

 

Potential Energy 

The total potential energy of the system is 
given in Eq. 7 and is defined as the sum of the 
gravitational energy of the point masses. 

(7) 
   

       

 

 

1

2 3

3 2

1 2 2 2

   1 cos

        + 1 cos 1 cos

       sin 1 cos

       cos cos cos sin

h l t b sp s f

h l l t b sp s

t t s t b b sp b sp

sp sp s s s

f t s s f f

U U U U U U U U

m l m l c m l m l m l m l g

m c m l g m c m c y g

m gx m gc

m g l l l c



 

 

   

      

          

       

  

   

 

Generalized Forces 

The generalized forces acting on the 
operator’s body while working with a 
motorized backpack sprayer include forces 
resulting from gravity and are unbalanced due 
to erosion of the sprayer engine, muscle 
moment acting on the hip joint, muscle 
moment acting on the knee joint, and muscle 
moment acting on the ankle joint. The 
generalized forces Qqi are given by the 
following equations (Eq. 8-14). 

(8) 2

0 cos( )
hxQ m e t   

(9) 2

0 sin( )
hyQ m e t   

(10) 
1 1 fQ T   

(11) 
2 2Q T   

(12) 3

2

0 3 3

2

0 3 3

cos [( )cos sin ]

       sin [ ( )sin cos ]

b sp sp

b sp sp

Q m e t c y x

m e t c y x

    

   

  

   
 

(13) 
2 2s sQ T   

(14) 
2

0
f

Q   

Where m0, e, and ω are the unbalanced 
mass of the sprayer engine, the unbalanced 
mass eccentricity, and the engine speed, 
respectively. 

The muscle moment acting on the hip joint 
T2 (the swing leg, Eq. 15), muscle moment 
acting on the knee joint T2s (the swing leg, Eq. 
16), and muscle moment acting on the ankle 
joint T1f (stance leg, Eq. 17) are non-linear 
functions of the angle between the two 
segments (Karimi et al., 2020). 

(15) 3 2

2 2 3 2 3 2 30.0007( ) 0.0258( ) 0.3236( ) 1.6792T              
(16) 2

2 2 2 2 20.0011( ) 0.0029( ) 1.2683s s sT          
(17) 3 2

1 1 1 10.0043 0.0429 0.5052 3.1455fT        
 

Constraints 

A constraint can be expressed by a 
relationship between generalized coordinates 
and time. When foot contact with the ground is 
maintained, first and second constraint 
equations can be represented as Eq. 18 and 19. 

(18) 1cos 0hy l    
(19) 1sin 0h anklex l x    

Here, the xankle is the fixed position of the 
ankle of the stance leg. In the passive 
dynamical model of a walking human, the 
upper body can be considered as an inverted 
pendulum jointed at the hip. Therefore, a 
kinematic coupling has been used in the model 
to keep the upper body between the two legs 
and achieve stable walking (Wisse et al., 
2004). The equation of the kinematic coupling 
constraint is introduced according to Eq. 20. 

(20) 3 1 22 ( ) 0      
The time course of hip, knee, and ankle 

joint angles for the proposed model are given 
in Eqs. 21-23 (Karimi et al., 2020). 

(21) 3 2

2 3 373.64 762.66 414.86 38.89t t t       
(22) 3 2

2 2 6357.5 4911.3 958.48 1.24s t t t       

(23) 3 2

1 451.84 513.31 218.5 27.77t t t      

According to Eq. 4, the constraint equations 
(Eqs. 18-23) can be considered in differential 
form, as defined in Eqs. 24-29: 

(24) 1 1sin 0hy l    

(25) 1 1cos 0hx l    
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(26) 1 2 32 0      

(27) 2

2 3 1120.92 1525.32 414.86 0t t       

(28) 2

2 2 19072.5 9822.6 958.48 0s t t       

(29) 2

1 1355.52 1026.62 218.5 0t t      

By applying Lagrange’s equation (Eq. 3) 
and introducing the constant coefficients, 
seven coupled non-linear differential equations 
of motion can be obtained (Eqs. 30-36). 

(30) 
 

 
1 2 1 1 3 2 2 4 3 5 3 3 6 2 2
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The constant coefficients ηi (i=1, 2, …, 15) 
are defined in the Appendix. Thirteen coupled 
non-linear differential equations (Eqs. 24-36) 
for xh, yh, θ1, θ2, θ3, θ2s, θ2f, λ1, λ2, λ3, λ4, λ5, and 
λ6 must be solved to analyze the dynamical 
behavior of the operator’s body during 
working with a motorized backpack sprayer. 

 

Hip and ankle joint forces in the swing 

phase 

Forces in the human joints are important 
factors in the initiation and progression stages 
of joint diseases. Investigation of the joint 
forces has made it possible to prevent or 
minimize discomfort, fatigue, or risk of 
injuries. In this section, the hip and ankle joint 
forces in the model of the operator’s body 
while working with a motorized backpack 
sprayer are calculated. Considering the upper 
body, Newton’s second law leads to Eqs. 37 

and 38. 
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The components of the hip joint force then 
become Eqs. 39 and 40. 
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Finally, the total hip joint force can be 
calculated using Eq. 41. 

(41) 2 2

h hh x yF F F   

Considering the full body, Newton’s second 
law leads to Eq. 42. 

(42) 2
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And the x-directional force of the hip joint 
is expressed in Eq. 43. 
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Considering the leg stance, the calculation 
of the moment about the hip joint leads to Eq. 
44. 

(44) 1 1 1 1( ) sin cos sin
f fy l l l l l xF m c l c m gc F l l        

Finally, the total ankle joint force is 
calculated using Eq. 45. 

(45) 2 2

f ff x yF F F   

Results and Discussion 

The values of the physical parameters 
related to this analysis are listed in Table 1. 
Thirteen coupled non-linear differential 
equations (Eqs. 24-36) are solved in Maple 
software. Fig. 2 illustrates the effects of engine 
speed and mass of the sprayer on the hip and 
ankle joint forces during working with a 
motorized backpack sprayer. 

It can be observed that the ankle force 
fluctuates at the beginning of the swing phase 
(t=[0.1-0.2]). It remains relatively constant in 
the middle of the swing phase t=[0.2-0.4] and 
again fluctuates at the end of the swing phase 
(t=[0.4-0.5]). The first fluctuation occurs 
because of the ‘toe-off’. In the ‘toe-off’ 
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instance, the toe loses contact with the ground. 
The second fluctuation was caused by the 
‘heel-strike’. In this instance, there is an 
impact between the leg swing and the ground 
when the heel of the swinging leg comes into 
contact with the ground. The maximum force 
is exerted on the joints when the operator 

begins to swing forward (‘toe-off’). 
Furthermore, in the instances of ‘toe-off’ and 
‘heel-strike’, undesirable variations of ankle 
joint force Fh are noticeable. This means that 
ankle injuries due to vibration exposure are 
more likely. 

Table 1- The values of physical parameters (Huang et al., 2012) 
Value Parameter 

0.262 m Distance from hip joint to CoM of the upper body, cb 

0.017 m Distance from the ankle joint to CoM of the foot, cf 

0.157 m Distance from the knee joint to CoM of shank, cs 

0.192 Distance from hip joint to CoM of the thigh, ct 

5 mm Unbalance mass eccentricity, e 

9.81 m s-2 Gravitational acceleration, g 

kg.m2 Mass moments of inertia of sprayer about its principal axis, Isp 

0.700 m Stance leg length, l 

0.315 m Shank length, ls 

0.385 m Thigh length, lt 

0.01 gr Unbalance mass of sprayer engine, mo 

26.62 kg Upper body mass, mb 

2.66 kg Foot mass, mf 

19.97 kg Hip mass, mh 

11.53 kg Leg mass, ml 

3.45 kg Shank mass, ms 

10.50 kg Sprayer mass, msp 

8.07 kg Thigh mass, mt 

(0.175m, 0.038m) Sprayer position from the CoM of upper body, (xsp, ysp) 

3000 rpm Engine speed, ω 

 
From a comparison between Fig. 2 (a) and 

(b) it is revealed that the frequency of the hip 
joint force increases with increased engine 
speed (ω). However, considerable effects on 
the frequency of the ankle joint force have not 
been observed. Additionally, with increasing 
the engine speed (ω), amplitudes of both the 
hip and ankle joint forces increase. 

From a comparison between Fig. 2 (a) and 
(c) it can be concluded that increasing the 
mass of the sprayer (msp) leads to a small 
reduction in the oscillation of the ankle joint 
force. Moreover, as the mass of the sprayer 

(msp) increases, the magnitude of both the hip 
and ankle joint forces increases as well. 

Fig. 3 exhibits the effect of leg length on 
the hip and ankle joint forces while working 
with a motorized backpack sprayer. It can be 
observed that the frequency of the hip joint 
force increases with decreasing the leg length 
l. This is because the leg stance keeps contact 
with the ground while the leg swings and 
pivots about the constrained hip like a 
pendulum. So, shorter operators are more 
vulnerable to injuries due to vibration 
exposure. 
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a) ω=3000 rpm, msp=10.5 kg, l=0.7 m 

  
b) ω=6000 rpm, msp=10.5 kg, l=0.7 m 

  
c) ω=3000 rpm, msp=12.5 kg, l=0.7 m 

Fig.2. The hip joint force Fh and ankle joint force Ff for l=0.7 m and (a) msp=10.5 kg, ω=3000 rpm, 

(b) msp=10.5 kg, ω=6000 rpm, and (c) msp=12.5 kg, ω=3000 rpm 
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a) ω=3000 rpm, msp=10.5 kg, l=0.88 m 

  
b) ω=3000 rpm, msp=10.5 kg, l=0.7 m 

  
c) ω=3000 rpm, msp=10.5 kg, l=0.6 m 

Fig.3. The hip joint force Fh and ankle joint force Ff for msp=10.5 kg, ω=3000 rpm, and (a) l=0.7 m, 

(b) l=0.7 m, and (c) l=0.7 m 

Conclusion 

In this study, a novel assistive dynamical 

model for the operator’s body while working 
with a motorized backpack sprayer was 
presented. In this model, the coordinate of the 
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sprayer relative to the body, rotational inertia 
of the sprayer, muscle moments acting on 
joints, and a kinematic coupling confining the 
upper body between the two legs were 
considered. The dynamics of the sprayer’s 
operator were described using seven 
generalized coordinates. The non-linear 
equations of motion were obtained using the 
Lagrangian equations. The results obtained 
from the numerical analysis indicated that, at 
the beginning and end of the swing phase, 
ankle injuries due to vibration exposure are 
more probable. Moreover, the maximum force 
is exerted on the joints at the beginning of the 
swing phase. Furthermore, the effects of 
engine speed and mass of the sprayer on the 
hip and ankle joint forces were studied. It was 
found that the larger mass of the sprayer (full 
capacity of the tank) can lead to higher levels 
of joint forces and lower oscillations. The 
frequency of hip and ankle joint forces 
increased with the increase of the engine 
speed. The results of this paper can be used for 
an estimated evaluation of a patient’s 
condition and implant design. Investigation of 

the effects of anthropometric specifications 
and sprayer position (relative to the body) on 
the hip and ankle joint forces while working 
with a motorized backpack sprayer are 
valuable topics for further studies.  

 

Key Points 

 Development of a seven-link dynamic 
model of the operator’s body while 
working with a motorized backpack 
sprayer 

 The non-linear differential equations of 
motion are formulated using Lagrangian 
equations and solved in Maple software 

 Study of the effects of engine speed and 
mass of sprayer on the hip and ankle joint 
forces 
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Symbols and Abbreviations 

Unite Description Parameter 

m Distance from hip joint to center of mass (CoM) of upper body  cb 

m Distance from the ankle joint to CoM of the foot  cf 

m Distance from the knee joint to the CoM of the shank  cs 

m Distance from hip joint to CoM of the thigh  ct 

mm Unbalance mass eccentricity  e 

ms-2 Gravitational acceleration  g 

kg.m2 Mass moments of inertia of sprayer about its principal axis  Isp 

m Stance leg length  l 

m Shank length ls 

m Thigh length lt 

gr Unbalance mass of sprayer engine  mo 

kg Upper body mass  mb 

kg Foot mass  mf 

kg Hip mass  mh 

kg Leg mass ml 

kg Shank mass ms 

kg Sprayer mass msp 

kg Thigh mass mt 

(m, m) Sprayer position from the CoM of the upper body (xsp, ysp) 

rpm Engine speed ω 

M Horizontal coordinate of hip joint xh 
M Vertical coordinate of the hip joint yh 

Radian The angle between the vertical axis and the stance leg θ1 
Radian The swing angle between the vertical axis and the thigh θ2 
Radian The angle between the vertical axis and the upper body θ3 
Radian The swing angle between the vertical axis and the shank θ2s 
Radian The angle between the horizontal axis and the foot θ2f  
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Appendix 
The constant coefficients for Eqs. 30-36 are as follows: 

2 l lm c   1 h l t b sp s fm m m m m m m         

 4 b b sp b spm c m c y     3 t t s t f tm c m l m l     

6 s s f sm c m l    5 sp spm x   
2

8 l lm c   7 f fm c   
2 2 2

10 t t s t f tm c m l m l     9 1 l ll m c  
 

12 f t fm l c   11 6tl 
 

2 2

14 s s f sm c m l     
22 2

13 sp b b sp b sp spI m c m c y x      
  

 

 
15 f s fm l c   
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 سازي ديناميكی بار وارد بر مفاصل ران و مچ پا، هنگام كار با سمپاش پشتی موتوريمدل

 
 4، رضا ابراهيمی3، شاهين بشارتی*2، علی ملكی1صديقه كريمی آورگانی

 20/03/1402تاریخ دریافت: 
 30/05/1402تاریخ پذیرش: 

 چکیده

پشتی موتوور  اسوتا ایون مودل  وام  توسعه یک مدل دینامیک هفت لینکی از بدن اپراتور در هنگام کار با سمپاش کولهی این مقاله هدف اصل
 تعادل بودن راکه  ی استا  وارد بر رو  مفاص  و یک کوپلینگ سینماتیکمختصات سمپاش نسبت به بدن، اینرسی چرخشی سمپاش، گشتاور ماهیچه

دهود کوه ا نتایج نشان میگردیدندتعیین  دند و معادلات دیفرانسی  غیرخطی حرکت توسط معادلات لاگرانژ استخراج  قیدا توابع کندمی حفظدو پا  ینب
توجه استا بنابراین، آسیب مچ پا به دلی  قرار گورفتن در معورا ارتعواش ، تغییرات نامطلوب نیرو  مفص  مچ پا قاب  ناور در ابتدا و انتها  مرحله 

موتوور و جورم سومپاش  نتایج نشان داد که دورموتور و جرم سمپاش بر نیروها  مفص  ران و مچ پا بررسی  دا  دورال بیشتر  داردا سپس اثرات احتم
آنوالی  نشوان  عنوان پارامترها  کنترلی موثر مورد استفاده قرار گیردا همچنین، نتایجتواند بهتوجهی بر نیروها  مفص  ران و مچ پا دارد و میاثرات قاب 

توجهی بر فرکانس نیرو  مفصو  موچ پوا مشواهده یابدا با این حال، اثرات قاب موتور، فرکانس نیرو  مفص  ران اف ایش می دوردهد که با اف ایش می
پشوتی موتوور ، اراحوی   کولههاورد ساعات کار مجاز با سمپاشآرا به محققان در بر کارهاییراهتواند مده از این تحقیق میآدستنشده استا نتایج به
 .در آینده ارائه دهد رانها  ایمپلنت نیروییپروت  و محاسبات 

 
 سمپاش وزن لاگرانژ، معادله ارتعاش، اپراتور، های کلیدی:واژه
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Abstract 

In the quest for enhanced anaerobic digestion (AD) performance and stability, iron-based additives as micro-
nutrients and drinking water treatment sludge (DWTS) emerge as key players. This study investigates the 
kinetics of methane production during AD of dairy manure, incorporating varying concentrations of Fe and 
Fe3O4 (10, 20, and 30 mg L-1) and DWTS (6, 12, and 18 mg L-1). Leveraging an extensive library of non-linear 
regression (NLR) models, 26 candidates were scrutinized and eight emerged as robust predictors for the entire 
methane production process. The Michaelis-Menten model stood out as the superior choice, unraveling the 
kinetics of dairy manure AD with the specified additives. Fascinatingly, the findings revealed that different 
levels of DWTS showcased the highest methane production, while Fe3O420 and Fe3O430 recorded the lowest 
levels. Notably, DWTS6 demonstrated approximately 34% and 42% higher methane production compared to 
Fe20 and Fe3O430, respectively, establishing it as the most effective treatment. Additionally, DWTS12 exhibited 
the highest rate of methane production, reaching an impressive 147.6 cc on the 6th day. Emphasizing the 
practical implications, this research underscores the applicability of the proposed model for analyzing other 
parameters and optimizing AD performance. By delving into the potential of iron-based additives and DWTS, 
this study opens doors to revolutionizing methane production from dairy manure and advancing sustainable 
waste management practices. 

 
Keywords: Anaerobic digestion, Kinetic study, Livestock manure, Modeling, Trace elements  

 

Introduction1 

In recent decades, the world has witnessed 
an unprecedented surge in population and 
industrial development, especially in 
developing countries, leading to a remarkable 
rise in energy demand and waste generation. 
Improper waste management coupled with 
excessive reliance on conventional fossil fuels 
has contributed to environmental issues such 
as global warming and ozone layer depletion. 
Nonetheless, within the vast realm of biomass 
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waste, lies a promising solution– the potential 
to tap into its renewable capacity and harness 
clean energy resources, like biofuels and 
biogas (Lu & Gao, 2021). The production of 
biogas from livestock manure has seen 
widespread adoption across numerous 
countries worldwide. In Iran, the Ministry of 
Agriculture reports a staggering population of 
over 8.4 million cattle and an annual beef 
production rate that has surged by 5%. Despite 
these statistics, except in a few industrial 
farms, a significant portion of the produced 
manure remains untreated and is often left in 
the open or directly applied to the land without 
composting. Nevertheless, Iran has immense 
potential for biogas production, with an 
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estimated yield of 16,146.35 million m3 from 
various waste sources encompassing 
agricultural and animal wastes, and municipal 
and industrial wastewater. This abundance of 
potential biogas could produce substantial 
energy, totaling approximately 323 petajoules 
(1015) and thus positioning Iran as a country 
with vast and valuable biogas resources 
(Zareei, 2018). 

The process of anaerobic digestion (AD) 
stands as a remarkably efficient technique, 
facilitating the transformation of biomass 
waste into highly valuable end products. 
Foremost among these is biogas; 
predominantly composed of methane, carbon 
dioxide, and hydrogen (Wellinger, Murphy, & 
Baxter, 2013). Despite the rapid development 
of AD technology, some of its drawbacks such 
as low biodegradation efficiency, poor 
stability, and environmental sensitivity, have 
hindered its commercial application. To 
address these challenges, approaches such as 
co-digestion, pretreatment, and new reactor 
designs, as well as the use of additives have 
been proposed. The additives stimulate 
bacterial growth and reduce inhibitory effects 
which can help control microbial generation 
time, degradation rate, and gas production 
(Choong, Norli, Abdullah, & Yhaya, 2016; 
Gkotsis, Kougias, Mitrakas, & Zouboulis, 
2023). Studies conducted by Al Seadi et al. 
(2008) and Cheng et al. (2020) emphasize the 
significance of incorporating trace elements or 
micro-nutrients like iron (Fe), cobalt (Co), or 
nickel (Ni) into the anaerobic digestion 
process. These additives play a crucial role in 
facilitating the digestion process. 

Dudlet's research in 2019 reveals that iron 
has immense potential as a cost-effective 
enhancer in AD methane production. 
Furthermore, industrial enterprises generate 
around 18,895 thousand tonnes of iron waste 
every year, but only around 8,000 thousand 
tonnes get recycled and the remaining iron 
scraps are discarded into landfills (Dudley, 
2019). Iron, being an essential element in the 
methanogenesis process, assumes a pivotal 
role in elevating biogas yield. Its unique 
capacity to ionize Fe2+ and Fe3+ ions enables 

it to serve as both an electron donor and 
acceptor. Chen, Konishi, & Nomura (2018) 
report that iron-based additives offer numerous 
advantages, including nutrient 
supplementation, improved methane yield, 
enhanced substrate digestibility, and effective 
control of H2S toxicity, among other benefits. 
A range of iron-based additives have common 
usage including waste iron scraps (Wiss), iron 
nanoparticles (Fe NPs), iron chlorides (FeCl2, 
FeCl3), zero valent scrap iron (ZVSI), iron 
oxides (Fe2O3, Fe3O4), iron powder (Fe 
powder), zero-valent iron (ZVI), iron sulfate 
(FeSO4), and nano zero-valent iron (NZVI). 
Notably, waste iron scraps, iron oxides 
(Fe3O4), and iron powder emerge as prevalent 
and cost-effective additives due to the 
abundance of their sources and straightforward 
preparation methods. Additionally, these 
additives are commercially produced and 
readily available (Muddasar, 2022). Numerous 
studies have demonstrated the potential of 
these three types of iron-based additives to 
boost biogas yield and enhance process 
stability when utilized with diverse substrates. 
For instance, Cheng et al. (2020) observed a 
remarkable 64.4% increase in methane yield 
when rusted iron shavings were added to a 
mixture of food waste and municipal sludge. 
Furthermore, the addition of Fe powder led to 
a 14.46% rise in methane yield, while clean Fe 
scrap further elevated methane yield by 
21.28% (Zhang, Feng, Yu, & Quan, 2014). 
Hao, Wei, Van, & Cao (2017) and Kong et al. 
(2018) have reported significant findings on 
the impact of adding Fe to anaerobic digesters 
handling the organic fraction of municipal 
solid waste (OFMSW) and sludge. The 
inclusion of Fe led to about 40% increase in 
CH4 yield for OFMSW digestion and a 20% 
increase in sludge digestion. According to 
Abdelsalam et al. (2016), incorporating 20 
mg/L Fe nanoparticles resulted in a 1.7-fold 
increase in biogas yield. Similarly, Ali, Mahar, 
Soomro, & Sherazi (2017) found that, when 
utilizing municipal solid waste (MSW) as a 
substrate for the AD process, the addition of 
75 mg L-1 concentration of Fe3O4 
nanoparticles can lead to 72.09% enhancement 
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in methane generation. In another study by 
Noonari, Mahar, Sahito, & Brohi (2019), it 
was demonstrated that the introduction of 0.81 
mg of Fe3O4 nanoparticles as iron-based 
additives led to a 39.1% increase in methane 
generation using canola straw and buffalo 
dung. Additionally, Zhao, Li, Quan, & Zhang 
(2017) reported that Fe3O4 additive in the AD 
process had a significant impact on biogas 
yield, with Fe3O4 nanoparticles (Fe3O4 NPs), 
Iron powder, and Iron nanoparticles following 
suit. These additives also proved beneficial in 
enhancing substrate digestibility by 
decomposing lignocellulosic biomass into 
simpler structures. 

While trace elements have proven to be 
beneficial, their widespread implementation 
remains limited primarily due to their high 
cost. To address this issue, and render their 
utilization economically feasible, more 
affordable sources of micro-nutrients could be 
explored (Huiliñir, Montalvo & Guerrero, 
2015). Several studies (Huiliñir et al., 2015; 
Huiliñir, Pinto-Villegas, Castillo, Montalvo, & 
Guerrero, 2017; Ebrahimi-Nik, Heidari, 
Azghandi, Mohammadi, & Younesi, 2018) 
have highlighted the successful utilization of 
fly ash and drinking water treatment sludge 
(DWTS). DWTS is composed of alkaline, 
trace, heavy metals, and clay, arising from the 
treatment of surface water for drinking 
purposes. Despite its potential, DWTS is 
currently disposed of as waste and even 
requires appropriate disposal methods 
(Ahmad, Ahmad, & Alam, 2016). In their 
research, Torres-Lozada et al. delved into the 
impact of adding drinking water sludge to 
domestic wastewater sludge, aiming to 
enhance methane production during AD. Their 
findings revealed that the most favorable 
mixtures for anaerobic co-digestion should 
consist of under 20% DWTS (Torres-Lozada, 
Diaz-Granados & Parra-Orobio, 2015). 
Ebrahimi-Nik et al. (2018) explored the 
impact of adding DWTS to a mixture of biogas 
and methane production from food waste. 
Their findings demonstrated that DWTS 
additive can lead to a substantial improvement 
in both biogas and methane yield, up to 65%. 

While an optimal dosage of trace elements 
has been shown to positively impact AD 
performance, it is crucial to bear in mind that 
an excessive amount might have adverse 
effects on the process (Demirel & Scherer, 
2011; Schmidt, Nelles, Scholwin & Proter, 
2014). Therefore, the application of 
mathematical modeling in AD proves to be a 
rapid and cost-effective approach for 
predicting and optimizing fuel processing 
engineering and waste industry design 
(Andriamanohiarisoamanana, Ihara, Yoshida 
& Umetsu, 2020). In this context, AD 
processes exhibit compatibility with non-linear 
models, as the microorganisms’ growth and 
subsequent production kinetics are frequently 
non-linear (Khamis, 2005). Numerous non-
linear regressions (NLRs) were derived from 
AD experiments, emphasizing the significance 
of making appropriate selections from an 
extensive library of functions (Archontoulis & 
Miguez, 2015). Moreover, it is crucial to 
ensure that the samples are not only 
adequately large but also accurately 
representative to achieve the desired outcomes 
with the regression model. However, due to 
the method's high sensitivity, errors may arise 
(Wang, Tang & Tan, 2011; Wang et al., 2021). 

Despite extensive research in the field, 
there are currently no published studies 
exploring the potential of enhancing biogas 
yield by incorporating DWTS into the 
anaerobic digestion process of dairy manure 
and comparing it with iron-based additives. 
Thus, the present project seeks to fill this 
knowledge gap and aims to model the impact 
of iron-based additives, namely Fe, Fe3O4, and 
DWTS, as trace elements and additives for 
biogas production during the anaerobic 
digestion process of dairy manure. 

 

Materials and Methods 

Materials 
The primary feedstock utilized in this study 

was dairy manure, sourced from the livestock 
farm of Ferdowsi University of Mashhad, Iran. 
Fe3O4 and iron shavings served as the trace 
elements in this research. The iron shavings, 
smaller than 1 mm, were procured from the 
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mechanics laboratory of Ferdowsi University 
of Mashhad, Iran. To remove oil and 
impurities, the shavings were immersed in a 14 
M sodium hydroxide solution for 24 hours, 
followed by a day of air drying at room 
temperature. Additionally, drinking water 
treatment sludge (DWTS) was obtained from a 
drinking water treatment plant in Mashhad, 
Iran, and used as an additive. DWTS, when 
rich in Fe2O3, plays a crucial role in municipal 
water purification. The composition of DWTS 
used in this research closely resembles the one 
described in our previous study (Ebrahimi-Nik 
et al., 2018). The key components of DWTS in 
descending order include Fe2O3, SiO2, CaO, 
and Al2O3. The abundance of Fe2O3, as 
revealed by X-ray fluorescence (XRF) 
analysis, was a result of adding iron chloride 
as a flocculent during the drinking water 
treatment process. SiO2 stemmed from the 
inclusion of suspended solids and various 
types of clay. Moreover, small quantities of 
other oxides like MgO, P2O5, MnO, TiO2, P2O, 
and N2O were identified. DWTS contained 
trace elements such as Ni, Cr, Co, Zn, Cu, Ba, 
Sr, Cl, and Zr, detected in parts per million 
(ppm) levels as well. Before utilization, the 
sludge underwent air drying and was then 
ground and passed through specialized sieves 
to achieve a maximum particle size of 0.63 
mm. Additionally, following the methodology 
outlined in recent studies, microcrystalline 
cellulose (MERCK-Germany) was prepared as 
a validation material for inspecting the 
inoculum's quality (Holliger et al., 2016). To 
carry out the experiments, a complete stirred 
tank reactor (CSTR) was employed at 
Ferdowsi University of Mashhad, Iran, 
maintaining a stable state and receiving daily 
feedings of food waste, primarily consisting of 
rice. 

Data collection and laboratory 

experimentation 
Conducting the AD process under 

mesophilic conditions at 37°C, we performed 

three independent experimental replicates 
following the procedure outlined by Holliger 
et al. (2016). The essential inoculum for the 
AD tests was procured from an active digester 
within Ferdowsi University of Mashhad's 
biogas laboratory, which maintained a steady-
state operation. To regulate its biogas 
production rate and ensure suitability for the 
AD experiments, the collected inoculum 
underwent 20 days of incubation at 37°C in a 
warm-water bath (Rosato, 2017). 

The experiments were carried out using 500 
mL bottles, with a working volume of 400 mL 
and each bottle's gas-tightness was ensured. To 
facilitate the gas collection, each bottle was 
connected to a 2 L gas collection bag via the 
pneumatic mediator (PUSH-FIT) attached to 
its lid through a plastic tube. Both the inlet and 
outlet were present on the gas bags, with a 
heparin cap connected to the outlet, enabling 
methane measurement using a syringe. Before 
sealing the digesters, carbon dioxide was 
purged over the solution for 30 seconds, 
establishing anaerobic conditions. Fig. 1 
illustrates the experimental setup utilized in 
this study. The generated biogas was passed 
through a 7 M sodium hydroxide solution, 
effectively eliminating impurities and 
converting them into pure methane (Stoddard, 
2010). To maintain a constant temperature of 
37°C, a water bath (also known as a bain-
marie) was utilized. Additionally, Eq. 1 was 
employed to determine the suitable materials 
and their ratios for each bottle. 

𝐼𝑆𝑅 =
𝑉𝑖𝑛. 𝑉𝑆𝑖𝑛

𝑉𝑠𝑢𝑏 . 𝑉𝑆𝑠𝑢𝑏
 (1) 

Where Vin represents the volume of 
inoculum, VSin refers to the VS of inoculum 
based on wet weight, Vsub denotes the volume 
of substrate, and VSsub represents the VS of the 
substrate based on wet weight. The ratio of 
inoculum to substrate (ISR) was adjusted to 
5%. 
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Fig.1. Digesters and the Experimental setup (a) photo and (b) schematic illustration 
 

 
Using a scale with a precision of 0.001 

grams, the quantities of each additive were 
measured. Fe and Fe3O4 were added at three 
levels: 10, 20, and 30 mg L-1. DWTS was 
utilized at three concentrations of 6, 12, and 18 
mg L-1. Table 1 illustrates the experimental 
treatments and their corresponding symbols, as 
used in the subsequent section. In this 
experiment, cellulose was employed as a 
positive control and combined with the 
appropriate amount of inoculum to achieve an 
ISR ratio of 2, with three replicates. Therefore, 
three bottles containing only inoculum were 
utilized as control treatments in this study. 
Consequently, the difference between the 
methane production of the treated and the 
control samples ascertains the effect of each 
treatment on methane production. 

Daily measurements of biogas and methane 
production resulting from the treatments were 

carried out using a 60cc syringe (Raposo, De 
la Rubia, Fernández-Cegrí, & Borja, 2012). 
The anaerobic digestion process spanned 43 
days and was concluded when the rate of 
methane production dropped below 1% of the 
total cumulative methane production during 
three consecutive days (Holliger et al., 2016). 
Throughout this period, the ambient 
temperature was recorded every day using a 
mercury thermometer, and the atmospheric 
pressure data was sourced from the Mashhad 
synoptic station. These two parameters were 
crucial for converting the measured 
biomethane volume into its corresponding 
standard volume (at standard conditions of 
temperature T=273.15 K and pressure 
P=101.325 kPa (Ebrahimzadeh, Ebrahimi-Nik, 
Rohani & Tedesco, 2021). 

 

Table 1- Experimental treatment information 

Additives Treatment Unit (mg L-1) Treatment symbol 

DWTS 
DWTS 6 6 T1 
DWTS 12 12 T2 
DWTS 18 18 T3 

Fe 
Fe 10 10 T4 
Fe 20 20 T5 
Fe 30 30 T6 

Fe3O4 

Fe3O4 10 10 T7 
Fe3O4 20 20 T8 
Fe3O4 30 30 T9 

 

Measurement of total solids (TS) and 

volatile solids (VS) 

Throughout and after the experiment, 
analyses were conducted following established 

(b) 
(a) 
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standards. Specifically, the substrates' total 
solids (TS) and volatile solids (VS) content 
were determined before and after the 
experiments as per the American Standard for 
Public Health (APHA, 2005). To achieve this, 
a 50-gram sample comprising various 
materials used in the experiment (including 
cellulose, inoculum, and cow manure) was 
placed in an oven and heated at 105 degrees 
Celsius for a total of 24 hours. The samples 
were weighed initially and every hour while in 
the oven. This process was repeated until the 
weight of the samples dropped less than 4% in 
an hour, indicating they had reached a state of 
constant weight. At this point, the total solids 
(TS) value was calculated using Eq. 2. 

(2) 𝑇𝑆 =
(𝐴 − 𝐵) × 100

(𝐶 − 𝐵)
 

The percentage of total solids (TS) is 
represented by the variables A, B, and C 
corresponding to the weight of the dried 
sample plus petri dish, the petri dish, and the 
wet sample (substrate) plus petri dish, 
respectively. To ensure the accuracy of our 
results, each of these steps was triplicated. The 
dried materials from the previous step were 
utilized to calculate the content of volatile 
solids (VS). For this purpose, a 2-gram sample 
comprising the mentioned materials was 
placed inside an oven at a temperature of 550 
degrees Celsius for one hour. Then, it was 
removed and weighed. This process was 
repeated after another 30 minutes in the oven. 
The experiment continued until the samples 
reached a steady state, with a weight change of 
less than 4% (APHA, 2005) and then VS was 
calculated using Eq. 3. 

(3) 𝑉𝑆 =
(𝐴 − 𝐷)

(𝐴 − 𝐵)
× 100 

Where VS represents the percentage of total 
solids, while A, B, and D correspond to the 
weight of the petri dish plus container, the 
container alone, and the sample plus container 
after being heated in an oven, respectively. 

 

Nonlinear regression analysis of biogas 

production kinetics 
To examine the production of biogas 

through the anaerobic digestion of dairy 

manure and determine the relevant kinetic 
parameters, nonlinear regression (NLR) 
models were utilized. Nonlinear regression 
proves to be a robust instrument for estimating 
the parameters, including the degradation rate, 
the gas volume generated per nutrient 
degradation, and the fermentation process's lag 
phase of anaerobic digestion (Ebrahimzadeh, 
Ebrahimi-Nik, Rohani, & Tedesco, 2022). 
When dealing with unclear or time-dependent 
associations between the variables in intricate 
biological systems such as anaerobic digesters, 
NLR models offer notable advantages. The 
estimation process in these models 
incorporates iterative techniques, such as the 
Levenberg-Marquardt algorithm, which 
adjusts the model's parameters iteratively to 
achieve an optimal fit to the data by 
minimizing the discrepancy between the 
predicted and actual values. By employing Eq. 
4 within the NLR model, the cumulative 
biogas production (y) as a function of 
digestion time (t) in the biogas reactor can be 
effectively assessed. This equation takes into 
account a random error term (ε), which 
captures any unexplained variation in the 
relationship between y and t. 
𝑦 = 𝑓(𝑡, 𝛽) + 𝜀 (4) 

To determine the β coefficients that most 
accurately depict the data, the objective of 
NLR involves the process of curve fitting. The 
estimation of these coefficients is usually 
achieved by minimizing the sum of squared 
errors (SSE) between the predicted and 
observed values of the dependent variable. To 
evaluate the NLR model and its coefficients' 
importance, researchers often employ the 
analysis of variance (ANOVA). There are 
multiple methods of determining NLR model 
coefficients, and a popular approach is to 
utilize the Levenberg-Marquardt algorithm, 
which incorporates a regularization term to 
prevent overfitting. For our study, the model 
coefficients were acquired by using the 
MATLAB function fitnlm, which is a built-in 
function capable of fitting multitudes of NLR 
models to data. A comprehensive summary of 
the NLRs analyzed in our study is presented in 
Table 2. It illustrates the ability to fit an 
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extensive range of data patterns, including 
exponential, logarithmic, polynomial, 
sinusoidal, generalized Mitscherlich, Michael 

Menten, and power-law functions. NLRs offer 
a versatile approach to fitting various data 
patterns. 

 
Table 2- Nonlinear regression models for analyzing biogas production from dairy manure 

Name Equation Symbol 

Logistic-Exponential without LAG f(t) = a
1 − exp(−bt)

1 + exp (ln (
1

d
) − bt)

 M1 

Logistic-Exponential with LAG f(t) = a
1 − exp(−b(t − c))

1 + exp (ln (
1

d
) − b(t − c))

 M2 

Exponential without LAG f(t) = a(1 − exp(−bt)) M3 

Exponential with LAG f(t) = a(1 − exp(−b(t − c)))
 
 M4 

Gompertz  f(t) = a exp (−exp(1 − b(t − c))) M5 

Logistic f(t) = a
1

1 + exp(2 + b(c − t))
 M6 

Generalization of the Mitscherlich f(t) = a (1 − exp (−b(t − c) − d(√t − √c))) M7 

Michaelis-Menten (MM) f(t) = a
tc

tc + bc M8 

Modified MM f(t) = a
tc

tc + b
 M9 

Two-pool exponential f(t) = ∑ ai(1 − exp(−bi(t − c)))

2

i=1

 M10 

Two-pool logistic f(t) = ∑ ai

1

(1 + exp(2 − 4bi(t − c)))

2

i=1

 M11 

Modified Gompertz  f(t) = a exp (− exp (2.71
b

a
(c − t) + 1)) M12 

Logistic f(t) = a
1

1 + bexp(−ct)
 M13 

Gompertz f(t) = a exp (−bexp(−ct)) M14 

Richard f(t) = a
1

(1 + b × exp(−ct))
1

d⁄
 M15 

Double-Sigmoid f(t) = a
1

1 + exp(−(b + ct + dt2 + et3))
 M16 

Monomolecular- logistic f(t) = a(1 − exp(−bt)) +
c

1 + exp(−d(t − e))
 M17 

Chapman-Richard f(t) = a(1 − b × exp(−ct))(
1

1−d
)
 M18 

Exponential-linear f(t) =
a

b
× ln(1 + exp(b(t − ct))) M19 

LinBiExp f(t) = a × ln (exp (
b(t − c)

d
)) + exp (

e(t − f)

g
) + f M20 

Cone f(t) = a (
1

1 + (bt)−c
) M21 

Contois f(t) = a (1 −
b

ct + b − 1
) M22 

Fitzhugh f(t) = a(1 − exp(−bt)c) M23 

France f(t) =
a(1 − exp−bt)

(1 + c exp−bt)
 M24 

Monod without LAG f(t) = a
bt

bt + 1
 M25 

Monod with LAG f(t) = a
b(t − c)

b(t − c) + 1
 M26 
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Criteria for evaluating the fit of nonlinear 

regression models  
To assess the goodness-of-fit of nonlinear 

regression models, we employed Eq. 5 
representing the coefficient of determination 
(R2), Eq. 6 for calculating root mean square 
error (RMSE), and the minimum value 
predicted by the model (MP). The process of 
identifying the most fitting models was 
facilitated through the application of these 
criteria, and we were able to identify the 
models that most precisely depict the 
fundamental biogas production kinetics using 
them. 

 

𝑅2 = 1 −
∑ (𝐵𝑎𝑖 − 𝐵̂𝑝𝑖)

2𝑁
1

∑ (𝐵𝑎𝑖 − 𝐵𝑎
̅̅ ̅)2𝑁

1

 (5) 

𝑅𝑀𝑆𝐸 =  √∑
|𝐵𝑎𝑖 − 𝐵̂𝑝𝑖|

2

𝑁

𝑛

𝑖=1

 (6) 

Where Ba and Bp denote the experimental 
and predicted values, respectively. The 𝐵𝑎

̅̅ ̅  
represents the average value of the 
experimental values, and N denotes the sample 
size. When selecting the best model, a good fit 
with experimental data is indicated by a low 
RMSE value and a high R2 value. Because 
biogas production originates from zero at the 
start of the digestion process, the fitted model 
must also pass through the origin of 
coordinates. The model's physical 
interpretability and validity for predicting 
future biogas yields are ensured with this 
crucial requirement. In other words, the 
requirement of passing through the origin of 
the coordinates is crucial to guarantee the 
model's physical interpretability and validity 
for future biogas yield predictions. 

 

Results and Discussions 
This section focuses on evaluating the 

performance of non-linear regression models 
applied to the cumulative methane data 
gathered throughout the anaerobic digestion 
process. Furthermore, a comparison is made 
between the gas production rates and the 
average cumulative methane produced using 
the various treatments. 

 

Finding the best-fit non-linear regression 

model  
Accurate analysis of the cumulative 

methane data obtained during the anaerobic 
digestion process relies on selecting the most 
appropriate non-linear regression model. One 
crucial criterion for this selection is the 
model's ability to cross the origin of the 
coordinates, ensuring that it estimates a value 
of zero at the beginning of the digestion 
process. This property ensures that the model 
is consistent with the actual process. In Table 
3, we present the predicted cumulative 
methane production at the start of the 
anaerobic digestion process for 26 non-linear 
regression models. Through our evaluation, 
out of the 26 models, we identified eight valid 
models that met this property. While some 
other models, like M22, M13, and M2, could 
predict zero values for specific treatments 
only; making them unsuitable for our analysis. 
Consequently, we excluded these models from 
further consideration and focused on the ones 
predicting a zero value for all treatments. 
Thus, we narrowed down our selection to these 
eight models for further analysis. In the 
subsequent sections, we will discuss the 
performance of these eight models and 
compare their results to identify the best-fit 
model for analyzing the cumulative methane 
data. 
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Table 3- Predicted minimum amounts of methane produced during the digestion time for the 

studied treatments, utilizing 26 non-linear regression models 
Model T1 T2 T3 T4 T5 T6 T7 T8 T9 

M1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

M2 -190 -203 -162 -16 -44 0 0.00 0.00 0.00 

M3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

M4 -155 -222 -132 -14 -197 -75 -251 -132 -40 

M5 100 46 65 31 33 22 0.00 0.00 0.00 

M6 263 165 202 47 109 46 14 3 21 

M7 -155 -226 -171 -21 -194 -80 -154 -96 -41 

M8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

M9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

M10 -97 -90 -73 -65 -70 -69 -44 -48 -57 

M11 97 0 91 66 6 6 54 45 77 

M12 100 46 65 31 33 22 0.00 0.00 0.00 

M13 1 1 1 0 1 3 0.00 0.00 0.00 

M14 100 46 65 34 33 22 0.00 14 18 

M15 89 49 82 40 33 21 1 0.00 28.48 

M16 1124 1055 886 413 712 582 633 432 352 

M17 1.27 0.00 0.00 1.69 0.00 3.57 2 0.00 0.00 

M18 58 63 59 3 60 68 15 6 9 

M19 1039 1022 845 29 747 728 7 5 32 

M20 347 258 347 50 330 318 38 58 106 

M21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

M22 0 0 0 0 0 0 0 0 -150 

M23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

M24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

M25 924 951 803 286 686 645 471 322 284 

M26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

In Table 4, the results of RMSE and R2 for 
each of the nine treatments are presented. 
Based on the R2 criterion, we observed that 
four models (M9, M21, M24, and M26) lacked 
sufficient predictive ability to estimate 
cumulative methane production during the 
digestion process, as their R2 values were the 
lowest. Among the remaining four models, the 
Michaelis-Menten model (M8) demonstrated 
superior predictive ability for all treatments. 
Although the M1 model also exhibited good 
predictive ability, we excluded it from the 
selection list due to its complexity in 
comparison to the M8 model. Consequently, 
we proceeded with the Michaelis-Menten non-
linear regression model (M8) for further 
analyses, which will be presented in the 
following sections. 

Iron-based additives exhibited diverse 
behaviors during the biodegradation process of 
dairy manure. Although the First-order and 
Gompertz models are commonly used for 
monitoring biodegradation in anaerobic 

digestion (AD) processes, they were not found 
to be adequately suitable for modeling the AD 
of dairy manure with iron-based additives. The 
biodegradation of starch-based bioplastic 
under anaerobic conditions was evaluated to 
determine an appropriate kinetic model. The 
analysis involved examining 26 nonlinear 
regression models, and it was found that the 
modified Michaelis-Menten (MM) model was 
the best-fitted model for the biodegradation 
process (Ebrahimzadeh et al., 2022). The 
innovative multi-Gompertz model has been 
proposed as the most suitable model for biogas 
production from residual marine macroalgae 
biomass (Pardilhó, Pires, Boaventura, Almeida 
& Dias, 2022). Additionally, other models are 
employed for more specific conditions and 
additives, such as higher solids contents (e.g., 
Chen and Hashimoto model), or specific 
microorganisms (e.g., cone model) (Karki et 
al., 2022; Lima, Adarme, Baˆeta, Gurgel, & de 
Aquino, 2018; Masih-Das & Tao, 2018). 
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Table 4- Assessment of eight selected non-linear regression models using RMSE and R2 criteria 

  
T1 T2 T3 T4 T5 T6 T7 T8 T9 

M1  
RMSE 118 137 139 189 139 142 92 87 79 

R2 0.97 0.96 0.95 0.75 0.92 0.87 0.97 0.94 0.92 

M3  
RMSE 118 149 140 190 150 145 534 138 108 

R2 0.97 0.95 0.95 0.74 0.90 0.86 0.00 0.85 0.85 

M8  
RMSE 90 118 130 187 134 138 91 85 81 

R2 0.98 0.97 0.95 0.75 0.92 0.87 0.97 0.94 0.92 

M9  
RMSE 674 963 130 471 746 574 709 450 325 

R2 0.11 0.00 0.95 0.00 0.00 0.00 0.00 0.00 0.00 

M13  
RMSE 288 254 257 247 202 163 119 102 88 

R2 0.84 0.86 0.82 0.57 0.82 0.82 0.95 0.92 0.90 

M21  
RMSE 1318 1256 1063 367 805 630 625 319 191 

R2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.21 0.53 

M24  
RMSE 1321 1259 1066 375 807 633 634 341 214 

R2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.41 

M26  
RMSE 553 528 454 321 362 277 480 320 244 

R2 0.40 0.39 0.43 0.27 0.44 0.49 0.13 0.20 0.24 

 

Table 5 presents the coefficients of the 
Michaelis-Menten nonlinear regression model, 
along with their standard deviation, p-values, 
coefficient of determination (R2), and the 
adjusted coefficient of determination for each 
of the studied treatments. The p-value is equal 
to zero in all cases, indicating that the 
coefficients of the models are statistically 
significant at a significance level of one 

percent. The small standard deviation values 
of the coefficients, relative to the coefficient 
values, provide further evidence that the 
models' estimations can be trusted. Except for 
the T4 treatment, all other treatments have an 
R2 value equal to or greater than 0.93, 
confirming the prediction reliability of the 
models. Hence, the results will be interpreted 
based on the estimations of the models. 

 
Table 5- Coefficients, significance results, and coefficient of determination values for the 

Michaelis-Menten model 
  

T1 T2 T3 T4 T5 T6 T7 T8 T9 

Coefficients 

a 2566.0 2280.0 2158.5 1275.3 1562.9 1273.9 1325.3 893.0 736.1 

b 1.64 1.95 1.59 1.56 1.98 2.37 5.06 5.77 5.35 

c 11.50 9.83 10.76 17.46 8.41 6.50 13.31 12.90 12.62 

Std 

 

a 50.95 38.94 71.30 208.83 34.37 24.16 12.70 9.94 12.25 

b 0.07 0.10 0.12 0.35 0.16 0.26 0.29 0.44 0.59 

c 0.37 0.27 0.60 4.39 0.34 0.30 0.17 0.19 0.29 

p-value 

 

 

a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

b 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

c 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

𝑅2 
𝑅2 0.99 0.98 0.97 0.80 0.96 0.93 0.98 0.97 0.94 

𝑅𝐴𝑑𝑗.
2  0.99 0.98 0.97 0.80 0.95 0.92 0.98 0.97 0.94 

 

For a deeper understanding of the impact of 
coefficients in the Michaelis-Menten nonlinear 
regression model, a sensitivity analysis was 

conducted. Insights were gained by plotting 
the methane production trend during the 
digestion process and altering a single 
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coefficient at a time; the others were kept 
constant at their average values. The results of 
this analysis are presented in Fig. 2. The 
regression coefficient 'a' has a direct influence 
on the maximum methane production during 
the digestion process. Higher values of 'a' 
increased methane production, while lower 
values resulted in lower production. This 
coefficient represents the horizontal asymptote 
of the methane production curve. On the other 
hand, coefficient 'b' governs the slope of the 
methane production curve, impacting the time 
it takes to reach maximum methane 

production. A higher value of 'b' leads to a 
steeper slope and the methane production 
reaches its maximum more quickly. 
Conversely, an increase in coefficient 'c' slows 
down the rate of methane production, and 
requires a longer time to reach the maximum 
production level. Considering the behavior of 
these three regression coefficients, it can be 
concluded that the highest amount of methane 
production occurs when coefficients 'a' and 'b' 
are high, and coefficient 'c' is low. This 
combination results in faster methane 
production over a shorter period. 

 

  

 

Fig.2. Sensitivity analysis investigating the effect of the Michaelis-Menten model 

coefficients a, b, and c on methane production 
 
Fig. 3 presents the fitting outcomes of the 

Michaelis-Menten nonlinear regression model 
for all of the investigated treatments, along 
with the upper and lower limits of the fitted 
curve. The results indicate variations in the 
dispersion of experimental data among the 
different treatments, likely due to differences 

in experimental conditions. Nevertheless, 
considering the proximity of the upper and 
lower limits of the fitted curve and the model 
evaluation, it can be inferred that the fitted 
results effectively represent the variability of 
methane production within the studied 
treatments. 
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Fig.3. Curve fitting of the Michaelis-Menten nonlinear regression model for each of the 

studied treatments, showing the dispersion of experimental data and the upper (UB) and 

lower (LB) bounds of the fit 
 
The final amount of methane production 

and its changes during the process were 
compared using non-linear regression models, 
as depicted in Fig. 4. Among the studied 
treatments, DWTS6, DWTS12, and DWTS18 
showed the highest levels of methane 
production, while Fe3O420 and Fe3O430 
resulted in the lowest levels. The maximum 
methane production for DWTS6 was 
approximately 34% and 42% higher than that 
of Fe20 and Fe3O430, respectively, which were 
the best-performing levels among the Fe 
additives’ treatments. This indicates that 
DWTS acts as a mixture of different trace 
elements with synergistic and antagonistic 
effects, resulting in an enhancement of 
methane production from dairy manure. 
Previous research by Ebrahimi-Nik et al. 
(2018) demonstrated that the addition of 6 
mg/kg DWTS to the anaerobic digestion of 
food waste, compared to the control digester, 
resulted in a significant increase of 65% and 
58% in biogas and methane yields, 
respectively. In Fig. 4 it is evident that until 
the 10th day of the digestion process, Fe3O410 
produced less methane than all levels of Fe. 
However, after the twelfth day, the methane 
production rapidly exceeded all levels of Fe, 
indicating a unique pattern of methane 
generation for Fe3O410 compared to other 
levels of Fe. The addition of Fe3O4 to the 
anaerobic digestion (AD) process has been 
reported to have a significant positive effect on 

biogas yield. These additives also contribute to 
improving substrate digestibility by facilitating 
the decomposition of lignocellulosic biomass 
into simpler structures (Zhao et al., 2017). Ali, 
Mahar, Soomro, & Sherazi (2017) observed a 
remarkable 72.1% increase in methane content 
when using municipal solid waste (MSW) as a 
substrate for the AD process with the addition 
of Fe3O4 nanoparticles. In another study, 
Abdelsalam et al. (2017) investigated the 
impact of iron nanoparticles and iron oxide 
nanoparticles on biogas and methane 
production using cattle dung slurry and found 
that Fe3O4 NPs with a concentration of 20 
mg/L led to a substantial 65.6% increase in 
biogas production. Fe3O4 NPs additives have 
also been associated with the highest biogas 
yield reported from an AD process (Casals et 
al., 2014). These findings highlight the 
potential and significance of Fe3O4-based 
additives in enhancing biogas production in 
anaerobic digestion processes. Regarding the 
slope of methane production, it is observed 
that the top two treatments, DWTS6 and 
DWTS12, have the same slope until day 20. 
However, after day 20, the methane production 
trend for DWTS6 rises above that of 
DWTS12. Generally, the slope of methane 
production varies among different treatments, 
with some showing an uphill start, which may 
also have a significant impact on their overall 
methane production. 

 

0

200

400

600

800

1000

0 20 40
C

H
4

(c
c)

Time (Day)

(Fe3O4 30)

LB

Model

UB

Data



Rezaeifar et al., Investigating the Efficiency of Drinking Water Treatment Sludge…      28 

 

Fig.4. Methane production during the anaerobic digestion process using non-linear 

regression models for each of the treatments 

  

 

Fig.5. Changes in the production rate of methane during the anaerobic digestion process 
using a non-linear regression model for each of the three additives 

 
Fig. 5 displays the methane production rate 

from the treatments throughout 40 days. 
Sigmoid gas production curves can be 
categorized into three stages: the initial stage 
with slow or no gas production, the rapid gas 
production stage (exponential stage), and the 

final stage where gas production slows down 
and eventually reaches zero (asymptotic 
stage). A comparison of the three types of 
treatments reveals that only the treatments 
with different levels of Fe3O4 experienced an 
initial stage. Consequently, these treatments 
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reached their maximum production rate after 
day ten, while other additives (DWTS and Fe) 
achieved their maximum rates before the 10th 
day. It was observed that a higher level of 
Fe3O4 corresponds to a lower methane 
production rate in all three stages. However, 
Fe20 and Fe30 exhibited increased methane 
rates in the first two stages. It is noteworthy 
that the lower level of Fe (Fe20) resulted in a 
higher methane production rate than Fe30 at 
the end of the process, particularly after the 
18th day and during the third stage. When 
comparing different levels of DWTS, it was 
evident that although these treatments had 
similar rates during the first and final days of 
the process, DWTS12 exhibited the highest 
methane production rate during the rapid gas 
production stage. Specifically, the maximum 
methane production rate of DWTS12 in the 
second stage was approximately 5% and 22% 
higher than DWTS6 and DWTS18, 
respectively. 

Abdelsalam et al. (2017) conducted a study 
on the impact of magnetic iron oxide 
nanoparticles on methane production from 
anaerobic digestion of manure. Their findings 
revealed that utilizing 20 mg L-1 of Fe3O4 
resulted in the highest methane production 

rate, surpassing the rates observed with 5 mg 
L-1 and 10 mg L-1 of Fe3O4. The maximum 
methane production rate was achieved before 
the 5th day and reached approximately 110 cc 
for the AD process of food waste when 6 mg 
L-1 of DWTS was used. This result aligns 
closely with the findings obtained for the same 
treatment in one of our other studies 
(Ebrahimzadeh et al., 2022). 

Using the results obtained from the 
modeling analysis, we computed the quantity 
of methane production for each of the nine 
treatments at various points during the 
anaerobic digestion process. We calculated 
methane production when it reached 25%, 
50%, 75%, and 90% of the final amount 
achieved at the end of the process. The 
computed values for T25, T50, T75, and T90 
of each treatment are presented in Table 6. By 
examining these values for the treatments, we 
can determine the speed at which each 
treatment achieves its maximum methane 
production. Opting for a treatment that reaches 
its maximum methane production earlier with 
a higher percentage would be preferable, as it 
indicates a more efficient and effective 
process. 

 

Table 6- Calculated methane production values for T25, T50, T75, and T90 for each treatment 
Additive Treatment T25 (day) T50 (day) T75 (day) T90 (day) 

DWTS 

DWTS 6 5.65 11.29 21.77 38.89 

DWTS 12 5.64 9.65 16.32 26.93 

DWTS 18 5.28 9.40 16.49 28.03 

Fe 

Fe 10 8.48 17.65 23.05 32.61 

Fe 20 4.73 7.94 13.20 21.57 

Fe 30 4.21 6.64 10.41 16.14 

Fe3O4 

Fe3O4 10 10.41 13.22 16.72 21.06 

Fe3O4 20 10.76 13.02 15.71 18.90 

Fe3O4 30 10.40 12.16 14.20 16.53 

Notes: T25, T50, T75, and T90 represent the times when methane production reaches 25%, 50%, 75%, and 90% of the 

maximum amount achieved at the end of the anaerobic digestion process, respectively. 
 

Lastly, Fig. 6 presents the comparison of 
average cumulative methane production 
among the studied treatments using the LSD 
method after the completion of the anaerobic 
digestion process. Notably, the figure 
highlights a significant difference (P > 0.05) in 
biomethane production between the different 
levels of DWTS, Fe, and Fe3O4. It can be seen 

that the treatment with DWTS6 exhibits the 
highest level of average cumulative methane 
production, and there is a statistically 
significant difference between this treatment 
and all the others, except DWTS12. This 
suggests that DWTS6 stands out as a 
particularly effective treatment for promoting 
methane production during the anaerobic 
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digestion process, warranting further consideration for practical applications. 
 

 
Fig.6. Comparison of average cumulative methane production among the treatments using 

the LSD method at 5% level after completion of the anaerobic digestion process 
 

Conclusion 

In this study, we investigated the impact of 
iron-based additives, including Fe, Fe3O4, and 
DWTS, at three levels, on the anaerobic 
digestion of dairy manure. Additionally, we 
introduced and evaluated 26 different non-
linear models to better understand the kinetics 
of methane production from the AD process. 
Among these models, the Michaelis-Menten 
model (M8) demonstrated the best 
performance in estimating the methane 
production kinetics for all nine treatments over 
time. 

The results revealed that different levels of 
DWTS exhibited the highest methane 
production compared to various levels of Fe 
and Fe3O4. Interestingly, Fe3O4 at level 30 
displayed the lowest biomethane production 
among all the Fe3O4 treatments. Moreover, 
DWTS at level 6 achieved the highest average 
cumulative methane production among the 
studied treatments using the LSD method at a 
5% significance level after the completion of 
the anaerobic digestion process. 

The methane production rate for treatments 
with DWTS and Fe reached its maximum 
before the 5th day, while in Fe3O4 treatments, 
it occurred around the 12th day. Additionally, 

while higher levels of Fe increased the 
methane production rate, increasing the level 
of Fe3O4 showed the opposite effect. Notably, 
among all the treatments, DWTS at level 12 
displayed the highest maximum methane 
production rate, peaking at approximately 
147.6 cc on the 6th day. 

These findings provide valuable insights 
into the kinetics of anaerobic digestion of 
dairy manure. However, further research is 
required to determine whether these results can 
be applied to other types of livestock manure 
as well. Future studies could involve applying 
the proposed models to different datasets to 
validate and refine our understanding of the 
anaerobic digestion process. 
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 یساز: مطالعه مدلیدام یکودها یهوازیآهن در هضم ب هیبر پا یهایافزودن ییکارا یبررس

 کیتینیس
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 1 چکیده

 یدنیآب آشام هیو لجن تصف هایمغذزیعنوان ربر آهن به یمبتن یهای، افزودن(AD) یهوازیهضم ب یداریبهبود عملکرد و پا یدر تلاش برا
(DWTS) متان در طول دیتول کینتیس یمطالعه به بررس نی. اتوانند نقش کلیدی داشته باشندمی AD یهاکه شامل غلظت پردازدیم گاوی یکودها 

کتابخانه گسترده از  کی. با استفاده از شودی( متریدر ل گرمیلیم 18و  6 ،12)  DWTS( وتریدر ل گرمیلیم 30و  10 ،20) 4O3Fe و  Feمختلف
متان  دیتول ندیکل فرآ یبرا یقو یهاکنندهینیبشیعنوان پقرار گرفتند و هشت مورد به ینامزد مورد بررس 26، (NLR) یخطریغ ونیرگرس یهامدل

شده آشکار کرد. مشخص یهایرا با افزودن AD دامی یکودها کینتیعنوان انتخاب برتر برجسته شد و سبه Michaelis-Menten ظاهر شدند. مدل
را ثبت کردند.  زانیم نیکمتر 4O3Fe 30و 4O3Fe 20کهی، در حالمراه داردهبهمتان را  دیتول نیبالاتر  DWTSها نشان داد که سطوح مختلفافتهی

کرد.  یمعرف تیمار نیعنوان موثرترنشان داد و آن را به 4O3Fe 30و  Fe20با سهیرا در مقا %42و  %34 باًیمتان تقر دیتول DWTS6ذکر است، قابل
 نیا ،یعمل میبر مفاه دی. با تأکدیدر روز ششم رس یسیس 6/147گذاشت و به  شیمتان را به نما دیتول زانیم نیبالاتر DWTS12 ن،یعلاوه بر ا

یافزودن لیپتانس یمطالعه با بررس نی. اکندیم دیتأک AD عملکرد یسازنهیپارامترها و به ریسا لیو تحل هیتجز یبرا یشنهادیبر کاربرد مدل پ قیتحق
 .سازدهموار می داریزباله پا تیریمد یهاوهیش شبردیو پ گاوی یمتان از کودها دیتول مسیر را در، DWTS بر آهن و یمبتن یها

 هوازیهضم بیسازی، مطالعه سینتیک، کود دامی، مدل ،عناصر کمیاب کلیدی: هایواژه
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Abstract 

This research aims to optimize the mixing process in gas-lift anaerobic digesters of municipal sewage sludge 
since mixing and maintaining uniform contact between methanogenic bacteria and nutrients is essential. 
Wastewater municipal sludge sampling was performed at the Ahvaz West treatment plant (Chonibeh, Iran) 
during the summer of 2022. A Computational Fluid Dynamics (CFD) model was implemented to simulate, 
optimize, and confirm the simulation process using ANSYS Fluent software 19.0. The velocity of the inlet-gas 
into the digester was determined and a draft tube and a conical hanging baffle were added to the digester design. 
Different inlet-gas velocities were investigated to optimize the mixing in the digester. Furthermore, turbulence 
kinetic energy and other evaluation indexes related to the sludge particles such as their velocity, velocity 
gradient, and eddy viscosity were studied. The optimal inlet-gas velocity was determined to be 0.3 ms-1. The 
simulation results were validated using the Particle Image Velocimetry (PIV) method and the correlation 
between CFD and PIV contours was statistically sufficient (98.8% at the bottom corner of the digester’s wall). 
The results showed that the model used for simulating, optimizing, and verifying the simulation process is valid. 
It can be recommended for gas-lift anaerobic digesters with the following specifications: cylindrical tank with a 
height-to-diameter ratio of 1.5, draft tube-to-digester diameter ratio of 0.2, draft tube-to-fluid height ratio of 0.75, 
the conical hanging baffle distance from the fluid level equal to 0.125 of the fluid height, and its outer diameter-
to-digester diameter of 2/3. 

 
Keywords: Computational Fluid Dynamics (CFD), Digestion, Particles Image Velocimetry (PIV), 

Simulation 
 

Introduction1 

The performance of an anaerobic digester is 
affected by several factors, including the 
retention time of the substrate within the 
digester and the degree of contact between the 
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incoming substrate and the viable bacterial 
population. These parameters are determined 
by the flow pattern, or mixing, in the digester. 
Complete mixing of the substrate within the 
digester facilitates the uniform distribution of 
organisms and heat transfer. This is considered 
to be essential in high-rate anaerobic digesters 
(Sawyer & Grumbling, 1960; Meynell, 1976). 

Three methods for mixing in anaerobic 
digesters include gas mixing, mechanical 
mixing, and pumped recirculation liquid. Gas 
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mixing can be performed using either 
unconfined or confined methods. In 
unconfined systems, biogas collected at the top 
of the digester is compressed and discharged 
through bottom diffusers or top-mounted 
lances (McFarland, 2001). To make the four 
gas mixing designs (Bottom diffusers, Gas lift, 
Cover mounted lances, and Bubble guns) 
comparable, MEL= 5 Wm-3 at TS= 5.4% was 
used to determine the velocity of the inlet gas. 
In confined systems, the biogas is released 
through tubes. The gas lift method in a 
confined system produces the highest average 
velocity (0.080 ms-1) under the same mixing 
power (5 Wm-3). In other words, mixing with 
the gas lift requires the lowest mixing power 
under the same average velocity of the flow 
field, and is the preferred method (Wu, 2014). 

The flow pattern, or mixing, inside gas-
mixed digesters is affected by several factors 
including the biogas recycling rate, the 
clearance of the draft tube at the bottom, the 
ratio of the draft tube to tank diameter, the 
slope of the hopper bottom, the position and 
design of the biogas injection (sparger), and 
the solids loading rate (Karim et al., 2005). 
Wei, Uijttewaal, Spanjers, Lier, & Kreuk 
(2023) assessed the impact on the treated 
sludge’s rheology as an important factor 
affecting the flow optimization and mixing 
characterization in a full-scale biogas-mixed 
digester. 

Conducting experiments to evaluate the 
effect of these parameters on mixing in the 
digester is time-consuming and costly. 
Therefore, simulation software like ANSYS 
Fluent is a suitable tool for designing and 
optimizing mixed gas anaerobic digesters. Wu 
(2010) presented an Eulerian multiphase flow 
model for mixing gas in digesters and 
proposed that the Shear Stress Transport (SST) 
k–ѡ model with Low-Reynolds corrections 
would be an appropriate turbulence model to 
solve gas and non-Newtonian two-phase 
flows. 

Researchers use different indexes to assess 
the performance of their simulations and to be 
able to evaluate simulations performed with 
experimental data. Varma & Al-Dahhan 

(2007) measured the turbulence kinetic energy 
and the velocity. Karim, Thoma, & Al-Dahhan 
(2007) measured the magnitude of axial 
velocity. Wu (2010) studied the velocity 
contour, Wu (2014) used the average velocity 
and the uniformity index of velocity to 
evaluate the mixing performance, and Daplo et 
al. (2015) used the magnitude of velocity 
along the vertical axis.  

Validating the CFD simulation results is a 
necessary step. Tracer and non-invasive 
techniques are the traditional methods of 
studying gas mixing in anaerobic digesters and 
are usually used for verifying the CFD 
simulation results. Vesvikar & Al-Dahhan 
(2016), Karim et al. (2007), and Wu (2010) 
validated their models against the digester 
reported by Karim, Varma, Vesvikar, & Al-
Dahhan (2004) and verified the flow fields 
with the measured data from Computer 
Automated Radioactive Particle Tracking 
(CARPT) and Computed Tomography (CT), a 
non-invasive technique. Dapelo, Alberini, & 
Bridgeman (2015) used Particle image 
velocimetry and a high-speed camera to 
validate an Euler-Lagrange CFD model of 
unconfined gas mixing in an anaerobic 
digestion. Hu et al. (2021) proposed a novel 
approach for experimental quantification of 
mass transfer in a high-solid anaerobic 
digestor’s mixing process using Laser Induced 
Fluorescence (LIF) technique in a mixing tank 
equipped with multistage impellers. Flow field 
was investigated for a better illustration of the 
mass transfer, thus Particle Image Velocimetry 
(PIV) and Computational Fluid Dynamics 
(CFD) techniques were conducted for flow 
field measurement. 

The quality of mixing in a gas-lift anaerobic 
digester depends on various factors, such as 
the dimensions of the draft tube and the 
conical hanging baffle, the position of the 
baffle relative to the digester bottom, and the 
angle of the baffle. Baveli Bahmaei, 
Ajabshirchi, Abdollah poor, & Abdanan 
Mehdizadeh (2022) performed a numerical 
study and examined the influence of these 
factors on the mixing performance using 
ANSYS Fluent software. The present paper 
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extends their work by optimizing the mixing 
using the same digester configuration with 
different inlet-gas velocities. The evaluation 
criteria for optimization are average velocity, 
turbulence kinetic energy, average velocity 
gradient, and eddy viscosity of the sludge. The 
numerical results are validated using particle 
image velocimetry (PIV). 

 

Materials and Methods 

Methodology 
The Computational Fluid Dynamics (CFD) 

simulations were conducted using ANSYS 
Fluent software for modeling the inlet-gas 
anaerobic digester. The initial step involved 
determining the inlet-gas velocity. 
Subsequently, the effects of adding the draft 
tube and the conical hanging baffle to the 
digester design were analyzed. The 

optimization of mixing within the digester was 
achieved by varying the inlet-gas velocities 
and assessing the change in the evaluation 
indexes. The turbulence kinetic energy and the 
behavior of the sludge particles, namely their 
velocity, velocity gradient, and eddy viscosity 
were the studied indexes. The contours of the 
resulting evaluation indexes were analyzed to 
determine the optimal velocity for mixing. 
Following the simulation results, a transparent 
anaerobic digester was constructed and loaded 
with municipal sewage sludge, operating at 
optimal inlet-gas velocity. The Particle Image 
Velocimetry (PIV) method was employed to 
compare the evaluated index contours of PIV 
with those of the CFD and to validate the CFD 
simulation outcomes. A schematic 
representation of the simulation, optimization, 
and verification process is presented in Fig. 1. 

 
Fig.1. Steps used for the model simulation, optimization, and verification 

 

CFD simulation 

A commercial CFD software, ANSYS 
Fluent (version 19.0) was utilized to create a 
two-dimensional geometry in the design 
modeler, generate mesh, and solve the two-
phase Eulerian model flow using the Eulerian 
multiphase approach. This two-dimensional 
model can be applied to digesters that are 
symmetrical around their vertical axis, like 
cylinders (Yang et al., 2015). Simulations 
were performed under unsteady-state 
conditions using Double Precision, Serial, 
Pressure-Based, and Implicit settings. The 
two-phase liquid-gas Eulerian Model of 
Viscous-SST k-omega (with sludge as the 
primary phase and biogas as the secondary 

phase) and low-Re correction were employed. 
At each time step, the iterative calculation was 
accepted as converged if all residuals fell 
below 1×10-3. Final convergence was achieved 
when the average velocity of the liquid phase 
remained unchanged (Wu, 2014). 

 

Geometry, Computational domain, and 

mesh 
The geometry of the digester used in this 

research is based on a previously simulated 
geometry by Baveli Bahmaei et al. (2022) and 
the six steps of digester simulation are outlined 
in Fig. 1. The digester consists of a cylindrical 
tank with a flat bottom, height of 45 cm, and a 
diameter of 30 cm which results in a height to 



38     Journal of Agricultural Machinery Vol. 14, No. 1, Spring 2024 

diameter ratio of 1.5. The draft tube diameter 
to digester diameter is 0.2 (5 cm) and the draft 
tube height to fluid height is 0.75 (30 cm). The 
conical hanging baffle distance from the fluid 
level is equal to 0.125 of the fluid height (5 
cm), its outer diameter to digester diameter is 
2/3 (20 cm) and has a horizontal angle of 15 

degrees (Fig. 2). The mesh size function was 
set to curative, max face size was set to 
0.0007, and the number of nodes and elements 
were 267083 and 264281, respectively. 
Discretization error estimation was calculated 
based on the method proposed by Celik et al. 
(2008). 

 

 
Fig.2. The digester used for mixing optimization: (a) Geometry, and (b) Meshing; values are in cm 

and degrees 

 

Evaluation indexes 

Sludge velocity  
The velocity contour and streamlines were 

utilized in steps 1 to 6 of the simulation (Fig. 
1) to determine the inlet-gas velocity, draft 
tube, and conical hanging baffle 
characteristics. The uniformity of contours and 
streamlines, as well as their contribution to 
uniformity within the digester, were 
considered (please refer to Baveli Bahmaei et 
al. (2022) for more details). Sludge velocity 
was used as one of the validation indexes for 
investigating the mixing quality in a simulated 
gas-lift anaerobic digester and for selecting the 
appropriate inlet-gas velocity. The velocity 
value was compared with the sludge’s 
sedimentation velocity. Whenever the velocity 
was less than the sedimentation velocity, it 
indicated that the sludge particles would 
sediment in the digester. 

 

Sludge velocity gradient 
The sludge velocity gradient was used as a 

validation index for assessing the quality of 
mixing. This parameter is defined as a custom 
field function in the main menu of ANSYS 
Fluent as shown in Eq. 1 and measures the 
local velocity gradient of a mixture in 
multiphase flow using the SST k-ѡ model as 
defined by Wu (2014). 

𝐺𝐿 = √
𝜌𝜔𝛽∗𝑘

𝜂
 (1) 

Where ρ and η are the density and the non-
Newtonian viscosity in the liquid phase, 
respectively. 𝛽* is 0.09 and ω and k are the 
specific dissipation rate and the turbulence 
kinetic energy of the mixture, respectively. GL 
is the local velocity gradient and will be called 
the velocity gradient hereafter. 

 

Turbulence kinetic energy 
Turbulence kinetic energy is used as one of 

the indexes that investigates the mixing quality 
in simulation results and is defined in Eq. 2. 
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G𝑘 = −𝜌𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅
𝜕𝑢𝑗

𝜕𝑥𝑖
 (2) 

Reynolds stresses (−𝜌𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅ ) is defined in 

Eq. 3 using the Boussinesq hypothesis related 
to the mean velocity gradient. 

−𝜌𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅ = 𝜇𝑡 (
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
)

−
2

3
(𝜌𝑘

+ 𝜇𝑡
𝜕𝑢𝑖
𝜕𝑥𝑖

) 𝛿𝑖𝑗 

(3) 

Where 𝜇t is the turbulent viscosity, k is the 
turbulence kinetic energy, and u (Eq. 4) is the 
velocity component. 

𝑢𝑖 = 𝑢𝑖̅ + 𝑢𝑖
′ (4) 

Where 𝑢𝑖̅ and 𝑢𝑖
′ are the mean and 

fluctuating velocity components respectively 
(i=1, 2, 3). 

 

Sludge eddy viscosity 
Mixing quality can also be investigated 

using sludge eddy viscosity. Sludge eddy 
viscosity is the proportionality factor in 
describing the turbulent energy transfer in the 
form of moving eddies, giving rise to 
tangential stresses. Eddy viscosity is defined in 
Eq. 5 (Menter, 1993): 

𝑣𝑇 =
𝜇𝑇
𝜌
=
𝑘

𝜔
  (5) 

 

Mixing Energy Level 
The Mixing Energy Level (MEL) can be 

estimated using Eq. 6 (Stukenberg, Clark, 
Sandino, & Naydo, 1992). 

𝑀𝐸𝐿 =
𝐸

𝑉
 (6) 

Where V denotes the effective volume of 
the digester and E denotes the energy 
consumption. Energy consumption for the gas-
sparging (Eq. 7) was evaluated based on the 
power input formula (McFarland, 2001). 

𝐸 = 𝑃1 ∙ 𝑄 ∙ 𝑙𝑛 (
𝑃2
𝑃1
) (7) 

Where Q denotes the gas flow rate, and P1 
and P2 are the absolute pressure in the tank 

headspace and at the gas-sparging inlet, 
respectively. 

 

Particle image velocimetry 
According to the methods used by Raffel, 

Willert, & Kompenhans (1998) and Dawkins, 
Cain, & Roberts (2012), the particle image 
velocimetry (PIV) process involves taking two 
images (I1 and I2) separated by time ∆t. Both 
images were then divided into smaller regions, 
also known as sub-windows, interrogation-
windows, or interrogation-regions. Each sub-
window in the first image is compared with the 
corresponding sub-window in the second 
image. The sub-window with position indexes 

i and j in the first image is denoted as 𝐼1
𝑖.𝑗

 and 
the corresponding sub-window in the second 

image is denoted as 𝐼2
𝑖.𝑗

. Afterward, a search 
algorithm was performed to identify a 

displacement pattern in 𝐼1
𝑖.𝑗

. To do this, the 
squared Euclidean distance between the two 
sub-windows was defined in Eq. 8. 

(8) 
𝑅𝑒(𝑠. 𝑡) = ∑ ∑[𝐼1

𝑖.𝑗(𝑚. 𝑛)

𝑁−1

𝑛=0

𝑀−1

𝑚=0

− 𝐼2
𝑖.𝑗(𝑚 − 𝑠. 𝑛 − 𝑡)]

2
 

This formula calculates the sum of the 
squared differences between all of the possible  

𝐼1
𝑖.𝑗

 and 𝐼2
𝑖.𝑗

 sub-windows. In other words, it 
looks for the position where the sub-windows 
were the “least unlike”. Expanding the square 
parentheses in Eq. 8 would result in Eq. 9.  

(9) 

𝑅𝑒(𝑠. 𝑡) = ∑ ∑[𝐼1
𝑖.𝑗(𝑠. 𝑡)

𝑁−1

𝑛=0

𝑀−1

𝑚=0

− 𝐼2
𝑖.𝑗(𝑚 − 𝑠. 𝑛 − 𝑡)]

2

= ∑ ∑ 𝐼1
𝑖.𝑗(𝑚. 𝑛)2

𝑁−1

𝑛=0

𝑀−1

𝑚=0

− 2𝐼1
𝑖.𝑗(𝑠. 𝑡)

∙ 𝐼2
𝑖.𝑗(𝑚 − 𝑠. 𝑛 − 𝑡)

+ 𝐼2
𝑖.𝑗(𝑚 − 𝑠. 𝑛 − 𝑡)2 

It should be noted that the first term, 

𝐼1
𝑖.𝑗(𝑚. 𝑛)2, is a constant since it does not 

depend on s or t. The last term, 𝐼2
𝑖.𝑗(𝑚 − 𝑠. 𝑛 −

𝑡)2, depends on s, t, and only the second 
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image. To sum up, only the middle term deals 
with both of the images and this term (without 
the -2), as defined in Eq. 10, is usually referred 
to as cross-correlation (or circular cross-
correlation). 

(10) 
𝑅(𝑠. 𝑡) = ∑ ∑ 𝐼1

𝑖.𝑗(𝑚. 𝑛)

𝑁−1

𝑛=0

𝑀−1

𝑚=0

∙ 𝐼2
𝑖.𝑗(𝑚 − 𝑠. 𝑛 − 𝑡) 

 

Results and Discussion 

The mixing conditions in the digester were 

investigated using different inlet-gas 
velocities. Simulations were performed using 
inlet-gas velocities of 0.05, 0.1, 0.2, 0.3, 0.4, 
0.5, and 0.6 ms-1 to study the mixing quality in 
a cylindrical digester, details of which are 
indicated in Fig. 2. 

 

Investigation of the evaluation indexes 
The values of the investigated indexes and 

Mixing Energy Levels (MEL) for each of the 
gas-inlet velocities are shown in Table 1. 

 

Table 1- Evaluated indexes and MEL for verifying the mixing quality in the gas-lift anaerobic 

digester for different inlet-gas velocities 

Inlet-gas 

velocity  

(ms-1) 

Sludge velocity (ms-1) 

Turbulence 

kinetic energy 

(m2s-2) 

Average velocity 

gradient (s-1) 
Sludge eddy viscosity (Pa s) 

MEL 

min. 

E-6 
Ave. max. 

min. 

 E-14 
max. 

min. 

E-6 
max. 

min. 

E-17 
max. 

0.05 2.23 0.0236 0.30 1.0 3.8E-07 6.6 0.07 5.85 3.0E-08 0.505 

0.1 10.72 0.0291 0.43 1.0 8.3E-07 18 0.14 5.91 8.0E-07 1.01 

0.2 1.40 0.0287 0.66 1.0 64E-07 29 0.29 7.75 1.8E-05 2.02 

0.3 2.61 0.0322 0.83 8.1 0.011 359 285.23 64.50 73E-05 3.03 

0.4 3.92 0.0375 1.16 120 0.17 1398 449.68 974.12 0.65 4.04 

0.5 2.26 0.0443 1.29 4400 0.21 8370 536.97 34911.40 0.63 5.05 

0.6 9.53 0.0453 1.49 1900 0.26 5461 672.24 14858.50 0.74 6.06 

 

Sludge velocity 
Table 1 shows the minimum, average, and 

maximum values of sludge velocity for 
different inlet-gas velocities. The minimum 
sludge velocities were achieved in local and 
face options. The maximum velocity appears 
inside the draft tube, while the minimum value 
appears near the digester walls and at the 
bottom. The maximum velocity varies from 
0.3 to 1.49 ms-1 for the studied inlet velocities 
and the average velocity only varies about 
0.022 ms-1. This indicates that the velocity of 
the particles in all internal parts of the digester 
does not increase proportionally with the 
increase in the inlet-gas velocity. This could be 
due to the formation of short-circuiting in the 
digester in areas where more mixing takes 
place. Because sludge is a non-Newtonian 
fluid and more mixing causes more decrease in 
its viscosity. 

Since the maximum sedimentation velocity 
in sludge particles is 4.7E-5 ms-1 (Baveli 

Bahmaei et al., 2022), to prevent particle 
sedimentation, the minimum sludge velocity 
should be greater than 4.7E-5 ms-1. However, 
when considering the minimum fluid 
velocities at different inlet-gas velocities, this 
goal is not achieved thoroughly at any of the 
studied inlet-gas velocities. On the other hand, 
increasing the inlet-gas velocity in gas-lift 
anaerobic digesters is limited due to the 
biological nature of anaerobic digestion. 
Therefore, a balance must be struck between 
increasing the mixing rate and reducing the 
particle sedimentation to maintain the 
conditions that prevent disruption of the 
biological process of anaerobic digestion. 

 

Turbulence kinetic energy 
The minimum and maximum values of 

turbulence kinetic energy for different inlet-
gas velocities are shown in Table 1. Minimum 
turbulence kinetic energy varies between 1E-
14 and 4.4E-11 m2s-2 for inlet-gas velocities of 
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0.05 and 0.5 ms-1, respectively and the 
maximum varies from 3.8E-7 m2s-2 in 0.05  
ms-1 velocity to 0.26 m2s-2 in 0.6 ms-1 velocity. 
The produced turbulence kinetic energy is very 
low for the first three inlet-gas velocities (0.05, 
0.1, and 0.2 ms-1), has a medium value for the 
inlet-gas velocity of 0.3 ms-1, and is high with 

close values for the remaining three velocities 
(0.4, 0.5, and 0.6 ms-1). Turbulence kinetic 
energy of different inlet-gas velocities is 
presented in Fig. 3. Higher turbulence kinetic 
energy causes more intense mixing and the 
destruction of flocs, which disrupts the 
anaerobic digestion process. 

 

 
Fig.3. Turbulence kinetic energy contours (logarithmic color) for different inlet-gas velocities; (a) 

0.05, (b) 0.1, (c) 0.2, (d) 0.3, (e) 0.4, (f) 0.5, and (g) 0.6 ms-1 

Average velocity gradient 
The average velocity gradient generates the 

turbulence kinetic energy and therefore, their 
results are similar. Results of the average 
velocity gradient for the studied inlet-gas 
velocities are presented in Fig. 4. The 
minimum average velocity gradient varies 
from 6.6E-12 to 84E-10 s-1 for different inlet-

gas velocities (Table 1). The maximum 
average velocity gradient varies from 0.07 to 
672.24 s-1 for inlet-gas velocities of 0.05 to 0.6 
ms-1. The average velocity gradient is low for 
the first three inlet-gas velocities (0.05, 0.1, 
and 0.2 ms-1) and high for the last three of 
them (0.4, 0.5, and 0.6 ms-1). It has a medium 
value for the inlet-gas velocity of 0.3 ms-1.  

 

 
Fig.4. Average velocity gradient contours (logarithmic color) for different inlet-gas velocities; (a) 

0.05, (b) 0.1, (c) 0.2, (d) 0.3, (e) 0.4, (f) 0.5, and (g) 0.6 ms-1 

Sludge eddy viscosity 
Sludge eddy viscosity is a proportionality 

factor describing the turbulent energy transfer 
as a result of moving eddies, giving rise to 
tangential stresses. The results of sludge eddy 
viscosity for different inlet-gas velocities are 
presented in Fig. 5. The minimum and 
maximum values of sludge eddy viscosity for 
different inlet-gas velocities are shown in 
Table 1. Minimum sludge eddy viscosity 
varies from 5.85E-17 to 14.86E-14 Pa s, and 

the maximum varies from 3.0E-8 to 0.74 Pa s 
as the velocity increases from 0.05 to 0.6 ms-1. 
Sludge eddy viscosity produced by the first 
four inlet-gas velocities (0.05, 0.1, 0.2, and 0.3 
ms-1) has low values and the last three 
velocities (0.4, 0.5, and 0.6) are high and have 
close values. Higher eddy viscosity indicates 
higher amounts of moving eddies and high 
tangential stresses in the sludge that can lead 
to the destruction of flocs and disrupt the 
biological process of digestion. Therefore, in 



42     Journal of Agricultural Machinery Vol. 14, No. 1, Spring 2024 

terms of sludge eddy viscosity index, an inlet- gas velocity of 0.3 ms-1 was appropriate. 
 

 
Fig.5. Sludge eddy viscosity contours (logarithmic color) for different inlet-gas velocities; (a) 0.05, 

(b) 0.1, (c) 0.2, (d) 0.3, (e) 0.4, (f) 0.5, and (g) 0.6 ms-1 

Selecting the appropriate inlet-gas velocity 
The investigation of the evaluation indexes 

revealed that a balance between the mixing 
intensity and sludge sedimentation must be 
maintained. Higher mixing intensity can result 
in broken flocs and impairs anaerobic 
digestion. If a high inlet-gas velocity is 
selected for mixing, it can disrupt the 
biological process of anaerobic digestion. On 
the other hand, if the velocity is too low, the 
particle sedimentation rate will increase and 
proper mixing will not occur.  

Analyzing sludge velocity, turbulence 
kinetic energy, average velocity gradient, and 
eddy viscosity showed that selecting an inlet-
gas velocity of 0.3 ms-1 is the most appropriate 
option. The results of CFD simulations for the 
investigated evaluation indexes for an inlet-gas 
velocity of 0.3 ms-1 are shown in Fig. 6.  

The sludge velocity contour presented in 
Fig. 6 indicates that in most of the digester 
zones, zones 4 and 5 with yellow and red 
colors, the particle velocity is greater than 
1.75E-3 ms-1. Considering the maximum 
sludge sedimentation velocity for the largest 
sludge particle (47 E-6 ms-1 for particle size of 
2 mm) (Baveli Bahmaei et al., 2022), particle 
sedimentation in the digester is very low. Even 
in zone 3 with a green color, the sludge 
velocity was larger than 9.9E-5 ms-1. Only in 
zones 2 and 1 where sludge velocity is lower 
than 9.9E-5 ms-1, there is a possibility of 
sedimentation of particles larger than 0.85 
mm, which comprise 17% of the total particles 
in the sludge (Baveli Bahmaei et al., 2022). 
However, zones 1 and 2 cover a very small 
percentage of the digester volume, indicating 
good mixing conditions. 

 

 
Fig.6. The resulting evaluation indexes in the digester; gas inlet velocity= 0.3 ms-1 
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Gas-sparging intensity determines the 

amount of injected biogas for mixing and is an 
important operational assessment parameter. 
Based on the compressor’s capacity, the 
injected biogas flow rate for the inlet-gas 
velocity of 0.3 ms-1 was calculated to be 0.085 
m3h-1 in the studied digester. In the actual 
experiment, 0.085 m3h-1 yielded a MEL of 3.3 
Wm-3, which was close to 2.2 Wm-3 that was 
reported in another full-scale gas-mixed 
digester (Dapelo & Bridgeman, 2018). 
However, this value is still much lower than 
the recommended range (5-8 Wm-3) needed for 
proper mixing (U. EPA, 1979). To match the 
recommended range, the inlet-gas velocity 
should be increased to over 0.7 ms-1. This 
alteration requires additional investment in the 
studied digester, and the technical adjustments 
and the much higher energy consumption may 

challenge the biogas production process 
altogether. Therefore, increasing the inlet-gas 
velocity is not an efficient strategy for 
enhancing the flow and mixing, and the 
recommended MEL criterion appears 
unsuitable for the studied digester. 

 

Particle image velocimetry results 
To verify the results of CFD simulations, a 

digester was constructed with transparent 
material so that photos of its inside could be 
easily taken. The transparent pilot-scale 
digester was built with the optimal 
characteristics obtained from the CFD 
simulation results and is shown in Fig. 7. It is 
made of Polymethyl methacrylate with a 
thickness of 1.5 mm. 

 

 
Fig.7. The transparent digester: (a) empty and (b) filled with municipal wastewater sludge 

 
After selecting the inlet-gas velocity of 0.3 

ms-1 as the most appropriate inlet-gas velocity, 
the particle image velocimetry (PIV) was 
performed. Due to the very dark color of the 
sludge (see Fig. 7b) and the indistinct particles 
in the images, a narrow strip of glitter was 
used along the height of the digester for PIV. 
The calculated sludge velocity, average 
velocity gradient, and sludge streamlines are 
shown in Fig. 8. The average velocity gradient 
(Fig. 8a) varies from 1.8E-6 to 34.3E-6 s-1, 

while sludge velocity (Fig .8b) varies from 0 
to 1.1×10-3 ms-1. The maximum value of 
average velocity gradient and sludge velocity 
occurred between 20 to 35 cm from the top of 
the digester, and the streamline distance is 
maximum in this zone. As shown in Fig. 8b, in 
most parts of the digester’s wall, the sludge 
velocity is greater than the minimum sludge 
velocity achieved from the simulations, 
indicating that particle sedimentation does not 
occur. Observing the velocity contour obtained 
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from the PIV shows that the lowest velocity is 
at the junction of the wall and the bottom of 
the digester (Fig. 8b). Furthermore since there 

are no streamlines in this area, the streamlines 
(Fig. 8c) confirm the results of CFD 
simulations. 

 

 
Fig.8. Results of particle image velocimetry (PIV) for inlet gas velocity of 0.3 ms-1: (a) average 

velocity gradient (s-1), (b) sludge velocity (cms-1), and (c) streamline of particles in sludge 

Conclusion 

This study aimed to optimize mixing in gas-
lift anaerobic municipal sewage sludge 
digesters. The model was built, simulated, and 
optimized, and the results were subsequently 
confirmed by building and testing the actual 
digester.  

To optimize mixing in the digester, 
different inlet-gas velocities were investigated, 
and sludge particle velocity, the gradient of 
sludge particle velocity, the turbulence kinetic 
energy, and the eddy viscosity of the sludge 
particles were evaluated. The contours of these 
evaluation indexes were analyzed to determine 
the appropriate velocity for optimal mixing, 
which was found to be 0.3 ms-1.  

Based on the simulation results and particle 
sedimentation velocity in the sludge, it was 
expected that the sedimentation of the particles 
would not occur in the digester at the selected 
inlet-gas velocity; except for large sludge 
particles in the small triangular section near 
the junction of the wall and the bottom of the 
digester. Subsequently, a transparent anaerobic 
digester was constructed and loaded with 
municipal sewage sludge, operating at the 
optimal inlet-gas velocity of 0.3 ms-1. Particle 
Image Velocimetry (PIV) was employed to 

calculate sludge velocity, average sludge 
gradient, and streamlines and to validate 
simulation outcomes. According to the results 
of the Particle Image Velocimetry (PIV), in 
most parts of the digestion wall length, the 
sludge velocity is greater than the minimum 
sludge velocity achieved in the simulations. 
Moreover, the velocity contour obtained from 
the PIV shows that the lowest velocity is at the 
junction of the wall to the bottom of the 
digester and streamlines also showed that there 
are no streamlines in this area. Overall, the 
PIV method successfully validated the CFD 
simulation and showed sufficient agreement 
between the simulation and the experiment. 
The results showed that the model used for 
simulating, optimizing, and verifying the 
simulation process was successful and can be 
recommended for similar gas-lift anaerobic 
digesters, which consist of a cylindrical tank 
with a flat bottom and a height-to-diameter 
ratio of 1.5. The draft tube diameter should be 
0.2 times the digester diameter and the draft 
tube height should be 0.75 times the fluid 
height. The conical hanging baffle’s distance 
from the fluid level should be equal to 0.125 
times the fluid height, and its outer diameter 
should be 2/3 of the digester’s diameter. 
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 دهیچک

 مؤثر ارتباط برای یکنواخت زنیهم زیرا شد، انجام شهری فاضلاب لجن بالابر-گاز هوازیبی هایهاضم در زنیهم سازیبهینه هدف با تحقیق این
یک . شد انجام 1401تابستان  در( چنیبه) اهواز غرب خانهتصفیه در شهری فاضلاب لجن بردارینمونه. است مهم مغذی مواد و متانوژن هایباکتری بین
 ANSYS Fluent افباارنبرم توسب  (CFD) محاسبباتی سیالات دینامیک از استفاده با سازیشبیه فرآیند تایید و سازیبهینه سازی،شبیه برای مدل

 گاز مختلف هایسرعت. شد اضافه هاضم طرح به مخروطی آویاان بافل و بالابر -گاز لوله یک و شد تعیین هاضم به ورودی گاز سرعت. شد ارائه 19.0
 انبرژی لجبن، ذرات سرعت گرادیان لجن، ذرات سرعت مانند ارزیابی هایشاخص و گرفت قرار بررسی مورد هاضم در اختلاط سازیبهینه برای ورودی
 از اسبتفاده ببا سازیشبیه نتایج. شد تعیین ms-1 3/0 ورودی گاز بهینه سرعت. گرفت قرار ارزیابی مورد لجن ذرات گردابی ویسکوزیته و تلاطم جنبشی
 اتصبال محبل در %8/98) داشبت وجبود PIV و CFD کانتورهای بین کافی همبستگی درصد و شد تأیید(PIV)  ذرات تصویری سنجیسرعت روش
 برای را آن توانمی است و بوده موفق سازیشبیه فرآیند تأیید و سازیبهینه سازی،شبیه برای مورداستفاده مدل که داد نشان نتایج(. کف هاضم به دیواره
 -گباز لولبه ارتفباع نسبت ،2/0 قطر هاضم به بالابر -گاز لوله قطر نسبت ،5/1 قطر به ارتفاع نسبت شکل با ایاستوانه بالابر -گاز هوازیبی هایهاضم
 توصیه کرد. 3/2 هاضم قطر بافل به بیرونی قطر و سیال ارتفاع برابر 125/0 سیال سطح از مخروطی آویاان بافل فاصله ،75/0 ارتفاع سیال به بالابر

 

 ی، هضمسازهیشب ،(PIV) ذرات ریتصو یسنجسرعت ،(CFD) یمحاسبات الاتیس کینامید: یدیکل هایهواژ
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Abstract 

Machinery traffic is associated with the application of stress onto the soil surface and is the main reason for 
agricultural soil compaction. Currently, probes are used for studying the stress propagation in soil and measuring 
soil stress. However, because of the physical presence of a probe, the measured stress may differ from the actual 
stress, i.e. the stress induced in the soil under machinery traffic in the absence of a probe. Hence, we need to 
model the soil-stress probe interaction to study the difference in stress caused by the probe under varying loading 
geometries, loading time, depth, and soil properties to find correction factors for probe-measured stress. This 
study aims to simulate the soil-stress probe interaction under a moving rigid wheel using finite element method 
(FEM) to investigate the agreement between the simulated with-probe stress and the experimental measurements 
and to compare the resulting ratio of with/without probe stress with previous studies. The soil was modeled as an 
elastic-perfectly plastic material whose properties were calibrated with the simulation of cone penetration and 
wheel sinkage into the soil. The results showed an average 28% overestimation of FEM-simulated probe stress 
as compared to the experimental stress measured under the wheel loadings of 600 and 1,200 N. The average 
simulated ratio of with/without probe stress was found to be 1.22 for the two tests which is significantly smaller 
than that of plate sinkage loading (1.9). The simulation of wheel speed on soil stress showed a minor increase in 
stress. The stress over-estimation ratio (i.e. the ratio of with/without probe stress) noticeably increased with 
depth but increased slightly with speed for depths below 0.2 m.  

 
Keywords: FEM simulation, Machinery traffic, Soil bin, Soil stress, Stress probe  

 

Introduction 1 

With the increase in the world's population, 
the need for food production has increased, 
which has led to more intense exploitation of 
the soil for more production. This was 
accompanied by an increase in the size and 
weight of farming machines to increase 
production capacity (Keller, Lamandé, Naderi-
Boldaji, & de Lima, 2022). The increased 
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weight of the machinery intensified soil 
degradation due to soil compaction. Soil 
compaction reduces the soil porosity, aeration, 
and water retention capacity and increases 
resistance to root penetration, surface runoff, 
soil erosion, and the energy required for tillage 
causing a series of effects that negatively 
affect crop yield and increase production costs 
(Hamza & Andersson, 2005; Nawaz, Bourrie, 
& Trolard, 2013; Shahgholi, Ghafouri 
Chiyaneh, & Mesri Gundoshmian, 2018).  

It might be possible to prevent traffic-
induced soil compaction by ensuring that the 
stress applied to the soil never exceeds the soil 
strength (Koolen & Kuipers, 1983). 
Conventionally, analytical methods based on 
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Boussinesq's theory of stress distribution 
(Boussinesq, 1885) have been used to predict 
soil stress propagation and the resulting 
compaction. Some of these models include 
SOCOMO (van den Akker, 2004), SoilFlex 
(Keller, Défossez, Weisskopf, Arvidsson, & 
Richard, 2007), Terranimo (Stettler et al., 
2014), and REPRO (Rücknagel et al., 2015) all 
of which consider the soil as a continuum, 
elastic, homogeneous, and isotropic material. 
More accurate stress propagation models have 
been developed by including a stress 
concentration factor that varies with soil 
strength conditions (Frohlich, 1934; Söhne, 
1953). Additionally, we need to measure the 
soil stress and validate the stress estimation 
calculated with the analytical models. Stress 
probes come in many shapes and forms. For 
example, fluid-inclusion probes i.e. Bolling 
probes (Bolling, 1985) or strain-gauged load 
cell transducers (Schjønning, Lamandé, 
Tøgersen, Arvidsson, & Keller, 2008; de Lima 
& Keller, 2021; Bahrami, Naderi-Boldaji, 
Ghanbarian, & Keller, 2023) cause the 
measured stress to deviate from the actual 
stress which occurs in the absence of the 
probe, while the actual stress causes soil 
compaction. The reasons for stress deviation 
can be the disturbance of the soil structure 
during the probe installation, the quality of the 
contact between the probe and the soil, the 
concentration of stress on the probe due to the 
arching effect, and the difference between the 
probe’s stiffness and the stiffness of its 
surrounding soil (Kirby, 1999a, and 1999b). 
Therefore, the stress probe may under- or 
over-estimate the true soil stress. This 
difference is affected by the probe geometry, 
loading geometry, loading time, and 
mechanical properties of the soil (Weiler & 
Kulhawy, 1982). It is possible to correct the 
probe-measured stress to the soil’s true stress 
by modeling the stress fields around the probe 
and finding a relationship for estimating the 
stress deviation due to embedding the probe 
into the soil. 

Apart from analytical approaches, 
numerical simulation tools are widely applied 
for analyzing the stress propagation and soil 

compaction caused by machinery traffic. The 
main numerical methods used for simulation 
of stress propagation in soil can be categorized 
into finite element method (FEM), discrete 
elements method (DEM), and smoothed 
particle hydrodynamics (SPH). In FEM, 
considering the soil as a continuum medium 
using the theories of continuum mechanics, 
stress propagation is analyzed by calculating 
the stress on each element in contact with its 
adjacent element. In DEM, the stress 
transmission is analyzed by calculating the 
contact forces between the particles using 
Newton's second law, and the stress is 
transmitted through a chain of particles in 
contact with each other. In SPH, the particles 
are modeled in a fluid bed, and solving does 
not require meshing like the computational 
fluid dynamics method. 

Several studies have used FEM to simulate 
stress propagation in the soil or the soil-tire 
interaction (e.g. Peth, Horn, Fazekas, & 
Richards, 2006; Cueto, Coronel, Bravo, Morfa, 
& Suárez, 2016; Keller, Ruiz, Stettler, & Berli, 
2016; Silva et al., 2018; Farhadi, 
Golmohammadi, Sharifi Malvajerdi, & 
Shahgholi, 2020; Jimenez et al., 2021). 
Furthermore, the simulation of stress 
propagation in soil using DEM has been 
considered in multiple recent research studies 
(e.g. De Pue & Cornelis, 2019; De Pue, 
Lamandé, & Cornelis, 2020; Acquash & Chen, 
2021; Bahrami, Naderi-Boldaji, Ghanbarian, 
& Keller, 2022; Bahrami et al., 2023). 
However, we only found one recent study of 
modeling soil stress under tire traffic that used 
SPH (Gheshlaghi & Mardani, 2021). In most 
of the studies reported so far, either the 
propagation of soil true stress or the resulting 
soil compaction have been considered. 
However, the interaction between the soil and 
the stress probe and the difference between 
true and probe-measured stresses was studied 
less commonly. A recent study by de Lima and 
Keller (2021) investigated the probe stress 
deviation as affected by probe geometry (in 
terms of the ratio of diameter to height), 
difference in soil and probe material stiffness, 
and interference of multi-probe setups under 
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static loading using FEM. However, soil-probe 
interaction under dynamic loading (like a 
passing wheel) is an aspect that has been 
studied less frequently. 

In a study conducted at Shahrekord 
University, Iran (Bahrami et al., 2020, 2022, 
and 2023), Bahrami et al. (2022), the results of 
FEM and DEM for simulation of stress 
propagation under circular surface loading 
using plate sinkage test were compared. Stress 
was measured using a cylindrical load cell 
probe at 0.15 m depth in clay loam soil with 
11% water content. The results showed that 
FEM may overestimate the probe-induced 
stress deviation due to the continuum nature of 
the soil in contact with the stress probe. The 
stress overestimation ratio (i.e. the ratio of 
with/without probe stress) was much larger in 
FEM than in DEM simulations. Consequently, 
Bahrami et al. (2023) investigated the 
interaction between soil and the stress probe 
under a moving rigid wheel in a soil bin for 
simulating the stress propagation in soil using 
DEM. The results showed that by modeling 
the soil with 10 mm diameter particles, the 
simulated stress with the probe was about 12% 
higher than the simulated true stress which 
was in close agreement with the results 
obtained from plate sinkage loading. The 
simulation of stress with varying wheel speed 
showed almost no significant effect. However, 
the results are still insufficient to acknowledge 
DEM as the best simulation approach for 
stress propagation for soils in different 
conditions. A freshly tilled or aggregated soil 
may be better simulated using DEM while a 
wet and compact soil may resemble more of a 
continuum nature which is better modeled 
using FEM. Whether using DEM or FEM, it is 
important to understand how the probe-
induced stress deviation may vary under 
loading geometry, static vs. dynamic loading, 
depth, and loading time (speed).  

The present study aims to simulate the 
stress propagation under the rigid wheel tested 
in a soil bin and the interaction between the 
soil and a stress probe using FEM to see how 
the stress overestimation ratio under wheel 
loading may differ from that of under plate 

sinkage loading, both simulated using FEM. It 
was hypothesized that the stress 
overestimation ratio obtained using FEM is not 
influenced by loading geometry, depth, and 
loading time (speed). Therefore, the objectives 
of this study are to (i) develop a FEM model of 
soil-probe interaction to study the stress 
propagation in soil under a rigid wheel and 
compare the simulated and measured stress, 
(ii) simulate the effect of wheel speed on soil 
stress and wheel sinkage, and (iii) evaluate the 
stress overestimation ratio under the moving 
wheel with various depths, wheel speeds, and 
probe geometries. The experimental data of 
two-wheeling tests conducted in a soil bin by 
Bahrami et al. (2023) were used for 
comparison with the FEM model predictions.  

 

Materials and Methods 

FEM model of soil-stress probe interaction 

under a moving rigid wheel 
The FEM model of soil-wheel-stress probe 

interaction was developed in ABAQUS/CAE 
(Dassault Systemes Simulia Corp., 
Providence, RI, USA). According to the 
geometry and the symmetry of the model, a 
half-model with a plane of symmetry was 
generated. In this model, the soil was defined 
as a deformable material, and the wheel and 
the stress probe were modeled as rigid bodies. 
A wheel with a diameter of 0.27 m and a width 
of 0.15 m was modeled similar to the wheel 
used for the experimental tests in the soil bin. 
The stress probe was modeled in the form of a 
cylindrical probe consisting of two parts; the 
force-sensing surface (sensor) with 0.05 m 
diameter and the housing that is 0.07 m in 
diameter and 0.03 m in height (Bahrami et al., 
2022, and 2023). This allowed to evaluate the 
effect of the ratio of housing to sensor 
diameter on the stress overestimation ratio 
under loading of the moving wheel. To 
assemble the probe into the soil at a given 
depth and define the contact surfaces, a similar 
cylinder was cut from the soil where the probe 
is placed. Then, the probe is placed in the soil 
with an axisymmetric movement constraint.  

The soil box was generated with 
dimensions of 2 × 1 × 1 m (length × width × 
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depth). The model parts were assembled so 
that the wheel was placed on the soil surface 
and the stress probe into the soil at 0.15 m 
depth (Fig. 1a). The model’s output is the 
force applied to the sensor surface during the 
movement of the wheel. Probe stress was 
calculated by dividing the force by the area of 
the probe sensing surface. The dependency of 
the FEM solution on mesh density was 
evaluated to select the appropriate size of the 
soil elements. For this purpose, six models 
were created with element sizes of 30, 25, 20, 
15, 10, and 5 mm. In all simulations, the wheel 
speed was set at 1 m s-1 with 1,200 N vertical 
loading on the wheel axle. The true stress (i.e. 
the element vertical stress) at 0.15 soil depth 
was plotted against the element size for an 
elastic soil with 2 MPa elastic modulus and 0.3 
Poisson’s ratio. The stress increased sharply 
with elements larger than 10 mm (not shown). 
The stress difference in the simulations with 5 
and 10 mm elements was less than 1%. 
Therefore, the element size of 10 mm was 
selected for the following simulations (Fig. 
1b). The wheel-soil and stress probe-soil 
contacts were defined by the surface-to-

surface contact method, and the value of the 
friction coefficient between the surfaces was 
assumed to be 0.5 (Ucgul, Saunders, & Fielke, 
2017). The boundary conditions for the soil 
box and wheel were defined. The wheel was 
constrained to rotate and move the distance 
along the soil bin’s length at varying speeds 
i.e. varying the traveling time. The wheel was 
free to move in the vertical direction and to 
sink into the soil. The wheel was free-rolling 
with no input torque. With-probe and without-
probe stresses were analyzed under the moving 
wheel for each simulation. To measure the 
without-probe stress, the vertical stress of the 
soil element at a given depth was obtained 
from the model. For every simulation, the 
with-probe stress was higher than the without-
probe stress which is due to the stress 
concentration around the probe owing to the 
arching effect. The arching effect occurs on 
the contact surface between two objects due to 
the difference between the yield strengths of 
the materials (Labuz & Theroux, 2005). The 
ratio of with-probe to without-probe stress was 
calculated as the stress overestimation ratio. 

 

 
 

(b) (a)  
Fig.1. (a) FEM model parts, 1- Soil box, 2- Rigid wheel, 3- Stress probe housing, 4- Probe sensing 

surface, and (b) Finite element mesh of the assembled model 
 

In this study, soil was defined either as a 
pure-elastic or as an elastic-perfectly plastic 
material with a linear Drucker-Prager yield 
criterion. Drucker-Prager yield criterion has 
been used in many studies in the field of soil-
machine interaction (Xia, 2011; Azimi-
Nejadian, Karparvarfard, Naderi-Boldaji, & 
Rahmanian-Koushkaki, 2019; Arefi, 
Karparvarfard, Azimi-Nejadian, & Naderi-

Boldaji, 2022; Mahboub & Mardani 2022; 
Naderi-Boldaji, Karparvarfard, & Azimi-
Nejadian, 2023). It is necessary to define the 
modulus of elasticity and Poisson's ratio for 
elastic properties, and Drucker-Prager's 
internal angle of friction (β) and compressive 
yield stress for plastic properties. Drager-
Prager friction angle can be calculated using 
the Mohr-Coulomb friction angle (φ) obtained 
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from the direct shear test (ABAQUS, 2019) 
defined in Eq. 1. 

(1) 𝛽 =
6 sin 𝜑

3 − sin 𝜑
 

The compressive yield stress (𝜎𝑐) is 
theoretically related to soil cohesion (c) and is 
given in Eq. 2. 

𝜎𝑐 = 2𝑐
𝑐𝑜𝑠 𝜑

1 − 𝑠𝑖𝑛 𝜑
 (2) 

The compressive yield stress is an 
important parameter in determining the soil 
strength and analyzing the soil compressibility 
behavior (Khalid, Farooq, & Mujtaba, 2018). 
Considering the soil’s elastic-perfectly plastic 
behavior allows us to define a distinct border 
between elastic and plastic deformations by 
defining the compressive yield stress.  

 

Stress propagation as affected by soil 
elastic-plastic properties  

A series of simulations were performed to 
evaluate the soil’s true stress with changes in 
soil elastic-plastic properties (i.e. the model 
input parameters). This helps to identify the 
most important soil parameters affecting the 
stress propagation and can be used for 
calibrating more accurately. For this purpose, 
each of the model’s input parameters was 
examined in the range shown in Table 1. 
Simulations were carried out for both pure-
elastic soil (with varying modulus of elasticity 
and Poisson’s ratio) and elastic-plastic soil 
(with varying elastic and plastic parameters). 
The simulations were performed with a wheel 
loading of 1,200 N which, as explained later, 
is the condition of the experimental test II. 

 

Table 1- The range of parameters tested in sensitivity analyses. 
References Tested range Parameter Soil behavior 

 
10,000-

200,000 

Young’s modulus of elasticity 

(kPa) 
Elastic 

Naderi-Boldaji et al. (2013); Azimi-Nejadian et 

al. (2019) 

0.1-0.4 Poisson’s ratio 
Elastic, Elastic-

plastic 

20-200  Compressive yield stress (kPa) Elastic-plastic 

1,000-10,000  
Young’s modulus of elasticity 

(kPa) 
Elastic-plastic 

0.1-0.5 
Coefficient of soil wheel 

friction 
Elastic-plastic 

10-50 Internal angle of friction (°) Elastic-plastic 

 

Experimental data of vertical stress under 

the moving wheel 
The experimental stress data measured 

under a Teflon wheel for two soil conditions in 
a soil bin by Bahrami et al. (2023) were used 
as a reference for validating the modeling 
results. Fig. 2 shows a schematic of the soil 
bin equipped with a single testing wheel and 
its components. The soil bin is a 6 m long, 1 m 
wide, and 1 m deep soil box filled with clay 
loam soil (36% sand, 30% silt, and 34% clay). 
There is a double-sided blade on the carrier for 
soil movement and preparation. The testing 
wheel is positioned at the front of the carrier 
with a mechanism that allows varying the 
vertical loading on the wheel axle using 
standard weights. Further information 
concerning the soil bin can be found in 

Bahrami et al. (2023). Two wheeling tests 
were carried out in the soil bin at 11% water 
content at two soil compaction levels. The soil 
compaction levels were prepared by rolling the 
soil layers while preparing the soil until bulk 
densities of 1,200 and 1,350 kg m-3 were 
achieved for tests I and II, respectively. Test I 
and test II were carried out with 600 and 1,200 
N wheel loading, respectively. The wheel 
speed for the two tests was 0.2 m s-1. Soil 
stress was measured with a cylindrical load 
cell probe at 0.15 m soil depth. For each test, 
the soil cone index was measured in three 
replicates to a depth of 0.2 m before the 
wheeling test. Additionally, the wheel sinkage 
was measured with an image processing 
technique (Bahrami et al., 2023). 
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Fig.2. The schematics of the soil bin and wheel tester: 1- Drive system, 2- Weights applied to the 

wheel, 3- Carrier, 4- Testing wheel, 5- Load cell probe, and 6- Soil box (Bahrami et al., 2023) 
 

Calibration of the FEM input parameters  
The elastic-plastic soil properties of the 

FEM model were calibrated using a similar 
approach as reported in Bahrami et al. (2023). 
Cone index and wheel sinkage into the soil 
were simulated and compared with the 
experimental results. The FEM model of cone 
penetration test developed by Naderi-Boldaji 
et al. (2023) was employed (Fig. 3). Naderi-
Boldaji et al. (2023) showed the compressive 
yield strength and the angle of internal friction 
as the two parameters most affecting the soil’s 
cone index. Hence, a simulation of the average 
cone index within 0-0.2 m depth was 
compared with the experimental cone index 
profile measured in the soil bin. Compressive 
yield strength was calibrated by matching the 
simulated and the experimental average cone 
indexes. Mohr-coulomb internal angle of 
friction was used by Bahrami et al. (2020) 
who measured the angle of friction for the 
same soil texture and water content using 
direct shear test. It was evaluated that the 
wheel sinkage into the soil is driven by the soil 
modulus of elasticity for a given vertical wheel 
loading. Matching the experimental and 
simulated wheel sinkage allowed the 
calibration of the soil’s modulus of elasticity. 
We assumed a 0.3 value for Poisson’s ratio as 
a routine assumption from previous studies 
(e.g. Ibrahmi, Bentaher, Hbaieb, Maalej, & 
Mouazen, 2015; Naderi-Boldaji, Hajian, 

Ghanbarian, & Bahrami, 2018). It was 
assumed that a minor difference between 
Poisson’s ratio of the testing soil and the value 
assumed does not cause a significant error in 
prediction by the FEM model.  

Table 2 gives the average values of elastic-
plastic soil properties calibrated for the soil 
used for the two tests as well as the average 
experimental values for cone index and wheel 
sinkage. The average measured cone index 
values for tests I and II were 0.38 and 0.58 
MPa, respectively, then the compressive yield 
stress values for these tests were calibrated as 
75 and 90 kPa, respectively. The measured 
wheel sinkage for tests I and II were 30 and 15 
mm, respectively. These values were obtained 
in the FEM simulation for the modulus of 
elasticity of 0.3 and 3 MPa, respectively. A 
decrease in the modulus of elasticity for each 
test increased the simulated wheel sinkage into 
the soil. For instance, by decreasing the 
modulus of elasticity from 1 to 0.1 MPa in test 
I, the wheel sinkage increased from 13.5 to 
72.4 mm. 

Finally, after calibrating the elastic-plastic 
parameters of the soil, stress simulation was 
performed for probe depths of 0.05, 0.1, 0.15, 
0.2, 0.25, and 0.3 m with varying the wheel’s 
speed in the range of 1-5 m s-1 to see how the 
soil stress and stress overestimation ratio are 
affected by probe depth and wheeling speed. 
Furthermore, the geometry of the stress probe 
was tested by varying the sensor diameter to 
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see the variations in stress overestimation ratio 
with the probe geometry. 

 

 

 
Fig.3. The FEM model of cone penetration test (Naderi-Boldaji et al., 2023, Copyright 2023 by the 

International Society for Terrain-Vehicle Systems) 

 
  

Table 2- The parameters measured in experimental tests and used for the FEM model calibration 
Test II Test I Parameters 
1,350 1,200 Measured soil density (kg m-3) 
0.24 0.24 Measured coefficient of internal friction 
0.3 0.3 Assumed Poisson’s ratio 

1,200 600 Wheel load (N) 

0.2 0.2 Wheel speed (m s-1) 

15 30 Measured wheel sinkage (mm) 

0.58 0.38 Measured average cone index (MPa) 

3 0.3 Calibrated Young’s modulus (MPa) 

90 75 Calibrated yield stress (kPa) 

 

Results and Discussion 

Stress propagation under the moving wheel 
Figure 4a shows the simulation of the 

vertical stress propagation in soil under the 
moving wheel at a speed of 1 m s-1 with a 
wheel loading of 1,200 N. The stress bulb 
created under the wheel and the stress 
attenuation with depth can be seen. Stress 
transfer to the stress probe is observed when 
the wheel moves above the probe. A wheel rut 

was formed on the soil surface due to plastic 
deformation. The stress developed in the probe 
with the horizontal movement of the wheel is 
shown in Fig. 4b. A residual stress may be 
seen for elastic-plastic soils after the passing 
of the wheel which is attributed to the soil’s 
plastic deformation. For pure-elastic soil, the 
soil’s stress and deformation are expected to 
be fully recovered after the wheel passes. 
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(a) 

 
(b) 

Fig.4. (a) Test II wheel movement simulation (the color bar legend indicates the Von Mises stress in 

soil), and (b) Variation in the simulated probe stress developed by wheel movement on the soil at a 

forward speed of 1 m s-1 and wheel loading of 1,200 N for Test II 
 

Effect of soil elastic-plastic properties on 

soil stress 
The results of analyses of the model 

parameters are first presented for pure-elastic 
soil (Fig. 5) and then for elastic-plastic soil 
(Fig. 6). As mentioned earlier, the true stress 
was analyzed for these analyses. For a pure-

elastic soil, no effect of Young’s modulus of 
elasticity and Poisson’s ratio on soil stress was 
found under the wheel at a given loading (Fig. 
5). This is in accordance with the analytical 
solution of vertical stress distribution using 
Boussinesq theory which is independent of soil 
properties.  
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(a) (b) 

Fig.5. FEM-simulated peak true stress for a pure-elastic soil as functions of (a) Young’s modulus of 

elasticity, and (b) Poisson’s ratio at a wheel loading of 1,200 N 
 
For the elastic-plastic soil, the stress in the 

soil noticeably changed with Young’s modulus 
of elasticity (Fig. 6a) and the compressive 
yield stress (Fig. 6b). For ease of 
interpretation, the vertical axes of the plots 
shown in Fig. 6 are a normalized ratio of the 
stress simulated for the elastic-plastic soil to 
the corresponding stress for the pure-elastic 
soil, titled the stress concentration ratio. This 
ratio increased by increasing Young’s modulus 
of elasticity to 6 MPa, and then decreased 
slightly with a further increase in the modulus 
of elasticity (Fig. 6a). This may be explained 
by the decrease in wheel sinkage into the soil 
and soil-wheel contact area which increases 
the ground normal stress at the soil-wheel 
interface.  

With increasing the compressive yield 
stress, the stress concentration ratio 
approaches one, corresponding to a pure-
elastic soil (Fig. 6b). The larger the stress 
concentration ratio, the higher the soil’s plastic 
strain. At a given wheel loading, a higher 
plastic strain is obtained for smaller values of 
compressive yield stress. Soil with lower 
compressive strength could correspond to soil 

with a higher water content. For such soils, the 
stress concentration ratio is larger which 
confirms the interpretation of the stress 
concentration factor introduced by Frohlich 
(1934). 

With increasing the soil-wheel coefficient 
of friction, the stress concentration ratio 
decreased slightly (Fig. 6c). This may be 
explained by the tangential frictional shear 
stresses created on the wheel-soil interface 
whose vertical stress components balance a 
portion of the wheel’s load.  

The stress concentration ratio decreased 
with increasing the internal angle of friction 
(Fig. 6d). With a particulate view of the soil 
media, larger friction between the particles 
attenuates the vertical stress with depth 
(Bahrami et al., 2023). Although the Poisson’s 
ratio had no effect on stress for pure-elastic 
soil, a slight increase in stress concentration 
ratio with increasing the Poisson’s ratio was 
observed for elastic-plastic soil (Fig. 6e). This 
may be attributed to variations in the arching 
effect and the stress distribution on the probe’s 
surface as affected by Poisson’s ratio.  
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(a) (b) 

  
(c) (d) 

 
(e) 

Fig.6. Stress concentration ratio, i.e. the ratio of simulated true stress of an elastic-plastic soil to the 

corresponding stress for a pure-elastic soil as functions of (a) Young’s modulus of elasticity, (b) 

Compressive yield stress, (c) Coefficient of soil-wheel friction, (d) Soil internal angle of friction, 

and (e) Poisson’s ratio. 
  

Comparison of experimental and FEM-

simulated stress 

The FEM-simulated peak stress (with probe 
and without probe) as well as the 
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experimentally measured stress at the 0.15 m 
depth for test I (with bulk density of 1,200 kg 
m-3) and test II (with bulk density of 1,350 kg 
m-3) is shown in Fig. 7a and 7b, respectively. 
The peak stress measured under the wheel for 
test I and test II are 18 and 30 kPa, 
respectively. The larger value of stress for test 
II is due to the higher wheel loading. The 
FEM-simulated with-probe stress is larger than 
the experimental stress by 26.8% and 20.5% 
for tests I and II, respectively. The stress 
overestimation ratio (i.e. the ratio of simulated 
with-probe/without-probe stress) was found to 
be 1.27 and 1.17 for tests I and II, respectively. 
The difference in the stress overestimation 

ratio for test I and test II may be due to 
variations in the mechanical properties and 
plastic deformation of the soil (de Lima & 
Keller, 2021). The average overestimation 
ratio resulted here (1.22) is 0.1 larger than the 
DEM simulation results reported by Bahrami 
et al. (2023). However, the stress 
overestimation ratio is much smaller than the 
value obtained under FEM-simulated plate 
sinkage loading which was 1.9 (Bahrami et al., 
2022). This may be owing to the different 
boundary conditions or dynamic vs. static 
loading for the wheeling test and plate sinkage 
test, respectively.  

 

  

(b) (a) 

Fig.7. Comparison of simulated and measured peak vertical stress for (a) test I (bulk density 12,00 

kg m-3 and wheel loading of 600 N), and (b) test II (bulk density 1,350 kg m-3 and wheel loading of 

1,200 N). The error bar in the measured stress column shows the standard error of replications 

(Bahrami et al., 2023). 
 

Stress overestimation ratio as affected by 

wheel speed and probe depth 
Fig. 8 shows the simulated without-probe 

(Fig. 8a) and with-probe (Fig. 8b) stress as a 
function of wheel speed and depth for soil 
properties and wheel loading of test II. As 
expected, stress attenuates strongly with depth. 
Minor increases in without-probe stress can be 
seen with increasing wheel speed for any 
depth. However, with-probe stress slightly 
increases with wheel speed for depths higher 
than 0.15 m. For instance, at 0.3 m depth, 
increasing wheel speed from 1 to 5 m s-1 
resulted in increased without-probe stress from 

14.9 to 17.8 kPa and with-probe stress from 
29.9 to 45.8 kPa which indicates a stronger 
effect of speed on with-probe stress. The slight 
increase in soil stress with the increased wheel 
speed can be explained by inertial effects. The 
stress overestimation ratio was plotted as a 
function of depth and wheel speed as shown in 
Fig. 9. It can be seen that, with the increasing 
speed of the wheel, the stress overestimation 
ratio at 0.3 m depth has increased to values 
larger than 2. The increase in stress 
overestimation ratio with increasing wheel 
speed is evident only at 0.25 and 0.3 m depths.   

The results of previous literature on the 
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effect of traffic speed on soil stress are 
discrepant and almost contrasting. For 
instance, Naderi-Boldaji, Kazemzadeh, 
Hemmat, Rostami, and Keller (2018) reported 
that the average normal stress measured by the 
Bolling probe increased with tractor forward 
speed. On the other hand, some studies have 
shown a decrease in effective soil stress with 

increasing wheel speed (Horn, Blackwell, & 
White, 1989; Pytka, 2013). The variations in 
the experimental results may be due to the 
effect of pore water pressure at different soil 
water contents (Horn et al., 1989). The effect 
of speed on soil stress and soil deformation is 
further discussed in the following section.  

 

  
(b) (a) 

Fig.8. (a) Without-probe and (b) with-probe vertical stress as functions of wheel speed and depth 

for soil properties and wheel loading of test II at different probe depths 

 

 
Fig.9. Stress overestimation ratio as a function of wheel speed at different probe depths 

 

The effect of speed on wheel sinkage 
Fig. 10 shows wheel sinkage as a function 

of wheel displacement and wheel speed for the 
soil properties and wheel loading of test II. 

Wheel sinkage increased rapidly once the 
wheel started moving and reached a constant 
value at the end of tests (Fig. 10a). The wheel 
speed had no significant effect on the wheel 
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sinkage, the average of which was calculated 
from wheel sinkage values of wheel 
displacement from 0.6 to 1 m (Fig. 10b). In 
this respect, the influence of forward speed on 
soil-wheel interaction performance such as 
wheel sinkage and wheel slippage was 
investigated by simulation. The results showed 
that the relative wheel sinkage decreased with 
forward speed (Shmulevich, Mussel, & Wolf, 
1998). The effect of speed on soil compaction 
was investigated in field experiments by 
Stafford and de Carvalho Mattos (1981). In 
one research, the effects of forward speed, 
wheel load, and the number of passes on the 
soil density of a soil bin were investigated. 
Cone index and soil sinkage were considered 
indicators of soil compaction. The results 
showed the highest soil compaction occurred 
with the lowest wheel speed (Taghavifar & 
Mardani, 2014). They reported that the reason 
for the increase in soil compaction at low 
speeds is the increase in the soil-wheel contact 
time.  

A review of soil compaction studies by 
machinery traffic shows that increasing the 
speed (or decreasing the loading time) 
decreases the compaction effect. Simulation of 
soil as an elastic-plastic material in our 
simulations might be the reason why wheel 
sinkage did not vary with wheel speed. The 
viscous effect in the soil is the parameter that 
changes the soil deformation with varying 
loading times where a part of external energy 
is dissipated due to the viscous effect. Or and 
Ghezzehei (2002) developed a modified 
Hertzian contact model of paired particles 
including the viscous effect. Transient loading 
caused by tire traffic and increasing traffic 
speed showed an obvious decrease in soil 
deformation and an increase in contact stress. 
This suggests that the simulation of soil as a 
visco-elastoplastic material is a reasonable 
scenario for modeling the effect of traffic 
speed on soil stress and soil compaction as 
similarly concluded by Bahrami et al. (2023). 

 

  

(b) (a) 
Fig.10. (a) Simulated wheel sinkage as a function of wheel displacement, and (b) the average value 

of wheel sinkage between 0.6 and 1 m wheel displacement for different wheel speeds 
 

Stress overestimation ratio and probe 

geometry 
In a comparative study of the simulation of 

soil stress under plate sinkage loading using 
FEM and DEM, Bahrami et al. (2022) 
investigated the effect of probe geometry on 

the stress overestimation ratio. They found that 
the stress overestimation ratio decreased by 
increasing the ratio of housing diameter to 
sensor diameter. This suggested that a probe 
with a larger margin (i.e. the distance between 
the sensor and housing edge) has a smaller 
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stress concentration on the sensing surface of 
the probe. This is because the stress 
concentrates on the edge of the probe’s 
housing. Hence, increasing the space between 
the probe housing edge and the sensing surface 
of the probe decreases the probe’s stress 
reading. de Lima and Keller (2021) 
investigated the stress deviation of cylindrical 
probes as affected by probe design (material 
properties and probe height to diameter ratio), 
probe spacing in multi-probe setups, probe 
installation depth, and mechanical behavior of 

soil under static surface loading. However, the 
ratio of the probe housing diameter to the 
sensing’s surface diameter was another factor 
first addressed by Bahrami et al. (2022) by 
modeling the stress probe in two pieces i.e. the 
probe housing and senor surface, installed 
under plate sinkage loading. A similar result 
was found under the moving wheel when the 
housing diameter was kept constant at 0.07 m 
and the sensor diameter was reduced from 0.06 
m to 0.035 in 6 levels as shown in Fig. 11.  

 

 
Fig.11. Stress overestimation ratio against housing to sensor diameter ratio 

 
Conclusion  

A finite element model of soil-stress probe 
interaction was developed to study the probe-
induced stress deviation under a moving rigid 
wheel. Soil stress was analyzed in two 
conditions, with-probe stress, the stress 
measured or simulated with a cylindrical load 
cell probe, and without-probe, the soil’s true 
stress simulated in the absence of the probe. 
The FEM-simulated with-probe stress was 
compared with the experimental stress 
measured in wheeling experiments in a soil 
bin. The following conclusions could be 
drawn: 
1- Compared to the experimental stress, the 

model overestimated with-probe stress by 
28.5%. 

2- An average stress overestimation ratio, i.e. 
the ratio of simulated with-probe to 

without-probe stress, of 1.22 was found for 
the probe which is much smaller than that 
found under plate sinkage loading in a 
previous study. This was explained by the 
different boundary conditions and loading 
geometry of the wheel as compared to plate 
sinkage loading.  

3- Wheeling speed had no noticeable effect on 
soil stress and stress overestimation ratio 
while stress overestimation ratio varied 
significantly with the probe’s depth. 
Modeling the soil as an elastic-plastic 
material was discussed as the potential 
reason why soil stress and the resulting 
wheel sinkage did not vary with wheel 
speed. A minor increase in soil stress 
caused by increasing the speed might be 
due to inertial effects while the viscous 
effect is a more important aspect that needs 
further attention. 
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4- According to the results obtained under 
plate sinkage loading, increasing the ratio 
of the probe housing diameter to the sensor 
surface diameter decreased the stress 
overestimation ratio. This may suggest that, 
although the stress concentration is not only 
a function of probe geometry, the stress 
overestimation ratio could be minimized by 
optimizing the probe’s design.   

5- As compared to previous studies using 
DEM, a rather similar stress overestimation 
ratio was found under plate sinkage and 
wheel loading with DEM while the stress 
concentration ratio was significantly 
smaller under wheel loading than plate 
sinkage loading when modeled with FEM. 
This is likely explained by the continuum 
nature of FEM and the sponge effect on the 
soil surface which is strongly influenced by 

loading geometry. 
Future studies could be aimed at studying 

soil stress propagation by parameterizing the 
soil as a visco-elastoplastic material to 
evaluate the effect of loading time on the 
resulting soil stress and deformation. 
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 چرخ صلب متحرک کی زیر خاک-تنشکاوشگر  کنشبرهممحدود  یاجزامدل  کی

 
 3، مصطفی بهرامی2، هادی عظیمی نژادیان*1نادری بلداجیمجتبی 

 07/06/1402تاریخ دریافت: 
 17/07/1402تاریخ پذیرش: 

 چکیده

باه انازاز  ازیامطالعه انتشار تنش در خااک ن است. یکشاورز هایتراکم خاکی اصل لیبر سطح خاک دلبا اعمال تنش  های کشاورزینیتردد ماش
 کاوشگر ابیتنش خاک در غ یعنیخاک،  یشز  با نصب هر نوع کاوشگر ممکن است با تنش واقعیریگکه تنش انزاز یدر حال ،خاک دارددر تنش  یریگ

منظور بررسی بهمحزود  یچرخ صلب متحرک با استفاد  از روش اجزا کی ریکنش کاوشگر تنش در زبرهم یسازهیمطالعه با هزف شب نیمتفاوت باشز. ا
 خمیاری -کشساانمااد   کیاعناوان . خااک باهشز  در یک مخزن خاک انجام شزگیریی انزاز با تنش تجرب کاوشگرشز  با یسازهیتنش شبتطابق 

روش اجازای پاروب باا آمز  از دساتبهنشان داد که تنش  جینتا شز. بر یچرخ در خاک کال نشستنفوذ مخروط و  یسازهیخواص آن با شب و یسازمزل
داشاته اسات. میاانگین نسابت  وتنیان 1200و  600چارخ  یبارهاا بارای یباا تانش تجربا ساهیدر مقاتخمینی درصز بیش 28طور متوسط به محزود
تر از همین نسبت تحت بارگذاری داری کوچکطور معنیدست آمز که بهبه 22/1شز  تنش با کاوشگر به تنش بزون کاوشگر برای دو آزمون سازیشبیه

سارعت فازایش ا اسات. آمز  از روش اجزای گسساتهدستبهبه جهیتر از نتبزرگ یتوجهطور قابلبهبود و همچنین  9/1ای با مقزار ر نشست صفحه دای
طور باه (تانش باا کاوشاگر باه تانش بازون کاوشاگرنسابت  همانتنش )ی نیتخمبیش نسبت  را نشان داد.خاک در تنش  یجزئ یشیچرخ افزاحرکت 

 متر داشت.  2/0در عمق زیر  زایش یافت ولی افزایش کمی با سرعتتوجهی با عمق افقابل

 
 کاوشگر تنش  ،اجزای محزود یسازهی، تنش خاک، شبتردد ماشین ،خاک انبار  :یدیکل هایواژه
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Abstract 

Due to the numerous variables that may influence the soil-machine interaction systems, predicting the 
mechanical response of soil interacting with off-road traction equipment is challenging. In this study, deep neural 
networks (DNNs) are chosen as a potential solution for explaining the varying soil sinkage rates because of their 
ability to model complex, multivariate, and dynamic systems. Plate sinkage tests were carried out using a 
Bevameter in a fixed-type soil bin with a 24 m length, 2 m width, and 1 m depth. Experimental tests were 
conducted at three sinkage rates for two plate sizes, with a soil water content of 10%. The provided empirical 
data on the soil pressure-sinkage relationship served as the basis for an algorithm capable of discerning the soil-
machine interaction. From the iterative process, it was determined that a DNN, specifically a feed-forward back-
propagation DNN with three hidden layers, is the optimal choice. The optimized DNN architecture is structured 
as 3-8-15-10-1, as determined by the Grey Wolf Optimization algorithm. While the Bekker equation had 
traditionally been employed as a widely accepted method for predicting soil pressure-sinkage behavior, it 
typically disregarded the influence of sinkage velocity of the soil. However, the findings revealed the significant 
impact of sinkage velocity on the parameters governing the soil deformation response. The trained DNN 
successfully incorporated the sinkage velocity into its structure and provided accurate results with an MSE value 
of 0.0871. 

 
Keywords: Bevameter, Deep neural network, Off-road vehicle, Soil bin, Terramechanics 
 

Introduction1 

A Bevameter can be used for calculating 
soil parameters through pressure-sinkage 
relationships. The obtained pressure-sinkage 
models are used to analyze the soil interaction 
with the vehicle tires. In this method, the 
investigation and analysis of soil-tire 
interaction also requires the measurement of 
the mechanical parameters of soil. The traction 
force created by the driving wheel, as well as 
the soil compaction due to vehicle traffic, are 
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the results of the interaction between soil and 
tire. Factors such as traction, performance 
prediction, design, and stability of off-road 
vehicles can be analyzed through pressure-
sinkage models (He, Wu, Ma, Wang, & Li, 
2019). Therefore, any improvement in soil-tire 
interaction has a direct effect on the 
performance of off-road vehicles and 
equipment and reduces fuel consumption. 

The experimental method is one of the 
essential methods for soil behavior modeling. 
In this research, the soil resistance versus 
penetration depth is measured. Researchers are 
interested in using these equations because 
many of the wheel and soil parameters are not 
included which results in ease of 
measurement. To develop pressure-sinkage 
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relationships of loading plates for 
homogeneous soil, Bekker presented Eq. 1 
using the Bevameter device (Bekker, 1957).  

𝑃 = (
𝐾𝑐
𝑏
+ 𝐾𝜑) . 𝑍

𝑛 (1) 

Where P is the vertical pressure (kPa), n is 
the deformation equation exponent, Kc is the 
modulus of cohesion of the deformed soil 
(kN/mn+1), Kφ is the modulus of friction of the 
deformed soil (kN/mn+2), Z is sinkage of the 
loading plate (cm), and b is the smallest 
dimension of the plate (m). To calculate the 
coefficients of Eq. 1 based on Bekker's 
method, two loading plates with different 
widths should be used to solve the equation. 

One popular method for soft computing is 
an artificial neural network (ANN), which is 
composed of interconnected neurons following 
specific algorithms. These networks are 
inspired by the human brain's structure and 
functioning and are used for pattern 
recognition (Taghavifar & Mardani, 2014b). 
Neural networks encompass machine learning 
algorithms that classify input data and produce 
desired outputs. They have multiple 
applications including pattern recognition, data 
classification, prediction, modeling, control, 
and robotics (Haykin, 1999; Roul et al., 2009). 
ANNs are utilized to facilitate solving 
complex problems in various scientific and 
engineering fields, mainly where conventional 
mathematical modeling is not successful 
(Taghavifar & Mardani, 2014a). Deep Neural 
Networks (DNNs) utilize deep architectures 
with multiple hidden layers and identify 
complex patterns and relationships in datasets. 
They are trained with experimental data and 
are then validated and tested using 
independent datasets. DNNs achieve high 
performance and accuracy by minimizing the 
mean square error. The iterative exploration 
process and backpropagation allow DNNs to 
establish the optimal input-output relationship. 
After training, the model can be extended with 
new input values to predict, simulate, and re-
establish the identified conditions of the test 
method. Fernandes et al. (2020), conducted 
experiments to evaluate the accuracy of ANN 
models in estimating soil infiltration resistance 

with standardized moisture. Based on soil 
infiltration resistance measured in the field and 
on soil moisture, the models used were 
obtained by multiple linear and nonlinear 
regression and ANNs. Pham et al. (2019), 
proposed a hybrid machine learning approach 
called MLP-BBO to predict the stabilization 
coefficient of soft soil. This method was based 
on the multilayer perceptron (MLP) neural 
network and Biogeography Based 
Optimization (BBO). Roul et al. (2009), used 
the ANN model to predict the behavior of 
tillage tools in different operating conditions 
and soil. Zhang & Kushwaha, (1999) used the 
radial basis function (RBF) in the artificial 
neural networks to estimate the draft force of 
thin blades in soil under multiple input 
variables. Taghavifar et al. (2013), used a 
neural network to investigate the wheel's 
behavior with soil under the influence of 
movement speed, vertical load, and tire 
pressure. To improve tractor performance on 
silty clay loam soil, Pieczarka et al. (2018) 
investigated the effects of soil moisture, soil 
compaction, horizontal soil deformation, and 
vertical load on traction force using MLP and 
RBF neural networks. The most efficient 
model was the MLP neural network. 

Bekker´s method is a standard method used 
by researchers to determine soil parameters on 
a large scale and is simple to calculate. 
However, it has some shortcomings in field 
tests. Although the penetration velocity of the 
plates in the soil affects the soil sinkage, its 
effect is not taken into account in Bekker's 
method and other methods that are developed 
based on it (Kruger, Els, & Hamersma, 2023). 
The purpose of this research is to model the 
pressure-sinkage relationship with deep 
artificial neural networks and to investigate the 
effect of sinkage rate (which is related to 
loading time and machine speed) on the soil 
parameters. Lastly, the results of the modeling 
are compared with the experimental results. 

 

Materials and Methods 

Data acquisition 
The plate sinkage experiments were carried 

out using a Bevameter installed on the carrier 
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unit of a soil bin in the Terramechanics 
laboratory of Urmia University, Iran. The soil 
bin is a fixed-linear type soil bin with a 24 m 
length, 2 m width, and 1 m depth soil channel 
and provides optimal conditions for 
conducting experiments by eliminating 
boundary effects (Gheshlaghi & Mardani, 
2021). The Bevameter utilized in this research 
consists of mechanical, electrical, and 
electronic parts. The mechanical part includes 
the chassis, worm gearbox, Rack and pinion 
gear mechanism, shell, shaft, one-way jack, 
and plates, as shown in Fig. 1. The mechanical 
part of the device works in such a way that the 
rotational movement of the gearbox is 
converted into linear movement by the Rack 
and pinion gear mechanism. The electrical and 
electronic parts control the system and apply 
the force to the soil, measure the pressure-
sinkage of soil data, and process, and record 
the measurement data. An electric motor with 
a power of 5.5 kW and a nominal speed of 
1430 rpm was utilized to start the system and 

supply the driving force. In addition to a worm 
gear reducer with three-speed reduction ratios 
(6, 12, and 19), an inverter (LS, produced by 
LG in South Korea) was used to control the 
rotational speed of the electric motor. By 
combining the 1:19 reduction ratio of the 
gearbox with the frequency adjustment of the 
inverter, three desired sinkage rates of 15, 30, 
and 45 mm/s were obtained for the 
experiments. To measure the force applied to 
the probes, an S-shaped load cell (Bongshin 
DBBP, made in South Korea) with a nominal 
capacity of 1000 kg and an accuracy of 0.02 
kg was used for the experiments. A linear 
encoder (ATEK MLC320, made in Turkey) 
was utilized to measure the amount of soil 
deformation (sinkage). The displacement 
measurement system of the linear encoder is 
magnetic with a measurement length of 400 
mm, a maximum movement speed of 300  
mm s-1, and a repeatability of ± 1 pulse 
(Mahboub Yangeje & Mardani Korani, 2021). 

 

 
Fig.1. Bevameter installed on the soil bin carrier 

 
Considering that the shape of the loading 

plates affects the pressure-sinkage 
relationship, the aspect ratio of the loading 
plates is considered in the standard range of 
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1.4-6, which is similar to Bekker's term 
pressure-sinkage patterns (Van et al., 2008). 
The dimensions of the rectangular plates for 
experimental tests were 175×70 and 105×70 
mm2. 

Eq. 2 is used to determine the output speed 
of the electric motor that is applied to the input 
of the gearbox to control the speed of the 
probe and the velocity value included in Eq. 2 
for obtaining the electric motor rotation value 
corresponds with this speed. 

𝑛 =
𝑖 × 𝑉 × 60

75
 (2) 

Where, n is the prediction of the rotational 
output speed of the electric motor, which is 
applied based on the sinkage rate of the plate 
to the gearbox input and is in revolutions per 
minute, i is the transmission ratio of the 
gearbox, and V is the optimal sinkage velocity 

for the test, for which three velocities of 15, 
30, and 45 mm s-1 were used in the tests. The 
number 75 is a constant in the formula and 
represents the displacement ratio of the rack 
per rotation of the pinion in millimeters. 

In this research, one of the Bekker loading 
plates was installed on the device at each stage 
of the experimental tests to measure soil 
parameters. Force is applied to the plates based 
on the defined conditions. The force-
displacement values were simultaneously 
recorded in the data logger by the load cell and 
the digital ruler. The files recorded by the data 
logger were extracted as text files and 
transferred to the MATLAB software (Version 
9.2.0.5, MathWorks) for processing. The 
dependent (output) variable and the 
independent variables (inputs) and their levels 
are shown in Table 1. 

 
Table 1- Summary of inputs and output variables ranges 

Input (Independent variables) Parameter Unit Levels 

1 Pressure kPa 0-250 

2 Velocity mm s-1 15 30 45 

3 Plate width mm 105 175 

  

Output (dependent variable)   

1 Sinkage mm    

 

The soil bin was filled with clay-loam soil, 
which has the same texture and characteristics 
(Table 2) as that of the natural soil in the 
geographical area of the laboratory where the 
study took place.  

 
Table 2- Physical characteristics of the soil in 

the test soil bins 
Parameter Value 

Sand 35% 

Silt 22% 

Clay 43% 

humidity 10% 

Bulk density 2630 kg m-3 

Young's modulus 0.3 MPa 

Poisson's ratio 0.29 

The angle of internal friction 32 

Liquid limit 42.7% 

Plasticity index  13.3% 

 
After preparing the test setup, experiments 

were performed in three repetitions for each 

level of sinkage rate. Each of the plates was 
installed on the Bevameter and the force was 
applied to the plate. The force-displacement 
values were recorded simultaneously with the 
load cell sensors and the linear encoder in the 
data logger. 

 

Deep neural network presentation 
The advanced capabilities of deep learning 

methods have made it possible to predict the 
interaction between soil and tools accurately 
without the need for simplification or the 
removal of influential factors. Predicting these 
interactions with DNNs using inputs 
(independent variables) has an undeniable 
advantage over traditional methods. The Gray 
Wolf Optimization (GWO) algorithm, known 
for its effectiveness in optimization tasks, was 
utilized to fine-tune the structure and 
hyperparameters of the DNN. In the 
methodology of deep neural networks (DNN) 
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used in this study, two approaches were 
employed to determine the hyperparameters of 
the neural network. In the first approach, a trial 
and error method was used to determine the 
total number of neurons in the hidden layers, 
as well as the learning rate and momentum. In 
the second approach, the GWO algorithm was 
utilized to determine the optimal architecture, 
momentum, and learning rate in the DNN. In 
the first approach, the number of hidden layers 
for each layer increased linearly from one to 
15, and the best topology with the lowest MSE 
was selected as the neural network 
architecture. This dataset consisted of 1488 
data points, and a total of 225 repetitions for 
each training was conducted with 1000 
iterations. 15 percent of the data were 
randomly separated as unseen data to assess 

the performance of the neural network after 
training. Of the remaining dataset, 68% of the 
data was used as training data, 17% as 
validation data, and 15% as test data. Since the 
actual outputs for performance assessment 
after training are available, this type of data 
division ensures that the network is not 
overtrained. In Table 3, the statistical 
information and the span of input data are 
shown for the training, validation, and test 
sections, respectively. According to this 
statistical data, it can be seen that the data used 
for each stage of training, validation, and 
testing are uniform and consistent under the 
effects of pressure, velocity, the width of 
plates, and sinkage. Additionally, the standard 
deviation values for each variable can be seen 
in Table 3. 

 
Table 3- Statistical properties of training, validation, and testing samples 

Partition Source Minimum Maximum Mean Standard deviation 

Training Pressure 3.04 249.88 118.34 66.39 

 Velocity 15 45 30 11.75 

 Plate width 105 175 140 35 

 Sinkage 0.87 70 34 20.26 

      

Validation Pressure 3.39 245.18 115.84 65.80 

 Velocity 15 45 30 12.7 

 Plate width 105 175 140 35.05 

 Sinkage 0.85 70 33.27 19.86 

      

Testing Pressure 3.96 249.30 126.67 69.26 

 Velocity 15 45 30 11.95 

 Plate width 105 175 140 35.10 

 Sinkage 0.78 70 36.66 21.24 

 

To train the network using the GWO 
algorithm, in the first step, the algorithm was 
applied to the hidden layers to achieve the best 
topology. Three different structures of the 
algorithm with 5, 10, and 15 gray wolves were 
used, with 20 iterations for each topology and 
500 iterations for network training. In the 
second step, the GWO algorithm was 
employed on the selected topology to 
determine the optimal values for the learning 

rate and momentum. The optimization 
algorithm design in this stage was similar to 
the first stage. The search range for the 
number of neurons in each hidden layer for the 
GWO algorithm was set to 30. The overall 
schematic of the DNN using the GWO 
algorithm to find the most optimal 
arrangement of neurons in the hidden layers 
and to find the best learning rate and 
momentum values is shown in Fig. 2.  
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Fig.2. General multilayer perceptron DNN forward configuration with three hidden layers and 

applying the gray wolf algorithm to obtain the best network topology and set the learning rate and 

momentum 
 
The performance of the DNN during the 

training, validation, and testing stages was 
evaluated using the Mean Squared Error 
(MSE), defined as Eq. 3. 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑌𝑖 − 𝑌̂𝑖)

2
𝑛

𝑖=1

 (3) 

Here, Yi is the output from the field 
experiment (actual value) Ŷi is the output 
obtained by the neural network (predicted 
value), and n is the number of iterations used 
in each step. Smaller values of MSE indicate 
better performance of the DNN. Therefore, the 
values close to zero were the basis of decision-
making for the better performance of the 
neural network (Taghavifar et al., 2015). 

 

Results and Discussion 

The selection of the learning algorithm for 
the neural network, specifically using the 
backpropagation algorithm, along with the 
choice of the activation function, is among the 
most crucial settings of the DNNs to achieve 
suitable convergence. The sigmoid activation 
function was selected for all three hidden 
layers. To choose the learning algorithm, a 
trial and error approach was employed, testing 
seven back propagation-based learning 
algorithms. The algorithm that resulted in the 
lowest Mean Squared Error (MSE) was used 
as the learning algorithm in the network. The 
results of training the neural network with 
various learning algorithms are presented in 
Table 4. 
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Table 4- Training functions and performance of neural networks developed based on train functions 

Transfer function Training algorithms R MSE 

trainlm Levenberg-Marquardt backpropagation 0.99900 0.0837 
trainrp Resilient backpropagation 0.99965 0.2711 

traincgp Conjugate gradient backpropagation with Polak-Ribiére updates 0.99955 0.3821 

traingda Gradient descent with adaptive learning rate backpropagation 0.99349 4.5175 

traincgb Conjugate gradient backpropagation with Powell-Beale restarts 0.99966 0.2884 

trainoss One-step secant backpropagation 0.99961 0.3156 

trainbr Bayesian regularization backpropagation 0.99987 0.1084 

 

As inferred from Table 4, the Levenberg-
Marquardt learning function exhibited better 
performance compared to other learning 
functions. Therefore, this algorithm was 
selected as the learning algorithm. It should be 
mentioned that all the training steps of both 
types of networks used in this research are 
similar. 

As previously mentioned, one of the 
selected methods for determining the 
hyperparameters was the utilization of the 
GWO algorithm. The values obtained from the 
output of the GWO algorithm were compared 
with each other to select the best topology. 
Table 5 shows the output of the DNN from the 
output of the GWO algorithm. 

Table 5- Features obtained in DNN training with different combinations of the number of wolves 

and topologies 

DNN Property 
GWO-Numbers of wolf 

5 10 15 5 10 15 5 10 15 

DNN-Topology 3-8-15-10-1 3-15-10-29-1 3-23-4-18-1 

Best Momentum 0.8759 0.8646 0.2605 0.5323 0.1614 0.4105 0.3045 0.9566 0.9026 

Best Learning rate 0.2375 0.1263 0.5832 0.8797 0.3137 0.7187 0.6409 0.7538 0.2042 

Mse Training 0.0919 0.0837 0.0991 0.0918 0.1091 0.0986 0.0969 0.0934 0.0973 

 

As seen in Table 5, the best performance of 
the neural network corresponds to the topology 
3-8-15-10-1, which has three inputs consisting 
of the penetration rate of pages into the soil, 
page size, and the vertical pressure applied to 
the pages. The network structure includes 8 
neurons in the first hidden layer, 10 neurons in 
the second hidden layer, and 15 neurons in the 
third hidden layer, with the output representing 
soil deformation. Furthermore, the optimal 
values were found to be 0.864628 for 
momentum and 0.126314 for learning rate 
resulting in a mean squared error of 0.089405. 
The best results were achieved when the 
population of gray wolves in the GWO 
algorithm was set to 30. 

Table 6 shows the soil parameters using 
Bekker's method at different speeds which are 
extracted using Eq. 1 and the data obtained 
from the experimental tests. The Bevameter 
test method lacks standardized testing 
procedures and requires further investigation 

into the factors influencing the tests (Kruger et 
al., 2023). Sinkage rate is considered one of 
the key factors in modeling the dynamics of 
soft soil. Table 6 presents the effects of 
variations in sinkage rate on determining soil 
parameters. 

Table 6- Soil parameters with the Bekker's 

method at different velocities 
Bekker′s constant 

Velocity (mm s-1) 

15 30 45 

Kφ (kN/mn+2) 205.368 236.338 254.304 

Kc (kN/mn+1) 19.088 21.165 21.259 

n 0.745 0.713 0.748 

From Table 6, it can be concluded that the 
soil cohesion modulus (KC) and the soil 
friction modulus (Kφ) both increase with the 
increase in the penetration speed of the plates. 
However, the n (sinkage exponent) does not 
change significantly. These results confirm 
that soil constants are related to sinkage rate. 
Fig. 3 shows the neural network regression 
diagram for the training, validation, and test 
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data. Our regression analysis demonstrates the 
effectiveness of our DNN model in predicting 
changes in soil deformation resulting from 
Bevameter penetration, aimed at better-
characterizing soil parameters using the 
Bekker method. Figs 3. a-c depict scatter plots 
of predicted soil deformations against actual 
values for the training, validation, and testing 
datasets, respectively. Notably, the correlation 
coefficients (R) of these plots accentuate a 
strong linear relationship, with values of 

0.9999 for training, 0.99983 for validation, and 
0.99978 for testing. These high R values 
affirm the model's commendable performance 
in predicting soil deformation. It effectively 
converges, avoids significant overfitting, and 
generates unbiased predictions, as evidenced 
by the regression plots. This analysis 
emphasizes the potential of our model for 
accurately predicting soil deformation, with 
applications in soil parameter estimation using 
the Bekker method. 

 

 

Fig.3. Regression results for neural network a. training, b. validation, and c. test data 
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Before starting the neural network training 

process, we used a cautious approach to 
increase the generalization capabilities of the 
model. We did this by randomly setting aside 
15% of our data set, a common practice known 
as data partitioning, to serve as a validation 
set. By isolating a subset of the data that was 
not used in the model during training, we 
develop a measure to assess its ability to 
generalize beyond the examples it was 
exposed to during the learning phase. 
Essentially, the neural network was tested on 
this unseen data to assess its capacity to make 
accurate predictions beyond the scope of the 
training dataset. The successful results show 
that our model effectively learns the 

underlying patterns and relationships in the 
data without merely memorizing. Instead, it 
has understood the fundamental features, 
allowing it to generalize and make reliable 
predictions for new scenarios of soil 
deformation. This validation step is essential 
in any machine learning task, especially in the 
field of soil parameter estimation using 
Bekker's method. This strengthens our 
confidence in the model's capabilities and its 
potential for real-world application. 
Additionally, it protects the model against 
issues such as overfitting, where a model 
overfits the training data and performs poorly 
on new, unseen data (Fig. 4). 

 

 
Fig.4. Trend of experimental and predicted values for soil deformation with unseen data 

Figs. 5 and 6 show that sinkage increases 
with increased penetration velocity and 

pressure, for plates with 105 and 175 mm 
widths, respectively. 

 



78     Journal of Agricultural Machinery Vol. 14, No. 1, Spring 2024 

 
Fig.5. Pressure-sinkage diagrams for 105 × 70 (mm2) plate size and velocities of 15, 30, and 45  

mm s-1 
 

 
Fig.6. Pressure-sinkage diagrams for 175 × 70 (mm2) plate size and velocities of 15, 30, and 45  

mm s-1 
 
In Figs. 5 and 6, considering the trend of 

pressure-sinkage changes, empirical data has 
been utilized, and neural network-fitted 
(predicted) graphs have been employed. It is 
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observed that the neural network has been 
effectively trained and accurately predicts the 
pattern of empirical data. Furthermore, it 
shows that varying penetration rates result in 
different pressure-sinkage patterns. This 
notably indicates that the penetration rate plays 
a role in determining soil parameters. Another 
inference drawn from Figures 5 and 6 is that to 
achieve a consistent settlement after a depth of 
20 to 30 millimeters, the pressure on the plates 
must increase with the penetration rate. 
Therefore, by reducing the penetration rate, a 
lower pressure can be applied to the plates to 
achieve the same depth. 

In this study, three methods (Bekker model, 
deep neural network with hyperparameters 
tuning using trial and error, and deep neural 
network with hyperparameters determination 
using the Gray Wolf Optimization algorithm) 
were employed to determine the soil 
parameters at different speeds. The 
performance comparison of these three 
methods is presented in Table 7. 

 

Table 7- Comparison of three models to 

estimate soil parameters 
Method MSE RMSE 

DNN-GWO  0.0837 0.2893 

DNN-trial-error 1.18 1.0862 

Bekker  17.30 4.1593 

As it is clear from Table 7, the deep neural 
network achieved by adjusting the 
hyperparameters using the gray wolf method 
has performed significantly better than the 
other models. Using the GWO algorithm to 
determine the size of hidden layers in DNNs 
has significant advantages. It optimizes DNN 
architectures, which ultimately results in 
highly accurate models with lower mean 
squared error (MSE). This not only increases 
the predictive capability and performance of 
the neural network but also saves time and 
computational resources by automating the 
architecture optimization process. GWO also 
avoids overfitting, exploring a wide range of 
architectures that potentially yield superior 
results. Overall, GWO simplifies the process 
and makes DNN design more efficient and 
effective. 

Networks trained with GWO-optimized 
learning rates tend to generalize better and 
require less manual hyperparameter tuning. 
Similarly, GWO's role in optimizing 
momentum leads to faster convergence, 
improved generalization, and a reduction in 
manual tuning efforts, ultimately streamlining 
neural network training and enhancing model 
performance. 

 

Conclusion 

To investigate the impact of factors such as 
the sinkage rate of plates, applied pressure on 
the plates, and the size of the plates on soil 
parameters within a soil bin, a Bevameter was 
employed. Experiments were conducted at 
three levels of penetration velocity: 15, 30, and 
45 mm s-1, with two plate sizes, and under 
dynamic loading conditions. To predict the 
soil sinkage with different inputs, a Multi-
Layer Perceptron (MLP) deep neural network 
with the Backpropagation (BP) algorithm was 
optimized and trained using the Grey Wolf 
Optimization algorithm for neuron count, 
momentum, learning rate, and the trial and 
error method for learning algorithms. The 
optimal neural network topology had a 
structure of 3-8-10-15-1, consisting of three 
inputs and three hidden layers with the 
sigmoid transfer function. The development of 
the DNN yielded the following results: 
1. A deep neural network with a structure of 

3-8-15-10-1 with three inputs (sinkage 
rate, applied pressure on the plates, and 
plate size) successfully estimated sinkage 
with high accuracy. 

2. Increasing the sinkage rate of plates 
resulted in higher soil modulus values. 

3. A lower plate sinkage rate requires less 
force to reach a specific depth. In other 
words, for plates with fixed dimensions, to 
achieve the same sinkage after passing a 
depth of 20-30 millimeters, greater 
pressure on the plates is required for 
achieving higher plate sinkage rates. 

4. The Bekker equation, in its original form, 
does not account for the sinkage rate 
parameter of the soil. Based on this 
research's findings, it is advisable to 
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consider the influence of this factor and 
incorporate plate sinkage rate into the 
equation. For achieving more accurate and 

realistic Bekker equation parameters, a 
standard sinkage rate for the plates should 
be considered in this context. 
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 چکیده

های بینی پاسخ مکانیکی خاک در تعامل با دستگاههای اندرکنش خاک و ماشین تأثیرگذار هستند، پیشبا توجه به متغیرهای متعددی که بر سیستم
های پیچیده، چندمتغیره و سازی سیستمها در مدلبه دلیل توانایی آن های عصبی عمیقبرانگیز است. در این مطالعه، شبکهکششی خارج از جاده چالش 

نشست خاک -های فشارهای مختلف از بار عمودی انتخاب شد. آزمایشحل بالقوه برای توضیح میزان فرورفتگی خاک در نرخعنوان یک راهدینامیک به
های تجربی در سه سططح متر انجام شد. آزمایش 1متر و کانال خاک عمق  2متر، عرض  24در یک انباره خاک از نوع ثابت با طول  وامترب با استفاده از

کطرد. های تجربی در مورد روابط فشار و نشست خاک ارائه میدرصد انجام شد که داده 10سرعت نشست، دو سطح اندازه صفحه، در محتوای آب خاک 
عنوان مبنایی برای الگوریتمی بود که قادر به تشخیص تعامل بین خاک ماشین پس از یک فرآیند تکراری دقیق بود. مشخص شد کطه ها بهاین آزمایش

شطبکه  خور با سه لایه پنهان، انتخاب بهینه بطرای ایطن منرطور اسطت. معمطاریبا انتشار پیش شبکه عصبی عمیق ویژه یکشبکه عصبی عمیق، به یک
 بکر که معادلهتعیین شده است. در حالی سازی گرگ خاکستریشکل یافت که توسط الگوریتم بهینه 3-8-15-10-1صورت شده بهبهینه عصبی عمیق

گرفت. شود، تأثیر سرعت نشست در خاک را نادیده مینشست خاک استفاده می -بینی رفتار فشارشده برای پیشعنوان یک روش پذیرفتهطور سنتی بهبه
 توجهی از سرعت نشست بر پارامترهای حاکم بر پاسخ تغییر شطکل خطاک را نشطان داد. شطبکه عصطبی عمیطقهای تحقیق تأثیر قابلحال، یافتهبا این 

 .ارائه کرد 0871/0میانگین مربعات خطای  دیده با موفقیت سرعت نشست را در ساختار خود گنجاند و نتایج دقیقی با مقدارآموزش
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Abstract 

Today, almost half of the total human food, especially in Asia, is directly supplied from grains, and nearly 
70% of the cultivated area of the world, which is one billion hectares, is used for growing grains. Therefore, non-
destructive methods must be found and developed to increase seed quality in agriculture and industry. Cold 
plasma is a novel and efficient method that can be used in the agricultural and food sectors for the inactivation of 
surface microorganisms and the excitation of seeds. This review presents a summary of the effectiveness of cold 
plasma treatment on the characteristics of four important cereal plants: wheat, rice, corn, and barley. The focus is 
on the effects of this treatment on seed germination, surface property changes, water uptake of seeds, growth 
parameters of root, shoot, and seedling length, biomass parameters, and metabolic activities. By examining the 
research conducted by the researchers, it can be seen that the cereal seeds treated with cold plasma had better 
germination power, water absorption, shoot length, growth efficiency, shoot and root weight, and metabolic 
activity. This review can provide insight into the promising trends in utilizing plasma as a method to decrease the 
prevalence of harmful plant diseases transmitted through seeds and reduce the dormancy of hard seeds. 

 
Keywords: Biological feature, Cereal grain, Cold plasma, Seed treatment  

 

Introduction1 

Cold atmospheric plasma, has gained 
significant popularity in recent years. In the 
last few years, cold plasma has been 
extensively used in agriculture or plant 
biological applications including cultivation, 
surface sterilization, seed germination, 
pretreatment before drying, modification of 
surface properties, decontamination of seeds, 
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and disease control (Liao et al., 2020).  
The use of different plasma devices has 

enabled extensive research on the plasma 
treatment of seeds. These devices facilitate in-
depth investigations into the physical, 
chemical, and biological processes triggered 
by plasma components (Maghsoudi, Balvardi, 
Ganjovi, & Amir-Mojahedi, 2023; Ranieri et 
al., 2021). There are two methods for plasma 
treatment of seeds, namely direct and indirect, 
which are determined by the interaction 
between the plasma and the samples (Gómez-
Ramírez et al., 2017). In the indirect treatment 
method, the treated surface is placed at a 
distance from the plasma production point, and 
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the produced plasma is transferred to the 
sample surface through the fed gas flow. This 
system produces UV and chemical species 
with longer life and less reactivity. In the 
direct treatment method, the treated product is 
positioned relatively close to the plasma 
production point. This method produces a 
higher concentration of reactive species. At 
high voltages, it induces electrical conductivity 
in products with high internal moisture content 
and water activity. Local heating in this system 
can cause sensory damage such as burn 
symptoms or protein coagulation, as well as 
changes in aroma, texture, and appearance 
(Niemira, 2012). 

Cold plasma can be readily produced 
through different types of electric discharges. 
The most frequently utilized methods include 
dielectric barrier discharges (DBD), plasma 
jets, corona discharges, gliding arcs, and 
microwave discharges (Adhikari et al., 2020). 
All of these produced plasmas are non-
thermal, meaning that the discharge occurs at 
atmospheric temperature and pressure. The jet, 
corona, gliding arcs, and microwave 
discharges can treat the surfaces of large 
objects and are also useful for improving the 
adhesion of materials in industrial processing 
(Kusano et al., 2014). The mild operating 
conditions and low temperature, along with the 
flexible reactor shape and the ability to use gas 
mixtures of DBD plasma, make it an attractive 
option for modifying temperature-sensitive 
surfaces, particularly agricultural products 
(Fang, Wang, Shao, Qiu, & Edmund, 2011). 
The seeds and seedlings can also be soaked or 
watered using plasma-activated water (PAW), 
which is made by exposing liquids to plasma. 
Similar effects on macroscopic plant 
properties have been observed when 
comparing the use of gaseous and aqueous 
treatments (Sajib et al., 2020; Sivachandiran & 
Khacef, 2017). 

Cereals are a type of monocotyledonous 
herbaceous plant with small edible seeds. In 
many Asian and African countries, grains 
provide more than 80% of people's food. The 
share of cereals in the food of European people 
is 45-55% and in the United States, it is 
approximately 20-30%. Wheat, rice, and corn 
are the three most important crops, each 
accounting for roughly a quarter of the annual 
grain production. To feed the projected global 
population of 9.8 billion people by 2050, the 
supply of cereals must be increased by 70-
100% (Godfray et al., 2010).  

Increasing production rates are commonly 
seen as the answer to meet the growing 
demand. However, historical data indicate that 
the current production rates fall short of what 
is needed to achieve the targets (Ray, Mueller, 
West, & Foley, 2013). On the other hand, 
desertification and adverse climatic and 
agricultural conditions such as drought and salt 
are spreading rapidly across arable lands. 
Therefore, to improve crop yield, researchers 
are trying to find suitable methods to break 
seed dormancy and increase the percentage 
and speed of seed germination, and also to find 
cultivars that are more resistant to drought, 
salinity, and disease (Radjabian, Saboora, 
Hhasani, & Fallah-Hosseini, 2007).  

The objective of this review is to present a 
summary of the extensive knowledge acquired 
by researchers in studying the impact of cold 
plasma on plant seeds, which is rapidly 
expanding. We chose the seeds of cereal plants 
because their presence in the diet is essential 
and could ensure food security. Given the 
increasing attention to plasma treatment in 
agriculture, it is valuable to provide an 
overview of the hypotheses and current 
evidence on the impact of plasma treatments 
on cereal seeds. The main objectives of our 
review are summarized in Fig. 1. 
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Fig.1. Schematic overview of the effects of cold plasma on cereal grains 

 
Seed and sprout decontamination 

Promising results have been reported by 
researchers in the use of cold plasma for 
decontaminating seed surfaces and plant 
sprouts from microbes and toxins. In a study 
conducted by Butscher et al. (2015), it was 
found that Bacillus amyloliquefaciens bacteria 
on wheat seeds could be effectively 
deactivated using this method. This was 
achieved by exposing the seeds to low-
pressure Ar/O2 DBD plasma at radio 
frequencies ranging from 8.0 to 12.8 mbar, and 
with power levels between 700 and 900 W for 
a duration of 30 s. In a study conducted by 
Filatova et al. (2014), the effectiveness of low-
pressure air plasma at a frequency of 5.28 
MHz for 2-10 minutes in eliminating 
phytopathogens from contaminated wheat 
seeds was demonstrated. The most favorable 
outcome was a 77% reduction in infection rate 
with a 5-minute exposure, while germination 
levels remained unchanged. Kabir et al. (2019) 
reported that Ar/Air and Ar/O2 DBD plasma at 
a pressure of 10 torrs and 4.5 kHz frequency 
for 90 s led to the detoxification of cadmium 
in wheat. Selcuk, Oksuz, and Basaran (2008) 

demonstrated that treatment of seeds with air 
plasma generated in a vacuum chamber with 
frequency of 1 kHz and voltage of 20 kV for 
5-20 minutes could effectively decrease the 
presence of two types of filamentous fungi, 
namely Aspergillus spp. and Penicillium spp., 
on the surface of corn and wheat seeds. The 
researchers found that a notable reduction of 
3-log could be achieved with just 15 minutes 
of plasma treatment. 

The positive impact of atmospheric 
pressure plasma treatment, like low-pressure 
plasma, was linked to its ability to effectively 
deactivate pathogens on the surface of cereal 
seeds. Plasma was able to deactivate the 
microorganisms on the germinated seeds based 
on the discharge of the DBD (Fereydooni & 
Alizadeh, 2022). The mechanism of 
inactivation is related to the intracellular 
accumulation of reactive oxygen species, 
which causes the rupture of the outer 
membrane of the bacterial cell, disruption of 
protein activity, removal of the cytoplasm 
from the cell, and finally the death of the 
bacterial cell (Mendis, Rosenberg, & Azam, 
2000). Butscher, Zimmermann, Schuppler, and 
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von Rohr (2016) conducted a study to 
investigate the impact of atmospheric pressure 
on the deactivation of bacterial cells in wheat 
seeds using argon plasma. They utilized DBD 
plasma at pulse voltage (6-10 kV) and pulse 
frequency (5-15 kHz) for this purpose. The 
results revealed that a 5-minute plasma 
treatment led to a 1-log reduction in the 
number of bacteria, whereas a 60-minute 
exposure resulted in a more significant 3-log 
reduction. In a study by Zahoranová et al. 
(2016), it was shown that applying coplanar 
surface barrier discharge at atmospheric 
pressure for 120 s, with a frequency of 14 kHz 
and voltage of 20 kV, led to a significant 
reduction in the initial natural bacterial load on 
artificially contaminated wheat seeds. The 
bacterial load, initially measured at 5.52× 104 
CFU/g, was reduced by 1 log. In addition, 
different effects of cold plasma treatment on 
the inactivation of fungi samples of Fusarium 
nivale, F. culmorum, Trichothecium roseum, 
Aspergillus flavus, and A. clavatus were 
reported. In a study conducted by Shi, Ileleji, 
Stroshine, Keener, and Jensen (2017), it was 
discovered that treating corn with DBD 
atmospheric pressure plasma using two gases, 
air, and MA65, resulted in a noteworthy 
decrease in aflatoxin levels. In their study, the 
plasma system was operated at 200 W and 50 
HZ generating 90 kV. The degradation of 
aflatoxin in corn reached 62% and 82% after 1 
and 10 minutes of HVACP treatment in RH 
40% air, respectively. Moreover, the 
application of cold atmospheric plasma had a 
notable effect on the reduction of 
Deoxynivalenol (a prominent mycotoxin found 
in grains) in barley seeds. The outcomes 
demonstrated that the treatment of cold 
atmospheric plasma for 6 and 10 minutes 
resulted in a decrease in Deoxynivalenol 
concentration by 48.9% and 54.4%, 
respectively (Feizollahi, Iqdiam, Vasanthan, 
Thilakarathna, & Roopesh, 2020). It is 
assumed that various degradation mechanisms, 
including chemical reactions with reactive 
species generated in cold plasma (such as O3, 
O, OH, NOx), decomposition after collision 
with electrons and ions, and UV light are 

responsible for breaking down toxin molecules 
through cold plasma treatment (Ten Bosch et 
al., 2017). The cold plasma system’s 
performance can be increased to further reduce 
Deoxynivalenol by adjusting various process 
factors such as voltage and frequency, type of 
feed gas, relative air humidity, etc. 

Los et al. (2018) conducted a study on the 
decontamination of various bacteria species 
(E. coli NCTC and B. atrophaeus) and fungi 
P. verrucosum DSM. Their research revealed 
that treatment 20 minutes of treatment of DBD 
plasma at 80 kV voltage showed promise in 
controlling both native microflora and 
pathogenic microorganisms on the wheat and 
barley seeds. DBD air plasma also resulted in 
a significant decrease in the initial 
concentration of pathogenic bacteria (Bacillus 
cereus, B. subtilis, and E. coli O157:H7) 
inoculated on brown rice, reducing it from 8 
log CFU/mL to an undetectable level (2.3 log 
CFU/g) within 20 minutes (Lee et al., 2016). 
Lee et al. (2018) also found similar outcomes 
with brown and white cooked rice. They 
observed reductions of 2.01-log in Bacillus 
cereus and Escherichia coli bacteria after 
subjecting the rice to 20 minutes of treatment 
with air plasma (250 W, 15 kHz).  

 
Seed germination 

Seed germination, as an essential factor for 
the survival of plant species, starts with water 
absorption, stimulating physiological activities 
that eventually result in ending the seed’s 
dormancy (Nonogaki, 2014). Several studies 
have been conducted in agriculture to explore 
techniques for enhancing seed germination, 
ultimately improving crop growth and yield. 
Seed priming causes biological and 
physiological changes in both the seed and 
plant, which results in better germination and 
proper seedling establishment (Lutts et al., 
2016; Zulfiqar, 2021). There are many seed 
priming techniques including halo, hydro, 
osmose, hormonal, chemical, physical, and 
biological priming (Ali et al., 2017). Recently, 
cold plasma seed treatment has gained 
attention as a physicochemical priming 
technology, especially for cereal crops 
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(Adhikari et al., 2020). ROS and RNS present 
in plasma have a wide range of regulatory 
functions involved in various processes of 
plant growth and development, including 
germination, metabolism, signal transduction, 
nutrient uptake, improvement of seedling 
growth, and abiotic/biotic stress tolerance 
(Yong et al., 2019). Treating seeds with 
plasma by changing the shape of the seed coat 
and inducing seed germination reduces 
germination time, enhances disease resistance, 
and accelerates growth and development 
(Nalwa, Thakur, Vikram, Rane, & Vaid, 2017; 
Rasooli, Barzin, Mahabadi, & Entezari, 2021). 

So far, much research have been carried out 
on the effect of cold plasma treatment on the 
germination of cereal seeds. According to a 
study conducted by Yodpitak et al. (2019), it 
was discovered that subjecting brown rice to 
DBD argon plasma stimulation for 75 s 
resulted in a notable increase (84%) in 
germination rate. A study carried out by 
Amnuaysin, Korakotchakorn, Chittapun, and 
Poolyarat (2018) found that subjecting rice 
seeds to DBD air plasma treatment for 60 s led 
to a significant improvement in both vigor 
index and germination speed. Chen et al. 
(2016) discovered similar outcomes whereby 
the germination speed and early vigor of 
brown rice seedlings were enhanced following 
a 10-minute treatment of low-pressure plasma 
exposure. They attributed this enhancement to 
the increased a-amylase activity. Penado, 
Mahinay, and Culaba (2017) investigated the 
effects of atmospheric air plasma jet treatment 
on the germination of rice (Oryza sativa L.). 
They observed that plasma treatment led to a 
decrease in trichomes on the seed's surface. 
This could potentially enhance the seed's 
ability to absorb water, resulting in a 
significant change in seed germ length. 
However, the treatment did not affect the 
overall germination count of the seeds after the 
72-h germination period.  

Velichko et al. (2019) treated wheat seeds 
with atmospheric pressure plasma from a jet 
and dielectric barrier discharge operating in 
argon gas for 15 to 300 s. The plasma jet 
treatment resulted in a slight increase in 

germination, with the treated samples showing 
a germination rate of 98.7% compared to the 
control samples' rate of 97.0%. The average 
time it took for germination to occur decreased 
from 3.90 days for the control samples to 3.67 
days for the treated ones. Notably, the 
germination time decreased significantly when 
the treatment time exceeded 60 seconds. The 
speed of germination begins to decline after 
treatment times exceed 30 seconds. This 
decline can be attributed to the influence of the 
hot argon stream, which reaches a temperature 
of 103 °C. In contrast, when using atmospheric 
pressure DBD, this effect is minimal, and the 
growth properties of the seeds are solely 
impacted by the active species produced by the 
discharge. By examining the effect of plasma 
treatment on wheat seeds with two types of 
operating gases, air, and SF6, Selcuk et al. 
(2008) showed that the germination rate of 
wheat seeds treated with plasma was not 
greatly affected. In addition, there was no 
noticeable variation in the germination rate 
among seeds that were exposed to air and SF6 
plasma gases for 5, 10, or 15 minutes. 
Similarly, by investigating the effect of surface 
discharge plasma on wheat seeds, Dobrin, 
Magureanu, Mandache, and Ionita (2015) 
reported that germination was less affected by 
treatment compared to growth parameters. 

PAW can impact water consumption during 
the germination phase and lead to the 
production of hybrid cereal seeds with superior 
germination rates. In a study conducted by 
Chalise et al. (2023), the effectiveness of 
PAW created by gliding discharge plasma was 
examined concerning wheat seed germination. 
The findings indicated that a treatment 
duration of 15 minutes resulted in improved 
germination rates and a higher yield of wheat 
products. Similarly, in a study conducted by 
Chalise et al. (2023), the effectiveness of 
PAW created through gliding discharge 
plasma was examined in relation to wheat seed 
germination. The findings indicated that a 
treatment duration of 15 minutes resulted in 
improved germination rates and a higher yield 
of wheat products. Similarly, a study 
conducted by Wang, Cheng, and Sun (2023) 
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demonstrated the positive effects of treating 
wheat seeds with PAW generated by an 
atmospheric pressure Ar-O2 plasma jet. The 
researchers found that a treatment duration of 
3 minutes with PAW resulted in enhanced 
germination, vigor index, and seedling growth. 
Ahn, Gill, and Ruzic (2019) also proved that 
corn seeds hybridized with PAW can have a 
germination rate of nearly 100%. Kabir et al. 
(2019) discovered that the harmful effects of 
Cadmium on cellular and protein features were 
significantly reduced by treating wheat seeds 
with Ar/O2 and Ar/Air plasma before 
germination. Therefore, plasma treatment may 
also contribute to the decreased uptake and 
movement of Cadmium in wheat plants whose 
seeds were previously treated by plasma. Guo 
et al. (2017) demonstrated that treating wheat 
seeds with DBD plasma for 4 minutes led to 
an impressive 27.2% increase in germination 
potential and a corresponding 27.6% boost in 
the germination rate. The research also 
demonstrated that plasma treatment had a 
positive effect on reducing damage caused by 
membrane lipid peroxidation. This was 
achieved by enhancing the activities of 
antioxidant enzymes such as superoxide 
dismutase, catalase, and peroxidase, which 
indicated an improved tolerance to 
environmental stress. Additionally, plasma 
treatment was found to promote the generation 
of abscisic acid in wheat seedlings. Hui et al. 
(2020) attributed the increase in wheat seed 
germination to the significant effect of active 
species produced by plasma on secondary 
metabolism during seed germination. They 
identified the buildup of charges caused by 
plasma-charged particles on the cell 
membrane's surface, the creation of 
electrostatic force, and the resulting harm to 
the cell membrane as the cause for enhanced 
permeability of the cell membrane and seed 
coat. This phenomenon speeds up the 
absorption of water and nutrients, ultimately 
bolstering seed germination.  

Other researchers, including Jiang et al. 
(2014); Li et al. (2017); Los, Ziuzina, Boehm, 
Cullen, and Bourke (2019); Meng et al. 
(2017); Roy, Hasan, Talukder, Hossain, and 

Chowdhury (2018), mentioned the increase in 
the germination and growth of wheat seeds 
treated with atmospheric pressure plasma. 
Starič et al. (2022) employed both direct and 
indirect treatment methods to examine the 
germination process of wheat seeds. They 
generated plasma using glow and afterglow 
discharge techniques, with oxygen feed gas, 
under low-pressure conditions. Their findings 
indicated that plasma treatment had no 
significant impact on the germination rate, 
except for the seeds treated under 90 s which 
experienced a notable decrease in germination 
rate and root growth due to the change in the 
morphology of wheat grain pericarp. In 
another study, Sidik et al. (2018) investigated 
the effect of helium gas-fed jet plasma on corn 
seeds. The research demonstrated that when 
the seeds underwent a 3-minute treatment, 
they exhibited a higher germination speed and 
improved growth compared to the untreated 
seeds. However, it is worth noting that the 
germination rate for both treated and untreated 
seeds was 86%. In a study conducted by 
Feizollahi et al. (2020), barley grains were 
subjected to DBD plasma in humid air. The 
study revealed that treating the grains for 
either 1 or 10 minutes resulted in a reduction 
in root length, root surface area, shoot length, 
and the number of roots, compared to the 
untreated control group. Interestingly, a 6-
minute treatment improved these parameters 
significantly, with seeds exposed to 6 minutes 
of plasma radiation exhibiting the highest 
germination percentage at 93.3%. In general, 
based on the conducted studies by Park et al. 
(2018), it has been found that cold plasma 
treatment can generally affect the rate of seed 
germination. This is achieved by altering seed 
water absorption, seed surface characteristics, 
and biological reactions within the seeds, as 
well as protein structure, and internal 
functional metabolites like gamma-
aminobutyric acid. 

 

Surface property changes and water uptake 

of seeds 
The absorption of water by seeds is 

dependent on three primary factors: the seed's 
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composition, the permeability of its coat, and 
water availability (McDonald, 1994). So far, 
cold plasma technology has shown positive 
effects on both the surface characteristics and 
internal content of grains. The plasma 
treatment enhances water absorption in seeds 
by reducing surface energy. The seed's 
hydrophilicity, or its ability to absorb water, is 
determined by measuring the contact angle 
formed by a water drop. The study conducted 
by Chen et al. (2016) demonstrated that 
exposing brown rice to plasma resulted in 
increased water uptake compared to untreated 
brown rice. The maximum level of water 
uptake was observed to be 30.2% in samples 
that were exposed to 3 kV air plasma for 10 
minutes after a germination period of 24 h. 
Lee et al. (2016) found that plasma-treated 
brown rice exhibited higher water absorption 
than regular brown rice for all soaking 
durations. The maximum water uptake reached 
24.78% and was observed after 5 h of soaking. 
The increase in water uptake ratio was 
associated with a decrease in cooking time. 
The plasma treatment altered the 
microstructure of the rice bran layers, making 
it easier for water to penetrate the brown rice 
kernel (Chen, Chen, & Chang, 2012). 
Increasing the time of plasma treatment 
showed more effectiveness on the seeds and as 
a result, reduced the cooking time. In addition, 
the hardness of cold plasma-treated rice was 
significantly lower than untreated brown rice.  

Tissue changes in parboiled rice under low-
pressure cold plasma were analyzed by 
Sarangapani, Devi, Thirundas, Annapure, and 
Deshmukh (2015). They observed significant 
alterations in the surface morphology. 
Following the treatment, the grain's surface 
exhibited cracks and indentations known as 
"surface etching." Plasma treatment altered the 
grains' natural surface structure, leading to 
modifications in cooking and textural 
characteristics. The treatment of 50 W for 15 
minutes induced more etching, resulting in 
shorter cooking time, decreased contact angle, 
increased water uptake ratio, and higher 
surface energy. Similar results were presented 
by Chen et al. (2012) who investigated the 

properties of the surface, cooking, texture, and 
iodine staining of brown rice. Their results 
revealed that plasma treatment causes the 
surface of brown rice to be etched, enabling 
the rice kernel to absorb water more easily 
during soaking. As a result of this treatment, 
the cooking time for brown rice is shortened, 
the iodine-stained area is increased, and the 
cooked rice has a tender texture and is more 
enjoyable to eat. In a study conducted by Liu, 
Wang, Chen, and Li (2021), it was found that 
subjecting milled rice to a 120 W helium 
plasma treatment for 20 s resulted in improved 
cooking properties of milled rice. This was 
achieved by creating a rough kernel surface, 
increasing the water absorption rate, 
weakening the protein network, and speeding 
up starch gelatinization. Thirumdas, 
Deshmukh, and Annapure (2015) analyzed the 
effect of air plasma at a pressure of 0.15 mbar 

on the water absorption and cooking time of 
basmati rice. The water absorption was found 
to be directly related to the power and time of 
plasma treatment, which is likely associated 
with the reduction of cooking time and the 
modification of the grain surface. The shorter 
cooking time of plasma-treated rice can be 
explained by the fragmentation of starch, the 
opening up of the kernel structure, and the 
degradation of other components. These 
changes allow the rice kernel to absorb more 
water, leading to a reduction in cooking time 
(Sabularse, Liuzzo, Rao, & Grodner, 1991). 

Velichko et al. (2019) conducted a study on 
the surface modification and chemical 
structures of wheat seed coats using jet and 
DBD plasma treatment. They observed that the 
water imbibition capacity of wheat seeds 
increased by 20-30% after being exposed to 
plasma radiation for 15-30 s. This 
enhancement in water imbibition can be 
attributed to the increased hydrophilicity of the 
seed surface, leading to a decrease in the 
apparent contact angle. Bormashenko, 
Grynyov, Bormashenko, and Drori (2012) 
observed a significant change in the wettability 
of wheat seeds, where the contact angle 
decreased from 115 ° to zero. Interestingly, the 
amount of water absorption did not change 
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significantly and only the treated seeds 
experienced a slight increase in water 
absorption. The results were attributed to the 
oxidation of the grain surface by plasma. Sera, 
Spatenka, S̆erý, Vrchotova, and Hruskova 

(2010) visually observed that plasma-treated 
wheat seeds at a pressure of 140 Pa exhibited 
quicker wetting compared to the control seeds. 
However, they did not provide quantitative 
measurements of water imbibition. In another 
study, Starič et al. (2022) investigated the 
changes in the morphology of the seed 
pericarp and the chemical characteristics of the 
wheat grain surface treated with plasma 
through SEM and AFM. The seed pericarp's 
morphology was changed and its roughness 
increased as a result of extended direct plasma 
treatment. The extent of functionalization was 
more noticeable in direct compared to indirect 
treatment. 

The alteration in seed wettability was found 
to be related to the oxidation of lipid layers 
and the functionalization of the seed surface. 
Zahoranová et al. (2016) also reported that the 
water uptake in wheat seeds increased with 
higher exposure doses of plasma. After a 2-
hour treatment with coplanar surface DBD, the 
water uptake ranged from 6.41 to 9.60 mg, and 
after 8 hours it ranged from 12.53 to 16.07 mg 
per seed, compared to the control. The water 
absorbed by the plasma-treated seeds triggers 
the hydrolytic amylase enzyme, helping the 
metabolic process by breaking down the stored 
starch and protein in seeds (Kikuchi, Koizumi, 
Ishida, & Kano, 2006). Treatment of cereal 
seeds with PAW also improves the surface 
characteristics. Chalise et al. (2023) reported 
the wettability and contact angle of wheat 
seeds increased and decreased significantly 
after being treated with PAW for 15 minutes, 
respectively. The increase in wettability is 
believed to be due to the presence of 
ultraviolet light and OH radicals, which are the 
main components of atmospheric plasma. 

 
Growth parameters (root, shoot, and 

seedling length) 
The parameters of root growth play a 

crucial role in effectively utilizing the soil and 

absorbing minerals, particularly for nutrients 
that have limited mobility. The growth of roots 
has a significant impact on the development of 
strong shoots and the overall yield of crops, 
particularly in soils with low nutrient levels 
(Wang, Thorup-Kristensen, Jensen, & Magid, 
2016). The growth of roots can be influenced 
by cold plasma treatment, thereby altering the 
plants' capacity to explore soil and absorb 
water and nutrients (Pérez-Pizá et al., 2020). 
The impact of cold plasma and PAW on the 
growth parameters is closely connected to the 
effects mentioned earlier regarding 
germination. Yodpitak et al. (2019) reported 
an increase in the height of seedlings and root 
growth of brown rice after 75 s of argon 
plasma exposure to 69% and 57% compared to 
the control, respectively. Additionally, the root 
length and seedling height decreased when the 
treatment time exceeded 75-100 s for all rice 
cultivars. The enhancement of seedling growth 
attributes of rice seed, such as shoot length and 
the contents of photosynthetic pigments of 
seedlings as a result of being treated with 
plasma for 10 s was also reported by 
Amnuaysin et al. (2018). The increase in seed 
permeability can be related to the 
improvement of nutrient absorption capacity, 
which potentially facilitates the growth of the 
seedlings. A study by Chen et al. (2016) 
determined that low-pressure plasma increased 
the length of brown rice seedlings by 37% 
compared to the control. However, there were 
no significant differences between the samples 
treated with plasma and the control group, as 
per the statistical analysis. For the rice 

variety Oryza sativa L., Penado et al. (2017) 
reported an improvement in the growth 
process of samples treated with air plasma jet 
considering the effect on the increase in the 
length of the seed shoot, which is related to the 
speed of seed root expansion. In another study, 
Liu et al. (2021) did not observe significant 
changes in the ratio of grain length to width by 
researching the effect of radio frequency 
helium plasma treatment for 20-120 s on 
Chinese milled rice. 

The advantageous effects of using short 
treatment times (ranging from 4 to 7 minutes) 
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of surface DBD in air, nitrogen, and argon 
were observed in terms of the germination 
rate, water absorption, and lengths of roots and 
shoots of wheat. Conversely, prolonged 
exposure had detrimental effects on the seeds, 
leading to a significant decrease in the 
percentage of germination (Meng et al., 2017). 
Similarly, according to the findings of 
Velichko et al. (2019), a brief plasma jet 
treatment lasting 15-60 s induced the 
development of the wheat seed root system 
while having minimal effects on sprout length. 
However, when the treatment time was 
prolonged, the high temperature of the argon 
flow became the primary factor affecting the 
growth. The hot flow of argon negatively 
affected the potential for plant growth. 
According to Filatova et al. (2014), the shoot 
length increased when exposed to RF plasma 
treatment in a vacuum and the germination 
reached a maximum point.  

The effect of plasma gas type on growth 
parameters has also been reported in some 
research. In a study conducted by Selcuk et al. 
(2008), it was demonstrated that the 
germination percentage, shoot height, and root 
length of the treated seeds were not affected by 
either air or SF6 gas plasmas. Wheat roots and 
sprout length improvement were also reported 
in Dobrin et al. (2015). According to them, the 
roots of the plasma-treated seeds were found 
to be distributed more towards longer lengths 
compared to the untreated samples. 
Furthermore, there was a significant difference 
in the root-to-shoot ratio between the untreated 
wheat (0.88) and the treated seeds (1.2). The 
reason is likely the gentler plasma treatment, 
with an average discharge power of 2.7 W. As 
a result, the seeds are not damaged at this low 
power level. The effect of air cold plasma 
treatment on barley germination parameters 
was investigated by Feizollahi et al. (2020). 
The treatment of seeds for 1 and 10 minutes 
resulted in a decrease in the number of roots, 
shoot length, root surface area, and root length 
compared to the untreated samples. Although 
not significant, the 6-minute treatment showed 
some improvement in root volume, average 
root diameter, and germination percentage. 

Similarly, Mazandarani, Goudarzi, 
Ghafoorifard, and Eskandari (2020) reported 
that treatment of barley seeds with 80 W DBD 
plasma increases the shoot height and root 
length by 38.55% and 31.93% compared to the 
untreated seeds, respectively. Investigating the 
effect of three types of plasma including RF, 
microwave, and DBD in a vacuum and 
atmospheric pressure conditions on the growth 
and germination of corn seeds, Ahn et al. 
(2019) reported that corns treated with RF 
plasma had a higher growth rate under vacuum 
conditions. Chalise et al. (2023) presented 
results indicating that wheat seeds treated with 
15 minutes of PAW treatment and 5 minutes 
of treatment with DBD exhibited longer root 
and spike lengths compared to the control 
sample. The PAW provided the necessary 
reactive nitrogen species for plant growth such 
that nitrate and nitrite species acted as 
fertilizers, which is the reason behind these 
results. 

 

Biomass parameters  
Cold plasma treatment can lead to notable 

alterations in various biomass parameters. 
These parameters include the dry weights of 
roots and sprouts, stem diameter, plant height, 
and plant growth efficiency. In a study 
conducted by Sera et al. (2010), it was found 
that the shoot dry weight increased 
significantly after 3 minutes of microwave 
plasma treatment compared to samples treated 
for 10, 20, and 40 minutes. Moreover, the 
highest root-to-shoot ratio was observed after 
5 minutes of plasma exposure. In their study 
on DBD treatment, Guo et al. (2018) 
demonstrated that all biomass parameters 
reached their maximum values at different 
discharge voltages. Furthermore, Saberi, 
Sanavy, Zare, and Ghomi (2019) found that 
180 s of plasma treatment increased the grain 
and spike yield by 58 and 75%, respectively, 
compared to the control sample.  

UV radiation in plasma only affects the 
growth parameters during long-term treatment. 
Additionally, when exposed to hot air, 
temperatures below 70 °C do not have a 
significant impact on the seedling mass (Ghaly 
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& Sutherland, 1984). Therefore, the type of 
plasma treatment influences the sprout and 
root lengths, dry weight, and root-to-shoot 
ratio. In a study conducted by Henselová, 
Slováková, Martinka, and Zahoranová (2012), 
it was found that treating maize with a diffuse 
coplanar surface DBD in air resulted in a 21% 
increase in length, a 10% increase in fresh 
weight, and a 14% increase in dry weight. 
Compared to the untreated sample, a higher 
weight of roots and sprouts of wheat seeds 
treated with surface DBD plasma was obtained 
by Dobrin et al. (2015). Chalise et al. (2023) 
showed that the growth parameters of wheat 
seed, including spike length, fruit number, and 
root length were improved through direct 
plasma treatment and the utilization of PAW. 
Moreover, increasing the duration of treatment 
led to higher concentrations of reactive species 
and a decrease in water pH, ultimately 
enhancing productivity. According to Hui et 
al. (2020), there was an increase in plant 
height growth, number of leaves, and fresh and 
dry weight in wheat plants treated with a 
combination of air and helium plasma in a 
vacuum setting, compared to the control 
group.  

The growth and yield of wheat greatly 
depend on the number of leaves it possesses. 
Increasing the number of leaves enhances the 
plant's ability to absorb light energy, leading to 
improved organic matter synthesis efficiency. 
This is vital for the optimal growth of wheat 
and ultimately results in improved yield. In a 
study conducted by Jiang et al. (2014), wheat 
seeds were subjected to helium plasma 
treatment, and the researchers examined 
various growth parameters during the 
phonological growth stage of the wheat plants. 
The results showed that the treated plants 
exhibited significant improvements in plant 
height (21.8%), root length (11.0%), fresh 
weight (7.0%), stem diameter (9.0%), leaf area 
(13%), and leaf thickness (25.5%) compared to 
the control group. This suggests that the 
application of cold plasma treatment can 
enhance the growth of wheat. Furthermore, the 
treated wheat yielded 5.89% higher yield 
compared to the control group. Numerous 

studies have also examined the impact of cold 
plasma treatment on brown rice seeds. These 
studies consistently found that the treated 
seeds exhibited increased fresh weight and dry 
weight of shoots and roots, as well as higher 
growth efficiency compared to the control 
group (Amnuaysin et al., 2018; Liu et al., 
2021; Park, Puligundla, & Mok, 2020). 

 
Metabolic activities 

The treatment of cold plasma and PAW 
also have an impact on the characteristics of 
the internal components of seeds or plants 
associated with alterations in metabolite 
activity. Chen et al. (2016) studied the changes 
in a-amylase and antioxidant activity and 
gamma-aminobutyric acid (GABA) of 
germinated brown rice after 3-kV DBD 
treatment. The increasing activities of ABTS 
and DPPH radicals, a-amylase, phenol, and 
GABA were recorded after a 24-hour 
germination time. Similarly, Park et al. (2020) 
also reported positive changes in DPPH, 
ABTS, and phenolic content of brown rice 
sprouts after jet plasma treatment. Researchers 
demonstrated that the penetration of active 
species through the porous seed coat inside the 
caryopses, where they interact with plant cells, 
is responsible for alterations in seed chemical 
properties including phenolic compound 
contents after plasma treatment (Sera et al., 
2010). Relatively high concentrations of 
phenolic compounds in germinated seeds may 
be attributed to the release of phenolic 
compounds bound to the cell wall, as the 
breakdown of the cell wall takes place during 
germination (Gujral, Sharma, Kumar, & 
Singh, 2012). During germination, a 
significant increase in free phenolic acid 
content and ferulic acid content of brown rice 
has been observed (Tian, Nakamura, & 
Kayahara, 2004). 

The enhanced ability of DPPH radical 
scavenging may be attributed to the softening 
of the seed coat caused by oxidants derived 
from jet plasma and then the penetration of 
active species into the seed. This penetration 
may potentially benefit physiological reactions 
(Li et al., 2017). Sookwong et al. (2014) 
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reported a decrease in the phenolic content of 
treated brown rice 72 and 96 h before 
germination. In addition, plasma processing 
may affect the activity of saccharolytic 
enzymes, potentially enhancing the production 
of free phenolic compounds that were partially 
dissolved and lost in the soaking water during 
the pre-germination process. High moisture in 
rice seeds can increase the risk of mold growth 
and reduce the rate of rice germination. The 
study of Guo et al. (2023) indicated that 
plasma treatment had no significant impact on 
the moisture content of rice grains during the 
8-minute treatment period. Also, the electrical 
conductivity of rice grain leachate, which is a 
crucial factor in determining cell membrane 
permeability, showed a slight increase after a 
6-minute plasma treatment. 

Chen, Hung, Lin, and Liou (2015) 
suggested that the improvement of brown rice 
quality during the 3-month storage is related to 
the reduction of fatty acid and α-amylase of 
samples treated with 3-kV plasma. The 

reduction of oxidative damage in wheat grain 
tissues treated with Ar/O2 and Ar/Air plasma 
through the positive regulation of antioxidant 

enzymes SOD and CAT and their related 
genes was reported by Kabir et al. (2019). 
According to research by Los et al. (2019), 
180 s of direct plasma treatment caused an 
acceptable increase in nitrite and nitrate levels, 
an increase in titratable total acidity content, 
and an increase in malondialdehyde wheat 
grain aldehyde. After treating wheat seeds 
with DBD plasma, Li et al. (2017) observed an 
increase in the levels of osmotic adjustment 
products, proline, and soluble sugars in wheat 
seedlings. They also noted a decrease in 
malondialdehyde content. Furthermore, the 
activity of superoxide dismutase and 
peroxidase in the treated samples also showed 
an increase. Also, according to research by 
Wang et al. (2023), a 3-minute treatment of 
wheat seeds with PAW enhanced the 
photosynthetic pigments, free amino acids, 
total phenolic content, protein content, 
antioxidant activity, enzyme activity, and 
mineral content of seeds grown for 14 days. 
Table 1 presents an overview of the types of 
cereals and the parameters studied after plasma 
treatment. 

 
Table 1- Summary of studies conducted on cereal seeds after treatment with cold plasma and PAW. 

Abbreviations: alternating current (AC); radio frequency (RF); total phenolic compounds (TPC); 

antioxidant activity (DPPH); gamma-aminobutyric acid (GABA); scanning electron microscope 

(SEM); malondialdehyde (MDA) 
Cereal Plasma source/device Studied parameters References 

Brown rice, 

cultivars: ST1, 

PL1, KDML 105, 

RD 6, NS, LP 

DBD (100-200 W, RF, 

25-300 s, argon) 

Germination percentage, root length, seedling 

height, TPC, vitamin E, phytosterols, triterpenoids, 

and anthocyanins 

(Yodpitak et al., 

2019) 

Brown rice, 

cultivars: 

KhaoDawk Mali 

105 

DBD (5.5 kHz, 18 kV, 

10-60 s, air) 

Shoot length, fresh and dry weight of shoot and 

roots, carotenoid, chlorophyll a, and chlorophyll b 

(Amnuaysin et 

al., 2018) 

Brown rice, 

cultivar: Taikeng 

9 

DBD (high voltage DC, 

1–3 kV, 1.2 mA, 800 Pa, 

10 minutes, air) 

Germination and vigor of the seedlings, GABA, 

DPPH, water uptake, α-amylase, and TPC 

(Chen et al., 

2016) 

Brown rice, 

cultivar: 

Riceberry 

Jet (400 kHz, 3–5 kV, 

10-14 W, 5-10 s, argon 

and oxygen) 

TPC, GABA, germination rates, and relative 

quantities of chemicals 

(Sookwong et 

al., 2014) 

Brown rice, 

cultivar: NSCI 

RC298 

Jet (high voltage AC, 15 

kV, 60 Hz, air) 

SEM images, germination percent, and germ 

lengths 

(Penado et al., 

2017) 
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Brown rice, 

cultivar: not 

specified 

Jet (0-40 W, 50 -600 

kHz, 10 kV, RF, argon) 
Colony count of Aspergillus flavus 

(Suhem, Matan, 

Nisoa, & Matan, 

2013) 

Brown rice, 

cultivar: Chindeul 

DBD (15 kHz, 250 W, 

5-20 minutes, air) 

Aerobic bacterial count, Bacillus cereus, Bacillus 

subtilis, E coli, color changes, pH, water uptake, α- 

amylase activity, and hardness 

(Lee et al., 2016) 

Brown rice, 

cultivar: not 

specified 

Jet (high voltage DC, 20 

kV, 58 kHz, 1.5 A, 0-10 

minutes, air) 

DPPH, ABTS, TPC, weight of seedlings, length of 

seedlings, α- amylase, and - amylase activity 

(Park et al., 

2020) 

Rice grain, 

cultivar: Late 

indica 

DBD (high voltage AC, 

25 kV, 2-8 minutes) 

Ochratoxin A, deoxynivalenol, electrical 

conductivity, MDA, seed germination, moisture 

content, starch content, globulin, α- amylase, 

albumin, prolamin, and gluten 

(Guo et al., 

2023) 

Parboiled rice, 

cultivar: Sb 

Boiled Aiyre 

DBD (13.56 MHz, 30-

50 W, 5-15 minutes, 

0.15 mbar, air) 

Moisture content, fat, protein, ash, carbohydrates, 

cooking time, water uptake, cooking loss, 

hardness, cohesiveness, color, and whiteness index 

(Sarangapani et 

al., 2015) 

Brown rice, 

cultivar: Taikeng 

9 

DBD (high voltage DC, 

1–3 kV, 1.2 mA, 6 Torr, 

30 minutes, air) 

Moisture, protein, lipid, ash, carbohydrate, 

cooking time, elongation ratio, width expansion 

ratio, water absorption, cooking loss, 

adhesiveness, hardness, brittleness, cohesiveness, 

elasticity, and chewiness 

(Chen et al., 

2012) 

Brown rice, 

cultivar: Nan-jing 

46 

DBD (40-50 kV, 90-180 

s, air) 

Major volatile organic compounds, fatty acids, and 

color change 
(Liu et al., 2021) 

Milled Rice, 

cultivar: four 

japonica rice and 

two indica rice 

DBD (13.56 MHz, 80-

120 W, 140 pa, 20-120 

s, helium) 

Cooking time, hardness, adhesiveness, elasticity, 

gruel solid loss, enthalpy of gelatinization, water 

contact angle, free fatty acid content, water 

absorption, and chalky rice rate 

(Liu et al., 2021) 

Basmati rice, 

cultivar not 

specified 

DBD (13.56 MHz, 30-

40 W, 5-10 minutes, air) 

Cooking time, water uptake, hardness, stickiness, 

contact angle, surface energy, and hydrophilic 

(Thirumdas et 

al., 2015) 

Wheat seeds, 

cultivar: not 

specified 

Jet (RF 13.56 MHz, 

300W, 15-300 s, argon) 

and DBD (22.5 kHz, 30 

W, 2-10 s, argon) 

Average length, dry weights of roots and sprouts, 

germination time, water imbibition, and contact 

angle 

(Velichko et al., 

2019) 

Wheat seeds, 

cultivar: not 

specified 

Glow discharge (1 kHz, 

20 kV, 500 mTorr, 300 

W, 30 s-30 min, air or 

SF6) 

Inactivation of Aspergillus spp. and Penicillium 

spp. and shoot height 

(Selcuk et al., 

2008) 

Wheat seeds, 

cultivar: not 

specified 

Surface DBD (50 Hz, 

sinusoidal voltage, air) 

Roots and sprouts length and dry weight, number 

of roots, and contact angle 

(Dobrin et al., 

2015) 

Wheat seeds, 

cultivar: not 

specified 

PAW (high voltage DC, 

0–15 kV, 5-15 minutes, 

air) and DBD (50 Hz, 0–

45 kV, 1-5 minutes, air) 

Germination rate, contact angle, wettability, 

growth rate, germination potential, total number of 

fruits, root length, and spike length 

(Chalise et al., 

2023) 

Wheat seeds, 

cultivar: BARI 

Gom 22 

Jet (10 Torrs, 5–10 kV, 

3–8 kHz, 90 s, argon/air 

and argon/oxigen) 

Root and shoot cadmium concentration, total 

soluble protein, enzymes SOD and CAT, SEM 

images, root and shoot length and dry weight, total 

chlorophyll, electrolyte leakage, and cell death 

(Kabir et al., 

2019) 

Wheat seeds, 

cultivar: Xiaoyan 

22 

DBD (50 Hz, 13 kV, 4 

minutes, air) 

Seed germination, osmotic products, lipid 

peroxidation, seedling growth, reactive oxygen 

species, DPPH, abscisic acid, and expression of 

drought-resistant genes under drought stress 

(Guo et al., 

2017) 
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Wheat seeds, 

cultivar: 

Shannong 12 

DBD (80-100 W, 130–

160 Pa, 15 s, air and 

helium) 

Seed germination, yield, and plant height (Hui et al., 2020) 

Wheat seeds, 

cultivar: Ingenio 

DBD (RF, 13.56 MHz, 

50 Pa, 200 W, 30-90 s, 

oxygen) 

Contact angle, surface morphology, surface 

roughness, chemical analysis of surface, water 

uptake, moisture, germination rate, α- amylase, 

root length, and number of seedlings 

(Starič et al., 

2022) 

Wheat seeds, 

cultivar: not 

specified 

DBD (120 kV, 50 Hz, 

30-180 s, air) 

Contact angle, moisture content, pH and acidity, 

water uptake, MDA, hydrogen peroxide, nitrite 

and nitrate concentrations, and SEM 

(Los et al., 2019) 

Wheat seeds, 

cultivar not 

specified 

DBD (3×109 MHz, 60-

100 W, 150 Pa, 15 s, 

helium) 

Seed germination, yield, plant height, root length, 

fresh weight, stem diameter, leaf area, and leaf 

thickness 

(Jiang et al., 

2014) 

Wheat seeds, 

cultivar: Xiaoyan 

22 

DBD (50 Hz, 13 kV, 1-

13 minutes, air) 

Germination potential, germination rate, 

germination index, vigor index, root length, shoot 

length, fresh weight, dry weight of the seedlings, 

proline and soluble sugar contents of seedling, 

MDA, superoxide dismutase and peroxidase 

enzymes, and SEM 

(Li et al., 2017) 

Wheat seeds, 

cultivar: Xiaoyan 

22 

DBD (13 kV, 50 Hz, 

oxygen, air, argon, and 

nitrogen) 

Germination properties, shoot and root length, 

SEM, permeability, and seedlings soluble protein 

(Meng et al., 

2017) 

Wheat seeds, 

cultivar: Apache 

and Bezostaya 1 

DBD (glow discharge, 

RF, 50 Pa, 200 W, 5-30 

s and afterglow 

discharge, 600 W, 3-5 s, 

oxigen) 

Germination, root growth, SEM, and fresh weight 

of seedlings 

(Starič, 

Grobelnik 

Mlakar, & 

Junkar, 2021) 

Wheat seeds, 

cultivar: not 

specified 

glow discharge (1–6 kV, 

3–5 kHz, 10 Torr, 3-15 

minutes, air and air/O2) 

SEM, water absorption, seed germination, 

chlorophyll contents, growth Study, and yield 

(Roy et al., 

2018) 

Wheat seeds, 

cultivar: Jimai 23 

PAW generated by 

plasma jet (high voltage 

AC, 7.0 kV, 600 W, 1-5 

minutes, 98% Ar and 

2% O2) 

Seed germination, pH, total soluble solids, color, 

vitamin C, soluble protein contents, pigments 

contents, enzyme activities of SOD, PPO and 

POD, TPC, DPPH, free amino acids, and mineral 

contents 

(Wang et al., 

2023) 

Wheat seeds, 

cultivar: Bari 21 

DBD (10 Torr, 5–10 kV, 

3–8 kHz, 1-12 minutes, 

air) 

SEM, seed germination, shoots length, number of 

tiller, fresh and dry weight, roots length, enzyme 

activities of SOD, APX, relative gene of TaSOD, 

and TaCAT, H2O2 and NO concentration of root 

and shoot, total soluble protein and sugar, fat and 

moisture content, crude fiber, ash, and yield 

(Hasan et al., 

2022) 

Wheat seeds, 

cultivar: Eva 

coplanar surface DBD 

(400 W, 10-600 s, air) 

Germination rate, dry weight, vigor of seedlings, 

wettability, surface microflora, inactivation of 

Fusarium nivale, F. culmorum, Trichothecium 

roseum, Aspergillus flavus, and A. clavatus 

(Zahoranová et 

al., 2016) 

Yellow dent corn 

hybrid 

PAW generated by 

plasma jet (RF plasma 

2.45 GHz, 800 W, 10 

minutes, helium-air) 

Germination, growth, and product yield 
(Ahn et al., 

2019) 

Dent yellow corn 

DBD (50 Hz, 90 kV, 1-

30 minutes, air and 

MA65) 

SEM, NOx and ozone concentration, and aflatoxin 

level in corn 
(Shi et al., 2017) 

Corn, cultivar not 

specified 

(high voltage AC, 20 

kHz, 3-10 minutes, 

helium) 

Germination and growth rate 
(Sidik et al., 

2018) 
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Raw barley grains 

DBD (high voltage AC, 

0–34 kV, 300 W, 2-10 

minutes, air) 

Reduction of deoxynivalenol, moisture content, 

measurements of ozone, nitrous gas, and hydrogen 

peroxide concentration, protein, glucan 

content, and germination rate 

(Feizollahi et al., 

2020) 

Barley seeds, 

cultivar: not 

specified 

DBD (40-120 W, 15 s, 

air) 

Germination parameters, SEM, water penetration, 

and effect of storage time 

(Mazandarani et 

al., 2020) 

Wheat, cultivar: 

Ireland and barley 

with cultivar: 

United Kingdom 

DBD (80 kV, 50 Hz, 5-

20 minutes, air) 

Inactivation of Bacillus atrophaeus, E. coli, P. 

verrucosum, B. atrophaeus, germination 

percentage, and quality properties 

(Los et al., 2018) 

 

Limitations and future of cold plasma in the 

food industry 
The introduction of any new technology 

into the food industry is challenging due to the 
perception that it is disruptive, risky, and 
difficult to implement in a mature and low-
margin industry while facing the day-to-day 
pressure of staying competitive (Keener & 
Misra, 2016). Therefore, for atmospheric cold 
plasma to be successfully adopted in the food 
industry, it is important to consider several 
non-technical factors. The primary focus 
should be on the consumers’ needs, as they 
desire to consume fresh and high-quality food 
without added chemical preservatives. Food 
safety and maintaining the consumers’ 
confidence in a particular food category is 
established gradually and falls under the 
responsibility of manufacturers, distributors, 
processors, regulatory agencies, and retailers. 
Hence, the utilization of cold plasma 
technology in the food industry relies not only 
on ensuring food safety but also on satisfying 
the needs of consumers. Other factors that lead 
manufacturers, processors, and distributors to 
use cold plasma technology include (1) 
Potential extension of product shelf life and 
reduced consumer food waste; (2) Maximum 
preservation of food quality and decreased 
food processing and storage losses; (3) Low 
energy requirement, making it a more 
environmentally friendly option compared to 
current technology; (4) Reduced operational 
and maintenance expenses; (5) Improved food 
safety through the elimination of pesticide and 
chemical residues; and (6) Environmentally 
friendly technology that promotes 
sustainability, as generation of efficient plasma 
requires only air and electricity. There is a 

limitation of cold plasma technology in the 
case of high-fat foods, which is responsible for 
the formation of secondary metabolites. These 
metabolites have an impact on the shelf life of 
fat-rich foods (Sarangapani, Keogh, Dunne, 
Bourke, & Cullen, 2017). Some researchers 
also reported that the treatment of high-fat 
dairy food with cold plasma causes its 
oxidation (Coutinho et al., 2018). 

 

Conclusion 

Thanks to its capability to operate in low-
temperature conditions without causing any 
harm to the surface of the seed, cold plasma 
has gained significant popularity as a seed 
treatment method. Various methods are used 
to generate the cold plasma, which makes 
comparing different results somewhat difficult. 
This review presents a summary of the impacts 
of cold plasma on various types of cereal 
seeds. The text is made up of sections that 
describe the effect of plasma on seed and 
sprout decontamination, germination, surface 
property changes, growth and biomass 
parameters, and metabolic activities. This 
overview suggests that cold plasma may also 
have a strong presence in different agricultural 
sectors, particularly concerning applications 
for cereal seeds. Based on the reviewed works, 
it can be concluded that exposure to cold 
plasma or PAW has a significant impact on 
various properties of cereal seeds. Namely, 
germination begins with water absorption, and 
the ability to absorb water can be greatly 
affected by plasma activity. The surface 
properties and certain physiological 
parameters of seeds could also be modified. 
Oxidation processes by reactive species can 
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enhance water adsorption capability by 
improving seed coat wettability. Additionally, 
these processes may be linked to gas 
exchanges and electrolyte leakage in the seeds. 
Probably, cold plasma could effectively alter 
the dormancy of hard seeds by influencing 
seed permeability. Cold plasma can also have 
a positive impact on seed germination, growth, 
and the characteristics of seedlings. In 
addition, cold plasma can be used to 
decontaminate the surfaces of cereal seeds 
effectively. The findings presented in the text 
are summarized in Table 1. This table offers 
an overview of prior studies conducted on 
cereal family plant seeds using cold plasma. 

To further explore the impact of plasma on 
cereal seeds, it is recommended to analyze the 
alterations in the surface morphology of 
plasma-treated cereal seeds. Additionally, it is 
important to examine the resulting products 
derived from cereals, such as flour, starch, oil, 
etc. Furthermore, assessing the long-term 
effectiveness of plasma treatment is crucial for 
controlling pests in stored grains. 
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 )مروری( غلات فیزیولوژیکی فرآیندهای بهبود و آلودگی کنترل در سرد پلاسمای تکنیک
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 چکیده

 کهه جهان زیرکشت سطح از درصد 70 به نزدیک و شودمی تأمین غلات از مستقیماً آسیا در ویژهبه انسان غذایی نیازهای کل از نیمی تقریباً امروزه
. یابهد توسهعه بایهد صنعت و کشاورزی در بذر کیفیت افزایش برای غیرمخرب هایروش یافتن بنابراین. کنندمی اشغال غلات را است هکتار میلیارد یک

 بذر تحریک و سطحی هایمیکروارگانیسم کردن غیرفعال برای آن از توانمی که است غذایی و کشاورزی بخش در کارآمد و جدید روشی سرد پلاسمای
. کنهدمی ارائهه را جهو و ذرت برنج، گندم،: غلات مهم گیاه چهار هایویژگی بر سرد پلاسمای با درمان اثربخشی از ایخلاصه بررسی این. کرد استفاده
 پارامترههای نههال، و سهاهه طول ریشه، رشد پارامترهای بذر، آب جذب و سطحی خواص تغییرات بذر، زنیجوانه روی بر تیمار این اثرات روی بر تمرکز
 دارای سهرد پلاسمای با تیمارشده غلات بذر که شودمی مشاهده محققان توسط شدهانجام تحقیقات بررسی با. است متابولیکی هایفعالیت و تودهزیست
 توانهدمی بررسهی ایهن. بودنهد بهتهری متابولیکی فعالیت و ریشه و هوایی اندام وزن رشد، راندمان هوایی، اندام و ساهه طول آب، جذب زنی،جوانه هدرت

 و شهودمی منتقهل بهذر طریق از که گیاهی مضر هایبیماری شیوع کاهش برای روشی عنوانبه پلاسما از استفاده در را ایامیدوارکننده بالقوه روندهای
 .دهد ارائه دهد، کاهش را سخت هایدانه خواب
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 (دانشگاه فردوسی مشهد)بیوسیستم مکانیک مهندسی گروه  -استاد محمدحسین آق خانی،  

 (تهران دانشگاه) ابوریحان پردیس کشاورزي، فنی گروه -دانشیار ابونجمی، محمد 

 (کاریآم دیویس، کالیفرنیا، )دانشگاه کشاورزي و بیولوژیک مهندسی گروه پوررضا، علیرضا 

 (دانشگاه تربیت مدرسمهندسی مکانیک بیوسیستم )گروه  -استاد خوش تقاضا، محمدهادي 

 نیجریه( ایبادان، )دانشگاه فنی دانشکده زیست،محیط و کشاورزي مهندسی گروه -استاد راجی، عبدالغنی 

 (دانشگاه فردوسی مشهد)مهندسی مکانیک بیوسیستم گروه  -دانشیار روحانی، عباس 

 رضوي خراسان طبیعی منایع و کشاورزي تحقیقات مرکز -دانشیار راد، محمدحسین ديعیس 

 تایلند( کاستسارت، )دانشگاه کشاورزي دانشکده -استادیار سوپاکیت، سایاسونثرن 

 (دانشگاه فردوسی مشهد)مهندسی مکانیک بیوسیستم گروه  -استاد عباسپور فرد، محمدحسین 

 پردیس کرج( -دانشگاه تهران)هاي کشاورزي ه ماشینگرو -استاد ، رضاعلیمردانی 

 کانادا( ساسکاتون، ساسکاچوان، )دانشگاه بیولوژیک و شیمی مهندسی گروه -مدعو استاد عمادي، باقر 

 )دانشگاه شهید باهنر کرمان( مهندسی مکانیک بیوسیستمگروه  -استاد غضنفري مقدم، احمد 

 (دانشگاه فردوسی مشهد) ک دانشکده مهندسیکانیگروه م -استاد ، مهرانکدخدایان 

 (دانشگاه شیرازمهندسی مکانیک بیوسیستم )گروه  -استاد  لغوي، محمد 

 (دانشگاه تهران)هاي کشاورزي گروه ماشین -استاد محتسبی، سید سعید 

 (دانشگاه فردوسی مشهد) گروه مکانیک دانشکده مهندسی -استاد مدرس رضوي، محمدرضا 

 آلمان( کاسل )دانشگاه کشاورزي مهندسی گروه ي، ابوذراحمدنصیر 

     دانشگاه فردوسی مشهد ناشر:

 

 :شودمیزیر نمایه معتبر های این نشریه در پایگاهمقالات 

AGRIS،Scopus ، Web of Science: Emerging Sources Citation Index™ (ESCI) ،CABI ،DOAJ، 

EBSCO، Google scholar، Internet Archive ، جهان اسلامپایگاه استنادی (ISC)و ایران ، سامانه نشریات علمی 

 (SID) پایگاه اطلاعات علمی جهاد دانشگاهی

  jame@um.ac.irپست الکترونیک: 

 است. کامل نمایه شده مقاله صورتبه http://jame.um.ac.ir مقالات این شماره در سایت

 .شودمنتشر میصورت آنلاین هب و شماره در سال 4این نشریه به تعداد 
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