Bioenergy
D. Baveli Bahmaei; Y. Ajabshirchy; Sh. Abdollahpour; S. Abdanan Mehdizadeh
Abstract
This research aims to optimize the mixing process in gas-lift anaerobic digesters of municipal sewage sludge since mixing and maintaining uniform contact between methanogenic bacteria and nutrients is essential. Wastewater municipal sludge sampling was performed at the Ahvaz West treatment plant (Chonibeh, ...
Read More
This research aims to optimize the mixing process in gas-lift anaerobic digesters of municipal sewage sludge since mixing and maintaining uniform contact between methanogenic bacteria and nutrients is essential. Wastewater municipal sludge sampling was performed at the Ahvaz West treatment plant (Chonibeh, Iran) during the summer of 2022. A Computational Fluid Dynamics (CFD) model was implemented to simulate, optimize, and confirm the simulation process using ANSYS Fluent software 19.0. The velocity of the inlet-gas into the digester was determined and a draft tube and a conical hanging baffle were added to the digester design. Different inlet-gas velocities were investigated to optimize the mixing in the digester. Furthermore, turbulence kinetic energy and other evaluation indexes related to the sludge particles such as their velocity, velocity gradient, and eddy viscosity were studied. The optimal inlet-gas velocity was determined to be 0.3 ms-1. The simulation results were validated using the Particle Image Velocimetry (PIV) method and the correlation between CFD and PIV contours was statistically sufficient (98.8% at the bottom corner of the digester’s wall). The results showed that the model used for simulating, optimizing, and verifying the simulation process is valid. It can be recommended for gas-lift anaerobic digesters with the following specifications: cylindrical tank with a height-to-diameter ratio of 1.5, draft tube-to-digester diameter ratio of 0.2, draft tube-to-fluid height ratio of 0.75, the conical hanging baffle distance from the fluid level equal to 0.125 of the fluid height, and its outer diameter-to-digester diameter of 2/3.
Bioenergy
M. Kamali; R. Abdi; A. Rohani; Sh. Abdollahpour; S. Ebrahimi
Abstract
IntroductionSince anaerobic digestion leads to the recovery of energy and nutrients from waste, it is considered the most sustainable method for treating the organic fraction of municipal solid wastes.However, due to the long solid retention time in the anaerobic digestion process, the low performance ...
Read More
IntroductionSince anaerobic digestion leads to the recovery of energy and nutrients from waste, it is considered the most sustainable method for treating the organic fraction of municipal solid wastes.However, due to the long solid retention time in the anaerobic digestion process, the low performance of the process in biogas production as well as the uncertainty related to the safety of digested materials for utilizing in agriculture, applying different pretreatments is recommended.Thermal pretreatment is one of the most common pretreatment methods and has been used successfully on an industrial scale. Very little research, nevertheless, has been done on the effects of different temperatures and durations of thermal pretreatment on the enhancement of anaerobic digestion of the organic fraction of municipal solid wastes (OFMSW). The main effect of thermal pretreatment is the rapturing cell membrane and dissolving organic components. Thermal pretreatment at temperatures above 170 °C may result in the formation of chemical bonds that lead to particle agglomeration and can cause the loss of volatile organic components and thus reduce the potential for methane production from highly biodegradable organic waste. Therefore, since thermal pretreatment at temperatures above 100 °C and high pressure requires more energy and more sophisticated equipment, thermal pretreatment of organic materials at low temperatures has recently attracted more attention. According to the researchers, thermal pretreatment at temperatures below 100 °C did not lead to the decomposition of complex molecules but the destruction of large molecule clots.The main purpose of this study was to find the optimal levels of pretreatment temperature and time and the most appropriate concentration of digestible materials to achieve maximum biogas production using a combination of the Box Behnken Response Surface Method to find the objective function followed by optimizing these variables by Genetic Algorithm.Materials and MethodsIn this study, the synthetic organic fraction of municipal solid waste was prepared similar to the organic waste composition of Karaj compost plant. The digestate from the anaerobic digester available in the Material and Energy Research Institute was used as an inoculum for the digestion process. Some characteristics of the raw materials that are effective in anaerobic digestion including the moisture content, total solids, volatile solids of organic waste, and the inoculum were measured. Experimental digesters were set up according to the model used by MC Leod. After size reduction and homogenization, the synthetic organic wastes were subjected to thermal pretreatment (70, 90, 110 °C) at specific times (30, 90, 150 min).The Response Surface methodology has been used in the design of experiments and process optimization. In this study, three operational parameters including pretreatment temperature, pretreatment time, and concentration of organic material (8, 12, and 16%) were analyzed. After extracting the model for biogas efficiency based on the relevant variables, the levels of these variables that maximize biogas production were determined using a Genetic Algorithm.Results and DiscussionThe Reduced Quadratic model, was used to predict the amount of biogas production. The value of the correlation coefficient between the two sets of real and predicted data was more than 0.95. The results suggested that pretreatment time followed by the pretreatment temperature had the greatest contribution (50.86% and 44.81%, respectively) to biogas production. Changes in the organic matter concentration, on the other hand, did not have a significant effect (p ˂ 0.01) on digestion enhancement (1.63%) but were statistically significant at p ˂ 0.10.The response surface diagram showed that the increase in pretreatment time first led to a rise and then a fall in biogas production. The decline in biogas production seemed set to continue with pretreatment time. Meanwhile, the increase in pretreatment temperature from 70 °C to 110 °C first contributed to higher biogas production and then the decrease in gas production occurred. The reason for this fall was probably the browning and Maillard reaction.The regression model was applied as the objective function for variables optimization using the Genetic Algorithm method. Based on the results of this algorithm, the optimal thermal pretreatment for biogas production was determined at 95 °C for 104 minutes and at the concentration of 12%. The expected amount of biogas production by applying the optimal pretreatment conditions was 445 mL-g-1 VS.ConclusionIn this study, the variables including thermal treatment temperature and time as well as the concentration of organic waste to be anaerobically digested were optimized to achieve the highest biogas production from anaerobic digestion.Statistical analysis of the results revealed that the application of thermal pretreatment increased biogas production considerably. According to the regression model, the contribution of pretreatment time and temperature to biogas production was significant (50.86% and 44.81% respectively). In stark contrast, varying substrate concentrations in the range of 8 to 16% had a smaller effect (1.63%) on biogas production. The results of this study also showed that the best pretreatment temperature and time were 95 °C and 104 minutes, respectively, at a concentration of 12% by generating 445 mL-g-1 VS biogas which is 31.17% higher than the biogas yield from anaerobic digestion of untreated organic wastes at this concentration.
E. Chavoshgoli; Sh. Abdollahpour; H. R. Ghasemzadeh
Abstract
IntroductionThe nut sunflower is usually cultivated in small farms and is harvested with a low capacity of harvester at high moisture content. For the rigid threshing components, impact and knead force are so large as it leads to crushing of the grain or inner stress. This reduces marketability and the ...
Read More
IntroductionThe nut sunflower is usually cultivated in small farms and is harvested with a low capacity of harvester at high moisture content. For the rigid threshing components, impact and knead force are so large as it leads to crushing of the grain or inner stress. This reduces marketability and the germination rate of seeds. The mechanical damage degree of sunflower grain is influenced by the material of the threshing beaters, the velocity of impact, moisture contents, etc. Traditional manual methods, that separate grain from the sunflower head, take a lot of time, require large manpower, have high grain damage, and low efficiency. The objective of the present work was to develop and optimize a threshing unit for nutty sunflower that would combine safe impact velocities with appropriate adjusting of its variable to maximize threshing efficiency whilst minimizing grain damage resulting from shearing, cracking, or crushing.Materials and MethodsThe nutty Sunflower heads were procured from the Experimental Orchard of University of Tabriz, Iran at the moisture content of harvesting. Axial threshing units using kinematic equation and properties of the grain, designed and constructed that the variables of its components are adjustable. The beater of the thresher is flexible, which the deformation and vibration undergoing the overall rotation and impact process becomes larger with increasing speed and prevents grain damage. The power required for threshing and separation grain from heads was calculated at about 4.5 kW. Diameter and rotational drum speed value estimated using relation (V= and study of other researches as considering critical impact velocity of sunflower grain. The length of the thresher was 1.2 m that estimated by determining the capacity and the number of beaters. Threshing efficiency (%), separation efficiency (%), and grain damage (%) were parameters of performance for study. The experimental design by the Response Surface Methodology in Design Expert software 11 with central composite experiment design developed and the affecting parameters on accuracy analyzed and optimized. The threshing unit was evaluated against three threshing drum speeds of 380, 280, and 180 (rpm), feed rates 4000, 3000, and 2000 (kg (head)h-1), moisture content of 60%, 45%, and 30 (%w.b).Results and DiscussionThe results showed that the models and effect of variables were statistically significant at the 95% confidence level. The moisture content on threshing efficiency and grain damage had the greatest effect followed by drum speed and feed rate. While for separation efficiency, the feed rate had the most influence. With reducing feed rate and moisture content the threshing efficiency increased, although the decrease in drum speed reduced it. This might be due to sunflower grains adhering loosely to the head at the low moisture contents. The maximum (99.81) and minimum (96.12) percentage of threshed heads was at the moisture content of 30 and 60, respectively. The separation efficiency increased with reducing of feed rate and moisture content. Though, drum speed had insignificant efficacy statistically. The sunflower heads with high moisture content are fragile and brittle, also at high feed rates, the number of impact forces and collisions of heads rises in the condition of threshing. Therefore, the extra MOG is produced and passed from the separator grille. The feed rate of 2000 kg h-1 and moisture content of 30% was the maximum point of separation efficiency that obtained 69.82%. The grain damage decreased significantly with reducing drum speed (380 to 180) and moisture content (60 to 30). This result may be due to the reasons that at higher moisture content the husk of grains becomes soft. The goal of optimization is maximizing threshing and separation efficiency and minimizing grain damage that the optimized values of variables were determined 292.134 rpm for drum speed, 2000 kg h-1 for feed rate, and 30.7406% (w.b) for moisture content.Conclusion A threshing unit of sunflower, using properties of grains and kinematic equation, was designed and constructed. The models and effect of the variable were statistically significant on performances. The moisture content had a greater effect than other factors on threshing efficiency (%) and grain damage (%). Also, the feed rate of crops in thresher had the most influence on separation efficiency (%). With decreasing the moisture content, threshing and separation efficiency increased and grain damage reduced. The threshing efficiency (%), separation efficiency (%), and grain damage (%) were reported in the range of 96.12 to 99.81, 57.34 to 68.55, and 0.49 to 1.25, respectively. The optimized points were determined at the drum speed of 292.134 m s-1, feed rate of 2000 kg h-1, and moisture content of 30.7406% (w.b).
S. Zareei; Sh. Abdollahpour
Abstract
Introduction
The noticeable proportion of producing wheat losses occur during production and consumption steps and the loss due to harvesting with combine harvester is regarded as one of the main factors. A grain combines harvester consists of different sets of equipment and one of the most important ...
Read More
Introduction
The noticeable proportion of producing wheat losses occur during production and consumption steps and the loss due to harvesting with combine harvester is regarded as one of the main factors. A grain combines harvester consists of different sets of equipment and one of the most important parts is the header which comprises more than 50% of the entire harvesting losses.
Some researchers have presented regression equation to estimate grain loss of combine harvester. The results of their study indicated that grain moisture content, reel index, cutter bar speed, service life of cutter bar, tine spacing, tine clearance over cutter bar, stem length were the major parameters affecting the losses.
On the other hand, there are several researchswhich have used the variety of artificial intelligence methods in the different aspects of combine harvester.
In neuro-fuzzy control systems, membership functions and if-then rules were defined through neural networks. Sugeno- type fuzzy inference model was applied to generate fuzzy rules from a given input-output data set due to its less time-consuming and mathematically tractable defuzzification operation for sample data-based fuzzy modeling. In this study, neuro-fuzzy model was applied to develop forecasting models which can predict the combine header loss for each set of the header parameter adjustments related to site-specific information and therefore can minimize the header loss.
Materials and Methods
The field experiment was conducted during the harvesting season of 2011 at the research station of the Faulty of Agriculture, Shiraz University, Shiraz, Iran. The wheat field (CV. Shiraz) was harvested with a Claas Lexion-510 combine harvester. The factors which were selected as main factors influenced the header performance were three levels of reel index (RI) (forward speed of combine harvester divided by peripheral speed of reel) (1, 1.2, 1.5), three levels of cutting height (CH)(25, 30, 35 cm), three levels of the horizontal distance of reel tine bar from cutter bar (Hd)( 0, 5, 10 cm) and three levels of vertical distance of reel tine bar from cutter bar (Vd)( 5, 10, 15 cm) which are taken as the input variables for neuro-fuzzy model and only combine header loss is output of the model.
Some frames with the dimensions of 50 × 50 cm2 were randomly used to determine the amount of header loss. In order to determine the header loss, the frame was placed on the ground in the vacant place behind the cutter bar, where output material from the back of the combine was not allowed to pour on the ground. Grains and ears found inside the frame were gathered, weighed and then the amount of pre-harvest loss was subtracted from it. A fractional factorial design based on a completely randomized design was used to determine the header loss. Each test was repeated three times and for each repetition.
The structure of neuro- fuzzy model for this study has four inputs and each input variable as mentioned and three Gaussian membership functions (mf), result in 81 rules.
Results and Discussion
A neuro- fuzzy model was developed for predicting the combine header loss based on reel index, cutting height, the horizontal distance of reel tine bar from the cutter bar and vertical distance of reel tine bar from cutter bar as input variables. The Model has three membership functions for each input. Gaussian membership functions and rules were defined for knowledge representation of header loss.
Predicting header loss is an important issue for minimizing the amount of harvest grain losses. Neuro-fuzzy model presented a satisfactory application to describe header loss of a combine harvester. It showed R² equal to 0.95 which is superior to multiple regression method with 0.71. In fact, the amount of coefficient of determination is a good indicator to check the prediction performance of the model. Based on developed neuro-fuzzy system model, levels of reel index, cutting height, the horizontal distance of reel tine bar from cutter bar and vertical distance of reel tine bar from cutter bar could be recommended according to minimize header loss.
Conclusions
In the final step, the designed controller was simulated in SIMULINK. The Controller can change setting of header components in order to their impaction gathering loss and in each step, compare gathering loss with optimal value and If it was more than optimum then change the settings again. The simulation results were evaluated satisfactory.
R. Rahimzadeh; Y. Ajabshirchi; Sh. Abdollahpour; A. Sharifi Malvajerdi; N. Sartipi; A. Mohammadi
Abstract
Introduction
Direct planting becomes more common in the recent years, because it conserves soil and water as well as it saves energy and time. However, this technology needs special implements such as seed planter. Given that direct planting is practiced in undisturbed lands, so it was needed to design ...
Read More
Introduction
Direct planting becomes more common in the recent years, because it conserves soil and water as well as it saves energy and time. However, this technology needs special implements such as seed planter. Given that direct planting is practiced in undisturbed lands, so it was needed to design a special furrow opener. In order to obtain a suitable furrow opener this experiment was conducted in rain-fed Agricultural Research Institute in Maragheh.
Materials and Methods
Most of seed planters that are used for cultivation in rain fed conditions are equipped by hoe-type furrow opener. Hoe-type furrow openers have good penetration in hard and dry soils. However, they do not have the ability for direct planting. Hoe-type furrow opener was chosen as a model. Then by changing the geometric form of the depth to width ratio (d/w), the two openers were designed. In the first design, which was called O1 two wings and a narrow blade acting as a coulter were added in front of the hoe-type furrow opener. In the second design, which was called O2, in addition to the O1 modification, furrow opener width was decreased and a disk blade was added for seed sowing (Fig. 1).
The performance of O1 and O2 openers were compared with the conventional hoe-type furrow opener (check) in soil bin and in field conditions. At three different forward speeds (1, 1.5 and 2 m.s-1) with 3 replications, the effects of the openers designs of vertical and horizontal soil forces were evaluated in soil-bin conditions. In order to evaluate the performance of the furrow opener in field conditions, an experiment was conducted using a split plot design based on RCBD at 4 replications. Furrow openers formed the main plots and forward speeds formed the sub plots. Each plot size was 22 meters long in two rows for each treatment. After germination of wheat crop, the numbers of seedlings in two rows were counted (along a one meter). After crop maturity, all plots were harvested by hand and grain and biological yield was measured. ANOVA test, uniformity test and mean comparison were conducted by using Genstat software.
Results and Discussion
The soil bin test results showed that opener design and forward speed both have significant influences on the horizontal force (p<0.01). Horizontal force was increased with increasing of forward speeds. The same result was reported by Wheeler and Godwin, 1996 and Astafford, 1979. The lowest horizontal force (average 1.66 kN) occurred at 1 m.s-1 and the highest (average 1.94 kN) occurred at 2 m.s-1 forward speeds. Horizontal force increased in O2 (2.8%) and decreased in O1 (3.4%) compared with the control (average 1.77 kN). Moreover, openers had significant influence on the vertical force (p<0.01). Vertical force values were negative in O1 (average -0.05 kN) and O2 (average -0.07 kN) in comparison with positive value in the control (average +0.01 kN). The effect of forward speed on vertical force was not statistically significant. The field results showed that there were significant differences among the openers in the numbers of seedling, grain and biological yield (p<0.01). The O2 opener (with the average of 48 seedlings per one meter row) had 33% and 24% more seedlings in comparison with O1 and check furrow openers, respectively. Probably, using dick bald in O2 design leads to increased seed germination. Increasing of seed germination by using disk furrow opener as an advantage is reported by Kushwaha and Foster, 1993. The O2 furrow opener would also increase grain yield about 36% compared with both O1 and check furrow openers.
Conclusions
It can be concluded that the newly designed furrow opener (O2) could improve the energy efficiency with increasing crop yield. Hence, O2 furrow opener could be recommended for direct planting in rain-fed farming.
Image Processing
S. H. Fattahi; Sh. Abdollahpour; E. Esmaeal zadeh; M. Moghaddam
Abstract
Each year, millions of liters of toxic liquid, are used to combat with pests and plant diseases in farms. The wide spread use of chemical pesticides causes great environmental hazards. Particles drift is one of the main problems in spraying which results in the contamination of farm lands, humans and ...
Read More
Each year, millions of liters of toxic liquid, are used to combat with pests and plant diseases in farms. The wide spread use of chemical pesticides causes great environmental hazards. Particles drift is one of the main problems in spraying which results in the contamination of farm lands, humans and animals. Management of particle size is regarded as the main factor in drift control. In this study, the effect of some parameters on the size of deposited particles on non-target areas was studied using statistical method. The effects of nozzle type (orifice size), spraying pressure, spraying boom height and wind speed as effective factors on drift were examined. A horizontal wind tunnel with working section of 0.47 m wide, 0.75 m height and 5.5 m long was used for testing. Experiment was performed in the form of factorial split-plot based on randomized complete block design with two replications. Droplets were measured in the treatment combinations of the type of flat-fan nozzle with three orifice area (11003- 0.87 mm2, 11004-1.18 mm2 and 11006- 1.8 mm2), spraying pressure (150, 275 and 400 kpa), wind speed (1, 2 and 3 m s-1) and the boom height of (0.35, 0.55 and 0.75 m). Water-sensitive papers were used at intervals of 0.8, 1.6 and 2.4 m from the tip of nozzles for detecting droplets size. The factors of pressure, speed and height had positive effects on the droplet size at the desired distance, but the effect of nozzle size on droplet size was negative. In the regression model the coefficients of speed was higher than the others.
Design and Construction
M. Gol Mohammadi; Sh. Abdollahpour; A. Mahmoudi; S. H. Fattahi
Abstract
Equipment availability is necessary in the development of Agriculture mechanization. Crop thinning is one of the most important stages in row crop production which is laborious and costly. The objective of this project is design and construction of a row crop thinning machine. Four main system units ...
Read More
Equipment availability is necessary in the development of Agriculture mechanization. Crop thinning is one of the most important stages in row crop production which is laborious and costly. The objective of this project is design and construction of a row crop thinning machine. Four main system units are plant sensors, ground sensors, control and thinning platforms. In this machine the unwanted plants on the rows are randomly removed by employing a pneumatically system. A blade on a vertical arm with pendulum motion removes the plant from the rows. The machine control system consists of an arm and a blade which is activated by a double acting cylinder and equipped with a relay and a timer. The pneumatic cylinder is controlled via a solenoid valve. Laboratory tests were conducted to validate the machine performance. Some other preliminary tests also were performed for optimization of parameters such as cinematic index and cutting length of blades. The laboratory tests (totally 9 tests) were performed with a constant forward speed and three levels of plant density, using artificial plants. The data were analyzed using SPSS software. The results show that satisfactory performance of the machine is achieved when the plant density is moderate i.e. the thinning performance reduces with higher plant distance in the row. The other effective variable on machine performance is the adjustment of sensor sensitivity, which is used to distinguish between week and strong plants. In general the machine performance is sensitive to plant shape and morphology, plant distribution pattern in the field, growing stage of the plants, time of thinning and the effectiveness of previous weeding operations