Agricultural waste management
F. Mortazavi; R. Khodabakhshian; M. Moeenfard
Abstract
IntroductionTannins are a type of phenolic compound usually found in plants, with high molecular weights typically ranging from 500 to more than 3000 Da and even up to 20000 Da. The chemical structure of tannins is very diverse and varied. Tannin exists in plant cells in two forms: hydrolyzable and condensed. ...
Read More
IntroductionTannins are a type of phenolic compound usually found in plants, with high molecular weights typically ranging from 500 to more than 3000 Da and even up to 20000 Da. The chemical structure of tannins is very diverse and varied. Tannin exists in plant cells in two forms: hydrolyzable and condensed. The tannin content in plants can vary from 0.2% to 25% of the dry weight of the plant. This can vary depending on the plant species, harvest time, plant habitat, and extraction method. Currently, tannin is used in various fields such as leather making, medicine, food, beverages, ink and glue making, paint and tanning industries, plastic resins, water treatment, and surface coatings. The application of tannins depends on the tannin concentration. Extraction of tannin from agricultural products is done by different methods. Maceration, decoction, pressurized water extraction, Soxhlet extraction, supercritical fluid extraction, ultrasound, and microwave are among these methods. Ultrasound extraction is an effective method for extracting chemical compounds, which is performed in a shorter period of time compared to other methods, and can be used for heat-sensitive compounds such as tannins.Materials and MethodsPotato peels were randomly selected, dried, and ground. Extraction was performed with an ultrasonic device, and after centrifugation, the total amount of phenolic compounds was measured using the Folin-Ciocalteu method. Afterward, utilizing the method used by Makkar et al. (2001), the amount of total tannins was calculated, and the condensed tannin content was calculated using the method introduced by Porter et al. (1986).Results and DiscussionThe average amount of total tannin extracted by using water as solvent was 142.8 ± 50.9 mg per 100 grams of dry powder in a period of 15 minutes, which was the highest amount of extraction. After water, methanol was the second solvent, yielding an extracted amount of 0.63 ± 55.9 mg per 100 grams of dry powder in 15 minutes. The lowest amount of extraction was related to the ethanol solvent in which was measured over a period of 10 minutes.Due to its higher polarity, water is the best-performing solvent for extraction. Comparing the results of this experiment with previous research, water is suitable for extracting tannins from potato peels. Additionally, water is a non-toxic and environmentally friendly solvent, and making it an ideal choice for extraction. Increasing the extraction time from 10 to 15 minutes, significantly affects the total amount of extracted tannin, more tannin being extracted during the longer the extraction period.The effect of extraction time on the amount of condensed tannin is not significant, and no variable in this study had a significant effect on the amount of extracted condensed tannin. It is expected that the increase in the total amount of tannin with the increase in extraction time is related to the increase in the amount of hydrolyzable tannin extracted from the sample.ConclusionIn this research, the amount of tannin extracted from potato peel was measured. The ultrasound method was used to prepare potato peel, which is a less expensive and faster alternative to other methods. The effect of different solvents were investigated over various extraction times. The results showed that the total amount of extracted tannin increases with the ultrasound extraction time, specifically from 10 to 15 minutes. However, with the increased extraction time, the amount of condensed tannin does not significantly increase. Among the studied solvents, water accounted for the highest amount of extracted tannin. After water, methanol was the second-best solvent, followed by acetone and ethanol. Water is an effective and environmentally friendly solvent for tannin extraction. Potato peels are rich in tannin and contain significantly less condensed tannin than hydrolyzable tannin.
Modeling
R. Khodabakhshian; R. Baghbani
Abstract
The present study aimed to examine the application of accurate and principle-based evaluation of a measuring instrument called the Form Tester in determining and detecting the wear phenomenon in the cylinder liner of agricultural tractors. For this purpose, a cylinder liner of the Perkins 4-248 engine ...
Read More
The present study aimed to examine the application of accurate and principle-based evaluation of a measuring instrument called the Form Tester in determining and detecting the wear phenomenon in the cylinder liner of agricultural tractors. For this purpose, a cylinder liner of the Perkins 4-248 engine (related to the Massey Ferguson 285 tractor) was manufactured by Keyhan Sanat Ghaem Company was used. The geometric parameters that were measured in this research included roundness, straightness, and concentricity of the cylinder liner. The evaluations on roundness and concentricity of cylinder liner were conducted in 12 circular positions with the same longitudinal distances. The straightness was measured in five lines with the same longitudinal distances in 90° around the cylinder liner environment. The results of the measurements were discussed and analyzed to evaluate the engine status along the functional path of the piston within the cylinder liner. The degree of deviation rate of the parameters indicated significant wear within the cylindrical liner. The wear rate in cross-sections at high and low dead points was significantly greater than that of the same cross-section in the vicinity of the midpoint of the piston movement path inside the cylinder, as well as the cross-sections near the high dead point. The results of this research provide feedbacks for engine designers to apply various changes to the engine and for maintenance and repair engineers to ensure the correct implementation as well as preventive and predictive repair and maintenance strategies.
R. Khodabakhshian; S. Sajadi
Abstract
To enhance the fuel efficiency of the engines of agricultural tractors, the optimal control of interacting surfaces for improving engine performance becomes extremely significant, especially in developing the surface of cylinder liners. Therefore, plateau honing technology was designed on the cylinder ...
Read More
To enhance the fuel efficiency of the engines of agricultural tractors, the optimal control of interacting surfaces for improving engine performance becomes extremely significant, especially in developing the surface of cylinder liners. Therefore, plateau honing technology was designed on the cylinder liner of automotive and tractor engines. A substantially flat or plateau is left on the sliding surfaces along with more bearing areas, although a cross hatch model of valleys is kept for retaining oil. On the contrary, the created valley by honing functions as an oil repository can negatively affect creating fluid dynamic pressure on the surfaces. Accordingly, a better understanding of generated surfaces during plateau honing is essential for optimizing process. To this end, some experiments were performed on a cylinder liner of the Perkins 4-248 engine (related to the Massey Ferguson 285 tractor) which was manufactured by Keyhan Sanat Ghaem Company. Then, friction and wear tests with reciprocating motions were conducted to compare the lubricity of sliding cylinder liner surfaces with each different mark of plateau honing. Then, a comparison was made between the friction and wear of the surfaces including various depth of profiles, which were used as the honing mark of the agricultural tractors diesel engine, and those which had randomly ground surfaces. Based on this study results, higher amounts of wear volumes were produced by creating more interactions from asperity contacts and relatively thin films, compared to the test with the shallow-grooved honing marks.
A. Vaysi; A. Rohani; M. Tabasizadeh; R. Khodabakhshian; F. Kolahan
Abstract
Introduction In recent years, with development of industrial products with complex and precise systems, the demand for CNC machines has been increasing, and as its technology has been progressed, more failure modes have been developed with complex and multi-purpose structures. The necessity of CNC machines’ ...
Read More
Introduction In recent years, with development of industrial products with complex and precise systems, the demand for CNC machines has been increasing, and as its technology has been progressed, more failure modes have been developed with complex and multi-purpose structures. The necessity of CNC machines’ reliability is also more evident than ever due to its impact on production and its implementation costs. Aiming at reducing the risks and managing the performance of the CNC machine parts in order to increase the reliability and reduce the stop time, it is important to identify all of the failure modes and prioritize them to determine the critical modes and take the proper cautionary maintenance actions approach. Materials and Methods In this study, conventional and fuzzy FMEA, which is a method in the field of reliability applications, was used to determine the risks in mechanical components of CNC lathe machine and all its potential failure modes. The extracted information was mainly obtained by asking from CNC machine experts and analysts, who provided detailed information about the CNC machining process. These experts used linguistic terms to prioritize the S, O and D parameters. In the conventional method, the RPN numbers were calculated and prioritized for different subsystems. Then in the fuzzy method, first the working process of the CNC machine and the mechanism of its components were studied. Also, in this step, all failure modes of mechanical components of the CNC and their effects were determined. Subsequently, each of the three parameters S, O, and D were evaluated for each of the failure modes and their rankings. For ranking using the crisp data, usually, the numbers in 1-10 scale are used, then using linguistic variables, the crisp values are converted into fuzzy values (fuzzification). 125 rules were used to control the output values for correcting the input parameters (Inference). For converting input parameters to fuzzy values and transferring qualitative rules into quantitative results, Fuzzy Mamdani Inference Algorithm was used (Inference). In the following, the inference output values are converted into non-fuzzy values (defuzzification). In the end, the fuzzy RPNs calculated by the fuzzy algorithm and defuzzified are ranked. Results and Discussion In conventional FMEA method, after calculating the RPNs and prioritizing them, the results showed that this method grouped 30 subsystems into 30 risk groups due to the RPN equalization of some subsystems, while it is evident that by changing the subsystem, the nature of its failure and its severity would vary. Therefore, this result is not consistent with reality. According to the weaknesses of this method, fuzzy logic was used for better prioritization. In the fuzzy method, the results showed that, in the 5-point scale, with the Gaussian membership function and the Centroid defuzzification method, it was able to prioritize subsystems in 30 risk groups. In this method, gearboxes, linear guideway, and fittings had the highest priority in terms of the criticality of failure, respectively. Conclusion The results of the fuzzy FMEA method showed that, among the mechanical systems of CNC lathe machine, the axes components and the lubrication system have the highest FRPNs and degree of criticality, respectively. Using the fuzzy FMEA method, the experts' problems in prioritizing critical modes were solved. In fact, using the linguistic variables enabled experts to have a more realistic judgment of CNC machine components, and thus, compared to the conventional method, the results of the prioritization of failure modes are more accurate, realistic and sensible. Also, using this method, the limitations of the conventional method were reduced, and failure modes were prioritized more effectively and efficiently. Fuzzy FMEA is found to be an effective tool for prioritizing critical failure modes of mechanical components in CNC lathe machines. The results can also be used in arranging maintenance schedule to take corrective measures, and thereby, it can increase the reliability of the machining process.
R. Khodabakhshian; B. Emadi
Abstract
Introduction: The economical yield of date fruits depends on many factors (Al-Shahib and Marshall, 2003). One of them is harvesting in optimum stage. Generally, date fruits have four distinct stages of ripeness to satisfy different consumption requirements (e.g., fresh and processed). They are known ...
Read More
Introduction: The economical yield of date fruits depends on many factors (Al-Shahib and Marshall, 2003). One of them is harvesting in optimum stage. Generally, date fruits have four distinct stages of ripeness to satisfy different consumption requirements (e.g., fresh and processed). They are known throughout the world by their Arabic names which are Kimri, Khalal, Rutab and Tamr in order of ripeness (Imad and Abdul Wahab, 1995; Al-Shahib and Marshall, 2003; Sahari et al., 2007). Decreasing moisture content and increasing sugar content happens gradually while the date ripeness approaches to Tamr stage. From Kimri to Khalal stage, the size and acidity decreases when the color of Mazafati variety changes from green to red. The change in acidity continues from Rutab to Tamr stage while color transforms from brown to black. At the final stage of ripeness, Mazafati variety is soft and has a good storability (Al-Shahib and Marshall, 2003). The main Raman techniques commonly applied in agricultural product and food analyzing include dispersive Raman spectroscopy, Fourier Transform (FT), Raman spectroscopy, Surface-Enhanced Raman Spectroscopy (SERS) and Spatially Offset Raman Spectroscopy (SORS). Synytsya et al. (2003) illustrated that FT-Raman spectroscopy is a valuable tool in structural analysis of commercial citrus and sugar beet pectin. Yang and Irudayaraj (2003) employed an FT-Raman approach to detect and classify foodborne microorganisms on the whole apple surface for the first time. Schulz et al., (2005) revealed the potential of FT-Raman spectroscopy in natural carotenoid analysis. Also, many researchers have attempted to apply FT-Raman spectra on the whole fruits and vegetables. FT-Raman spectroscopy was used by Veraverbeke et al. (2005) to evaluate the natural, intact wax layers on the surface of whole fruits. Nikbakht et al. (2011) used a FT-Raman spectroscopy for qualitative and quantitative analysis of tomato ripeness parameters. The scope of this study was to evaluate the feasibility of a nondestructive method based on FT-Raman spectroscopy in distinction of Mazafati date fruits according to four mentioned ripeness stages.
Materials and Methods:
Sample preparation: Mazafati variety of date fruit was used for this study. During the harvest seasons of 2012 (July-August), the samples from each four stages of ripening namely Kimri, Khalal, Rutab and Tamr were collected from two different orchards in Bam, Kerman province, Iran. A number of 100 date samples were tested in this study, and the external features of the four stages are exemplified in Fig.1. To characterize the physical properties of studied samples, the selected physical properties such as initial moisture content, mass, geometric mean diameter, sphericity and density of studied samples were measured using represented methods by Mohsenin (1896), Jahromi et al. (2008) and Shakeri and Khodabakhshian (2011). At least, the samples were kept at 5C in a refrigerator for 7 days to distribute the moisture uniformly throughout the sample. Before spectral acquisition, the required quantities of date fruits in each ripeness stage was taken out of the frig and allowed to warm with room temperature for approximately 2 hr (Khodabakhshian et al., 2012).
Chemical properties measurements: Tissue samples were cut from each fruit separately and were macerated with a commercial juice extractor, filtered and centrifuged. The supernatant juice was used for the determination of sugar content with a manual refractometer, and expressed as percent Brix in the juice. Dry weight percentage of samples (Between 3-5 g) was determined by weighing them first, then dried them at 105ºC in a forced-air oven for 4 h and finally reweighed. PH value of date fruits was determined by a pH meter.
Raman spectroscopic set-up: FT-Raman spectra on the whole fruits in the region 200-2500 cm-1 were recorded using a Thermo Nicolet NEXUS 870 spectrometer (Thermo Electron Corp, Madison, Wis., U.S.A) equipped with a Deuterated Triglycine Sulfate (DTGS) detector and a solid substrate beam splitter. The spectra were collected with rapid scan software running under OMNIC (Nicolet, Madion, Wis., U.S.A) and a resolution of 4 cm-1 by coadding of 128 scans. FT-Raman has three main advantages over dispersive Raman systems: (1) reducing the laser-induced fluorescence that a number of samples exhibit; (2) easing the operation as with a Fourier transform infrared (FTIR) spectrometer; and (3) showing a high spectral resolution with a good wavelength accuracy (Yang and Ying, 2011). Furthermore, the Raman spectra of pure tannin were measured as a reference spectrum. The original data were used for further analysis only after subtracting dark current spectra. For obtaining dark current spectra, the laser was set to zero.
Results and Discussion:
Physical properties of date fruits: The results of some physical parameters of the studied date fruit are shown in Table1. The changes in the physical properties were dependent on the internal quality in different ripeness stages. This justification also was revealed for date fruits by Al-Hooti et al. (1995). The obtained relations between ripening stages and internal quality of studied samples are represented in the next part.
Raman spectra of tannin: Raman features of the tannin in the wavelength range of 200-2500 cm-1 are shown in Figure 3. As shown in the figure, major Raman features of the tannin were observed in the spectral region of 600-1600 cm-1. Three main Raman peaks were identified in this region. The tannin showed its highest Raman intensity at 1590 cm-1, which was higher than that at 1357 cm-1. The other peak (650 cm-1) showed low intensity. As stated by many researchers (Shahidi and Naczk, 2004; Al-Farsi et al., 2005; Biglari et al., 2008), these bands are assigned to stretching C-C, C=C and C-H bonds which compose the structure of phytochemicals. Beyond 1600 cm-1, no notable Raman scattering signals were observed. Themain Raman features of tannin were revealed in the wavelength range of 600 to 1600 cm-1 since the main Raman features of tannin are in the wavelength range of 600-1600 cm-1, this region was used for calculating the spectral information divergence to evaluate the ripeness degree of the date fruits.
Conclusions: This study reports the potential of FT Raman spectroscopy for nondestructive discriminating of Mazafati date fruits according to the four ripeness stages. The analysis of the Raman signal changes that happening during date ripening and its relationship with the ripeness degree of the date fruits was studied. In this regard, changes of pure tannin content in the wavelength range of 200-2500 cm-1 as a good ripeness index for date fruits was investigated. A modified polynomial, Self-Modeling mixture Analysis (SMA( and the Spectral Information Divergence (SID) was performed on different samples at four ripeness stages.