Agricultural systems engineering (greenhouse, fish farming, mushroom production)
M. Zangeneh; N. Banaeian
Abstract
IntroductionSo far, many studies have been conducted to evaluate the impact of input consumption patterns on energy, economic, and environmental indicators on horticultural and greenhouse crops in Iran. A review of these studies shows that the causes of the current situation in the systems have not been ...
Read More
IntroductionSo far, many studies have been conducted to evaluate the impact of input consumption patterns on energy, economic, and environmental indicators on horticultural and greenhouse crops in Iran. A review of these studies shows that the causes of the current situation in the systems have not been investigated. These studies are mostly reporting the current situation and the interventions and their effect on improving the input consumption pattern in the sustainability of the system have not been considered by researchers. Also, studies showed that the study location and products do not fit well with the volume of production in the horticultural and greenhouse sector of Iran. Therefore, in order to increase the effectiveness and future direction of studies in this field, this review study was conducted. In this article, Iranian horticultural and greenhouse production systems were reviewed and analyzed by reviewing the published articles between 2008 and 2018, using the PRISMA method. The PRISMA method is a well-known method for conducting systematic review studies. The PRISMA method includes the following sections: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions, and implications of key findings. In this article, 16 types of garden products and 6 types of greenhouse products were studied.Material and MethodsIn this study, the methods used to determine the status of energy consumption, economic and environmental patterns for horticultural and greenhouse crops were analyzed. For this purpose, the indicators of total energy consumption (TEI), energy efficiency (EUE), net energy (NE), and energy efficiency (EP) were examined in the section of energy. The issue of sensitivity analysis of energy inputs was also examined and the highest values of t-statistic and MPP were reported for products. In some articles, the data envelopment analysis method was used in systems performance analysis. The indicators used included technical efficiency (TE), pure technical efficiency (PTE), scale efficiency (SE), and energy-saving target ratio (ESTR). The results of them were summarized and reported. In some studies, the method of artificial neural networks and the Adaptive Neuro-Fuzzy Inference System were used. In general, in the present article, the challenges and risks in the methods used in previous studies were considered. The issue of sampling in the analysis of agricultural systems was discussed in detail and a new sampling procedure was proposed. To draw a general picture of energy and environmental indicators of orchard and greenhouse systems in Iran, the results published in the articles were reviewed. Not all researchers use the same equivalents in calculating the indices, and this makes the results of the studies slightly different from each other. The existence of such differences causes some deviations in comparing the results of similar articles in the same products. However, to adjust for these differences, averaging was used in the index report.Results and DiscussionThe study of the share of inputs in the total energy consumption shows that for horticultural products, the share of fertilizer and electricity inputs is very significant. In the case of greenhouse products, fuel input, which is mainly diesel, has the largest share of energy consumption. Walnuts have the lowest energy consumption and strawberries have the highest energy consumption among orchard products. Grapes, apples, and walnuts also have positive net energy, so they have the highest energy efficiency compared to other products. The most important inputs that have the greatest potential for energy savings in most products are diesel fuel and electricity. Among greenhouse crops in cucumber production, diesel fuel has great potential for energy savings that need to be reduced in future research. In the case of strawberry and rose products, electricity input has the greatest potential for energy savings. Knowing the potential of inputs that can be saved can be effective in changing the behavior of producers.ConclusionTo increase the effectiveness of research in this area, such studies should be done dynamically and for at least two or more years. In the first year, the input consumption pattern should be extracted and after performing the consumption pattern modifying interventions, the effect of these actions should be evaluated in the following years. Data envelopment analysis methods and multi-objective genetic algorithm can be well used to develop solutions to improve input consumption patterns. The review of articles showed that the study of the effect of social factors on the behavior of various production systems has been neglected. Since the pattern of energy consumption in the agricultural sector is significantly dependent on the behavior of users and the characteristics of systems and methods of production, it seems necessary to pay attention to this factor to prepare and design any process improvement strategy in the system. In this study, a new procedure including three stages of analysis, redesign, and evaluation was proposed to complete the studies related to the analysis of agricultural systems.
Z. Ramedani; R. Abdi; M. Omid; M. A. Maysami
Abstract
Introduction Life cycle assessment of food products is an appropriate method to understand the energy consumption and production of environmental burdens. Dairy production process has considerable effect on climate change in various ways, and the scale of these effects depends on the practices of dairy ...
Read More
Introduction Life cycle assessment of food products is an appropriate method to understand the energy consumption and production of environmental burdens. Dairy production process has considerable effect on climate change in various ways, and the scale of these effects depends on the practices of dairy industry, dairy farmers and feed growers. This study examined the life cycle of production of dairy products in Kermanshah city. For this purpose, the whole life was divided in two sections: production of raw milk in dairy farm and dairy products in dairy industry. In each section the energy consumption patterns and environmental burdens were evaluated. Based on the results, the consumed energy in dairy farm was 6286.29 MJ for amount of produced milk in month. Also animal feed was the greatest energy consumer with the value of 45.12% that the maximum amount of this value was for concentrate. The minimum consumption of energy was for the machinery with 0.92 MJ in a month. Results of life cycle assessment of dairy products showed that in dairy industry raw milk input causes most of impact categories especially land use, carcinogens and acidification. In dairy farms, concentrate was effective more than 90% in production of impact categories included: land use and carcinogens. Using digesters for production biogas and solar water heaters in dairy farm can decrease fossil recourses. Materials and Methods Based on ISO 14044, standards provide an overview of the steps of an LCA: (1) Goal and Scope Definition; (2) Life Cycle Inventory Analysis; (3) Life Cycle Impact Assessment; and (4) Interpretation (ISO, 2006). In this study there were two sub-systems in the production line: dairy farm sub-system (1) and dairy factory sub-system (2). In the sub-system related to the dairy farm, the main product was milk. Determination of inputs and outputs in each sub-system, energy consumption, transportation and emissions to air and water as well as waste treatment are the requirements of LCI. However each of them has several components. These components are different in both sub-systems. All the detailed data about energy equivalent in dairy farm is shown in Table 1. More detailed data about inventories description of two sub-systems are shown in Tables 3 and 4. The SimaPro 7.3.2 was used for analyzing the collected data for calculating environmental burdens (Pré Consultants, 2012). Results and Discussion Based on the developed models with SimaPro software for dairy products in the factory, various emissions were generated including emissions into the air, soil and water. The most prevalent emissions are summarized in Table 7. In warm season about half of the milk is processed into drinking yoghurt. Since water is one half of the component of this product so more amount of drinking yoghurt can be achieved with lower energy consumption (about 50%). Furthermore, these results indicated that the magnitude of fossil fuels was much greater than all others. It was followed by land use and respiratory inorganics. The most amount of the consumption of the fossil fuels was the production of energy requirements for heating systems at boilers and tractors in dairy factory and farm, respectively. Also the transportation of raw milk to the dairy industry was another source of the pollution. Also the energy consumption pattern in the dairy farm revealed that the concentrate have high contribution in energy consumption. Conclusion Results of the energy consumption pattern showed that the animal feed was the greatest energy consumer with value of 45.12% and followed by electricity (36%). Energy consumption index for the fossil fuel was calculated about 3.8 that is higher than the global index. Production of raw milk in dairy farm is responsible in the production of impact categories especially land use, carcinogenic and acidification with contribution of 97.6%, 78%, and 63%, respectively. Also the amount of CO2-eq was estimated 2.71 kg for the production of 1kg ECM in cold seasons.