with the collaboration of Iranian Society of Mechanical Engineers (ISME)

Document Type : Research Article-en

Authors

Department of Biosystems Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

In the quest for enhanced anaerobic digestion (AD) performance and stability, iron-based additives as micro-nutrients and drinking water treatment sludge (DWTS) emerge as key players. This study investigates the kinetics of methane production during AD of dairy manure, incorporating varying concentrations of Fe and Fe3O4 (10, 20, and 30 mg L-1) and DWTS (6, 12, and 18 mg L-1). Leveraging an extensive library of non-linear regression (NLR) models, 26 candidates were scrutinized and eight emerged as robust predictors for the entire methane production process. The Michaelis-Menten model stood out as the superior choice, unraveling the kinetics of dairy manure AD with the specified additives. Fascinatingly, the findings revealed that different levels of DWTS showcased the highest methane production, while Fe3O420 and Fe3O430 recorded the lowest levels. Notably, DWTS6 demonstrated approximately 34% and 42% higher methane production compared to Fe20 and Fe3O430, respectively, establishing it as the most effective treatment. Additionally, DWTS12 exhibited the highest rate of methane production, reaching an impressive 147.6 cc on the 6th day. Emphasizing the practical implications, this research underscores the applicability of the proposed model for analyzing other parameters and optimizing AD performance. By delving into the potential of iron-based additives and DWTS, this study opens doors to revolutionizing methane production from dairy manure and advancing sustainable waste management practices.

Keywords

Main Subjects

©2023 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0).

  1. Abdelsalam, E., Samer, M., Attia, Y., Abdel-Hadi, M., Hassan, H., & Badr, Y. (2016). Comparison of nanoparticles effects on biogas and methane production from anaerobic digestion of cattle dung slurry. Renewable Energy, 87, 592-598. https://doi.org/10.1016/j.renene.2015.10.053
  2. Abdelsalam, E., Samer, M., Attia, Y. A., Abdel-Hadi, M. A., Hassan, H. E., & Badr, Y. (2017). Influence of zero valent iron nanoparticles and magnetic iron oxide nanoparticles on biogas and methane production from anaerobic digestion of manure. Energy, 120, 842-853. https://doi.org/10.1016/j.energy.2016.11.137
  3. Ahmad, T., Ahmad, K., & Alam, M. (2016). Sustainable management of water treatment sludge through 3 ‘R’concept. Journal of Cleaner Production, 124, 1-13. https://doi.org/10.1016/j.jclepro.2016.02.073
  4. Al Seadi, T., Rutz, D., Prassl, H., Köttner, M., Finsterwalder, T., Volk, S., & Janssen, R. (2008). Biogas Handbook; University of Southern Denmark Esbjerg: Esbjerg, Denmark, 2008. Google Scholar.
  5. Ali, A., Mahar, R. B., Soomro, R. A., & Sherazi, S. T. H. (2017). Fe3O4 nanoparticles facilitated anaerobic digestion of organic fraction of municipal solid waste for enhancement of methane production. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 39(16), 1815-1822. https://doi.org/10.1080/15567036.2017.1384866
  6. Andriamanohiarisoamanana, F. J., Ihara, I., Yoshida, G., & Umetsu, K. (2020). Kinetic study of oxytetracycline and chlortetracycline inhibition in the anaerobic digestion of dairy manure. Bioresource Technology, 315, 123810. https://doi.org/10.1016/j.biortech.2020.123810
  7. APHA. (2005). Standard Methods for the Examination of Water and Wastewater. 21st ed. American Public Health Association, Washington DC, 1220p.
  8. Archontoulis, S. V., & Miguez, F. E. (2015). Nonlinear regression models and applications in agricultural research. Agronomy Journal, 107(2), 786-798. https://doi.org/10.2134/agronj2012.0506
  9. Casals, E., Barrena, R., Garcia, A., González, E., Delgado, L., Busquets-Fité, M., Font Segura, X., Arbiol, J., Glatzel, P., Kvashnina, K., Sánchez, A., & Puntes, V. (2014). Programmed Iron Oxide Nanoparticles Disintegration in Anaerobic Digesters Boosts Biogas Production. Small (Weinheim an Der Bergstrasse, Germany), 10. https://doi.org/10.1002/smll.201303703
  10. Chen, R., Konishi, Y., & Nomura, T. (2018). Enhancement of methane production by Methanosarcina barkeri using Fe3O4 nanoparticles as iron sustained release agent. Advanced Powder Technology, 29(10), 2429-2433. https://doi.org/10.1016/j.apt.2018.06.022
  11. Cheng, J., Zhu, C., Zhu, J., Jing, X., Kong, F., & Zhang, C. (2020). Effects of waste rusted iron shavings on enhancing anaerobic digestion of food wastes and municipal sludge. Journal of Cleaner Production, 242, 118195. https://doi.org/10.1016/j.jclepro.2019.118195
  12. Choong, Y. Y., Norli, I., Abdullah, A. Z., & Yhaya, M. F. (2016). Impacts of trace element supplementation on the performance of anaerobic digestion process: A critical review. Bioresource Technology, 209, 369-379. https://doi.org/10.1016/j.biortech.2016.03.028
  13. Demirel, B., & Scherer, P. (2011). Trace element requirements of agricultural biogas digesters during biological conversion of renewable biomass to methane. Biomass and Bioenergy, 35(3), 992-998. https://doi.org/10.1016/j.biombioe.2010.12.022
  14. Dudley, B. (2019). BP statistical review of world energy 2016. British Petroleum Statistical Review of World Energy, Bplc. editor, Pureprint Group Limited, UK.
  15. Ebrahimi-Nik, M., Heidari, A., Azghandi, S. R., Mohammadi, F. A., & Younesi, H. (2018). Drinking water treatment sludge as an effective additive for biogas production from food waste; kinetic evaluation and biomethane potential test. Bioresource Technology, 260, 421-426. https://doi.org/10.1016/j.biortech.2018.03.112
  16. Ebrahimzade, I., Ebrahimi-Nik, M., Rohani, A., & Tedesco, S. (2021). Higher energy conversion efficiency in anaerobic degradation of bioplastic by response surface methodology. Journal of Cleaner Production, 290, 125840. https://doi.org/10.1016/j.jclepro.2021.125840
  17. Ebrahimzade, I., Ebrahimi-Nik, M., Rohani, A., & Tedesco, S. (2022). Towards monitoring biodegradation of starch-based bioplastic in anaerobic condition: Finding a proper kinetic model. Bioresource Technology, 347, 126661. https://doi.org/10.1016/j.biortech.2021.126661
  18. Gkotsis, P., Kougias, P., Mitrakas, M., & Zouboulis, A. (2023). Biogas upgrading technologies–Recent advances in membrane-based processes. International Journal of Hydrogen Energy, 48(10), 3965-3993. https://doi.org/10.1016/j.ijhydene.2022.10.228
  19. Hao, X., Wei, J., van Loosdrecht, M. C., & Cao, D. (2017). Analysing the mechanisms of sludge digestion enhanced by iron. Water Research, 117, 58-67. https://doi.org/10.1016/j.watres.2017.03.048
  20. Holliger, C., Alves, M., Andrade, D., Angelidaki, I., Astals, S., Baier, U., Bougrier, C., Buffière, P., Carballa, M., & De Wilde, V. (2016). Towards a standardization of biomethane potential tests. Water Science and Technology, 74(11), 2515-2522. https://doi.org/10.2166/wst.2016.336
  21. Huiliñir, C., Montalvo, S., & Guerrero, L. (2015). Biodegradability and methane production from secondary paper and pulp sludge: effect of fly ash and modeling. Water Science and Technology, 72(2), 230-237. https://doi.org/10.2166/wst.2015.210
  22. Huiliñir, C., Pinto-Villegas, P., Castillo, A., Montalvo, S., & Guerrero, L. (2017). Biochemical methane potential from sewage sludge: Effect of an aerobic pretreatment and fly ash addition as source of trace elements. Waste Management, 64, 140-148. https://doi.org/10.1016/j.wasman.2017.03.023
  23. Karki, R., Chuenchart, W., Surendra, K. C., Sung, S., Raskin, L., & Khanal, S. K. (2022). Anaerobic co-digestion of various organic wastes: Kinetic modeling and synergistic impact evaluation. Bioresource Technology, 343, 126063. https://doi.org/10.1016/j.biortech.2021.126063
  24. Khamis, A. (2005). Nonlinear growth models for modeling oil palm yield growth. Journal of Mathematics and Statistics, 1(3), 225-233. https://doi.org/3844/jmssp.2005.225.232
  25. Kong, X., Yu, S., Xu, S., Fang, W., Liu, J., & Li, H. (2018). Effect of FeO addition on volatile fatty acids evolution on anaerobic digestion at high organic loading rates. Waste Management, 71, 719-727. https://doi.org/10.1016/j.wasman.2017.03.019
  26. Lima, D. R. S., Adarme, O. F. H., Baˆeta, B. E. L., Gurgel, L. V. A., & de Aquino, S. F. (2018). Influence of different thermal pretreatments and inoculum selection on the biomethanation of sugarcane bagasse by solid-state anaerobic digestion: A kinetic analysis. Industrial Crops and Products, 111, 684-693. https://doi.org/10.1016/j.indcrop.2017.11.048
  27. Lu, J., & Gao, X. (2021). Biogas: Potential, challenges, and perspectives in a changing China. Biomass and Bioenergy, 150, 106127. https://doi.org/10.1016/j.biombioe.2021.106127
  28. Muddasar, M. (2022). Biogas production from organic wastes and iron as an additive–a short review. Preprints.org 2022, 2022010026. https://doi.org/10.20944/preprints202201.0026.v1
  29. Masih-Das, J., & Tao, W. (2018). Anaerobic co-digestion of foodwaste with liquid dairy manure or manure digestate: Co-substrate limitation and inhibition. Journal of Environmental Management, 223, 917-924. https://doi.org/10.1016/j.jenvman.2018.07.016
  30. Noonari, A. A., Mahar, R. B., Sahito, A. R., & Brohi, K. M. (2019). Anaerobic co-digestion of canola straw and banana plant wastes with buffalo dung: Effect of Fe3O4 nanoparticles on methane yield. Renewable Energy, 133, 1046-1054. https://doi.org/10.1016/j.renene.2018.10.113
  31. Pardilhó, S., Pires, J. C., Boaventura, R., Almeida, M., & Dias, J. M. (2022). Biogas production from residual marine macroalgae biomass: Kinetic modeling approach. Bioresource Technology, 359, 127473. https://doi.org/10.1016/j.biortech.2022.127473
  32. Raposo, F., De la Rubia, M., Fernández-Cegrí, V., & Borja, R. (2012). Anaerobic digestion of solid organic substrates in batch mode: an overview relating to methane yields and experimental procedures. Renewable and Sustainable Energy Reviews, 16(1), 861-877. https://doi.org/10.1016/j.rser.2011.09.008
  33. Rosato, M. A. (2017). Managing biogas plants: A practical guide. CRC Press.
  34. Schmidt, T., Nelles, M., Scholwin, F., & Proter, J. (2014). Trace element supplementation in the biogas production from wheat stillage– optimization of metal dosing. Bioresource Technology, 168, 80-85. https://doi.org/10.1016/j.biortech.2014.02.124
  35. Stoddard, I. (2010). Communal polyethylene biogas systems: Experiences from on-farm research in rural West Java.
  36. Torres-Lozada, P., Díaz-Granados, J. S., & Parra-Orobio, B. A. (2015). Effects of the incorporation of drinking water sludge on the anaerobic digestion of domestic wastewater sludge for methane production. Water Science and Technology, 72(6), 1016-1021. https://doi.org/10.2166/wst.2015.291
  37. Wang, M., Tang, S. X., & Tan, Z. L. (2011). Modeling in vitro gas production kinetics: derivation of logistic–exponential (LE) equations and comparison of models. Animal Feed Science and Technology, 165(3-4), 137-150. https://doi.org/10.1016/j.anifeedsci.2010.09.016
  38. Wang, K., Yun, S., Xing, T., Li, B., Abbas, Y., & Liu, X. (2021). Binary and ternary trace elements to enhance anaerobic digestion of cattle manure: Focusing on kinetic models for biogas production and digestate utilization. Bioresource Technology, 323, 124571. https://doi.org/10.1016/j.biortech.2020.124571
  39. Wellinger, A., Murphy, J. D., & Baxter, D. (2013). The biogas handbook: science, production and applications. Elsevier.
  40. Zareei, S. (2018). Evaluation of biogas potential from livestock manures and rural wastes using GIS in Iran. Renewable Energy, 118, 351-356. https://doi.org/10.1016/j.renene.2017.11.026
  41. Zhang, Y., Feng, Y., Yu, Q., Xu, Z., & Quan, X. (2014). Enhanced high-solids anaerobic digestion of waste activated sludge by the addition of scrap iron. Bioresource Technology, 159, 297-304. https://doi.org/10.1016/j.biortech.2014.02.114
  42. Zhao, Z., Li, Y., Quan, X., & Zhang, Y. (2017). Towards engineering application: Potential mechanism for enhancing anaerobic digestion of complex organic waste with different types of conductive materials. Water Research, 115, 266-277. https://doi.org/10.1016/j.watres.2017.02.067
CAPTCHA Image