Agricultural waste management
M. Safari; M. A. Rostami
Abstract
IntroductionIn conventional combine harvesters, wheat chaff is typically removed from the end of the machine and deposited on the field surface. Depending on the wheat cultivar, cultivation method, and growing conditions, the amount of chaff produced can range from 0.8 to 1.5 times the amount of grain ...
Read More
IntroductionIn conventional combine harvesters, wheat chaff is typically removed from the end of the machine and deposited on the field surface. Depending on the wheat cultivar, cultivation method, and growing conditions, the amount of chaff produced can range from 0.8 to 1.5 times the amount of grain harvested per hectare (Tavakoli, 2012). On average, this translates to an annual production of approximately 14 million tons of chaff, which is valued at around $240000000 based on regional prices in 2018-2019 ($1000 per kilogram). If collected, these chaff residues could be used as animal feed for livestock. Additionally, the long stems protruding from the back of conventional combine harvesters can interfere with subsequent cultivation efforts. Chaff combine harvesters have a similar structure to conventional machines, but feature a modified end that includes a tank and blower for collecting and depositing crushed chaff. Apart from the threshing unit, all other components of the harvester remain unchanged.Materials and MethodsThis study was conducted in 2019 in dryland wheat fields to determine the performance of Chaff combine harvesters in Kurdistan province. The study used 15 combine harvesters, including John Deere models equipped with chaff threshers from Shiraz, Bookan, and Hamedan, as well as the Hamedan Barzegar specific chaff collector combine. These combines were evaluated and compared based on natural losses, head and chaff storage losses, field capacity, purity percentage, and yield in field conditions in Kurdistan province. The total number of combines evaluated was 15, using a completely randomized design. Among these, 33% belonged to Shiraz company (5 samples), 33% to Bookan (5 samples), 20% to Hamedan (3 samples), and 14% to Hamedan Barzegar (2 samples). Sampling included measurement of natural losses, header losses, threshing tank losses (losses of the threshing unit, separating unit, and cleaning unit), and quality losses (broken grains and impurities) in the combine tank.Results and DiscussionThe results showed that the average yield, natural loss, and combine loss were 1,698.14 kg.ha-1, 2.39%, and 4.92%, respectively. In terms of the loss rates in different parts of the combine, 43.49% was related to the chaff storage of the combine, and 56.50% was related to the combine head.The natural loss rate in this province was 2.39%. The total combine loss was 5.18%, with 40.44% of that related to chaff storage and the rest related to the combine head. The results also showed a significant difference between the treatments in terms of field capacity, chaff storage loss, and purity percentage at a probability level of 5%.The total loss of the Hamedan Barzegar combine was 6.67%, which was higher than the other combines. The chaff storage loss of the Shiraz, Bookan, Hamedan, and Hamedan Barzegar combines were 0.87%, 2.64%, 0.78%, and 4.28%, respectively, showing a significant difference at a 5% level. There was also a significant difference between the treatments in terms of total grain loss.Based on these results, it is recommended to use the Hamedan, Bookan, Shiraz, and Hamedan Barzegar combines, with total losses of 4.33%, 4.33%, 4.52%, and 6.56%, respectively.ConclusionThe average purity of harvested grains was 96.62%, and there was no significant difference between the combine harvesters in this regard.There was a significant difference between the combines in terms of field capacity at a probability level of 5%. The field capacity of the Bookan, Hamedan Barzegar, Hamedan, and Shiraz combine harvesters were 0.83, 0.87, 0.83, and 0.73 hectares per hour, respectively.In Kurdistan province, the average grain combine loss in dryland wheat harvesting with chaff combine harvesters was 4.92%, which is higher than in other provinces.The loss in the chaff tank of the Shiraz, Bookan, Hamedan, and Hamedan Barzegar combine harvesters was 0.87%, 2.64%, 0.78%, and 4.28%, respectively. Regardless of head losses, the loss in the Hamedan combine was less than other combine harvesters.The total losses of the Hamedan Barzegar, Bookan, Shiraz, and Hamedan combine harvesters were 6.56%, 4.32%, 4.52%, and 4.30%, respectively, with the Hamedan Barzegar and Hamedan combine harvesters having the highest and lowest losses, respectively.Based on the results obtained from this study, using the Hamedan combine is recommended in the dryland conditions of Kurdistan due to its low losses, high purity, and field capacity.AcknowledgementThanks to the Agricultural Jihad Organization of Kurdistan Province, specifically the deputy of the Plant Production and Mechanized Technologies Department, for their assistance and cooperation in the implementation of the project.
M. Safari; H. Sharifnasab
Abstract
IntroductionSafflower (Carthamus tinctorius L.) is an oil plant with a growth cycle of 120 days. The seeds of this crop are primarily used for oil production, while its flower petals are used for extracting natural pigments and medicinal purposes. The cultivation area for this crop in Iran was about ...
Read More
IntroductionSafflower (Carthamus tinctorius L.) is an oil plant with a growth cycle of 120 days. The seeds of this crop are primarily used for oil production, while its flower petals are used for extracting natural pigments and medicinal purposes. The cultivation area for this crop in Iran was about 2300 ha during 2014-2015. Due to the recent droughts, cultivation of this crop has a good income for farmers because of the short growth period, resistance to drought (water stress) and less maintenance requirements. In the meantime, the flower petals of this crop are used for food coloring and medical affairs. The flower petals are harvested with the traditional method in most parts of Iran, which has a lot of hardship for harvesting and increases production costs. On the other hand, this crop is contaminated in terms of sanitary factors due to the contact of the worker hands with flower petals. Therefore, applying a proper mechanization method for petals harvesting is an effective step in the development of this crop cultivation.Materials and MethodsIn this study, three petal harvesting methods including the manual (conventional) method, Knapsack (Indian modified) method and Fossil-fueled wheelbarrow machine method were compared in terms of effective field capacity, downfall loss percentage, purity percentage, energy consumption, and harvesting costs. The Indian knapsack machine was modified. The experimental design format was a Randomized Complete Block Design (RCBD) with three replications. In the knapsack method (modified), petals were separated from the receptacle by a cutting blade and sucked into the machine reservoir. In the manual method, petals were separated from the reception by the worker hands and put inside the special bags which hanged on the worker neck. In the fossil-fueled wheelbarrow machine, an 8 kW motor-powered engine was used to set up the 1200 w vacuum system and cutting unit. The vacuum system was installed on the special chassis in wheel barrow machine. Each experimental plot had about 149 safflowers in one square meter area, which was harvested in different methods.Results and DiscussionThe results showed that the harvesting loss (W.W.) of the Knapsack method, Fossil-fueled wheelbarrow machine method, and manual method were 0.63%, 1.11%, and 3.25%, respectively. The percentages of purity were 97.71%, 98.66%, and 95.29%, respectively. There was a significant difference between machine and manual methods in 5% level. The effective field capacity of the methods was 2.45, 2.76, and 1.39 g min-1 (in dry condition), which was not significantly different between the machinery treatments in 5% level. The energy consumption for the fossil-fueled wheelbarrow machine was significant compared to the other two methods (1356 kW h-1 in 30 days). In terms of the economic point, benefit-cost ratios were 1.75, 1.55, and 1.16 for the Knapsack method, Fossil-fueled wheelbarrow machine method, and manual method, respectively. If the solar panel was used in the Knapsack method, the benefit-cost ratio would decrease to 1.54.ConclusionThe field capacity of machines methods was more than manual method for safflower petal harvesting. The Knapsack machine had less loss percentage than other treatments. The wheelbarrow machine had a higher degree of purity, but no significant difference was observed between this treatment and the Knapsack method. The energy consumption of the wheelbarrow machine was higher than other treatments. The economic evaluation showed that the Knapsack machine had a higher benefit-cost ratio than other treatments. If the solar panel was used by this machine, the use of a solar panel system would be economical too. Finally, with regards to the technical and economic parameters, using the Knapsack machine was recommended for safflower petal harvesting.
N. Monjezi
Abstract
Introduction One of the most important risk factors for developing musculoskeletal disorders is the inappropriate work of postures and since maintaining the health of the workforce promotes community development. Therefore, the workforce should be in an appropriate working environment without any harmful ...
Read More
Introduction One of the most important risk factors for developing musculoskeletal disorders is the inappropriate work of postures and since maintaining the health of the workforce promotes community development. Therefore, the workforce should be in an appropriate working environment without any harmful factors to ensure its physical and mental well-being. Among the various problem found in agriculture mentioned above, a problem commonly reported in agricultural workers in particular farmers in a rural area is work-musculoskeletal symptoms (MSS) in a different part of the body. In the process of producing sugarcane, a significant part of the stage of cuttings, planting, and harvesting is done manually. A low level of knowledge about the correct condition of the body during work is one of the problems of farmers. Therefore, body status assessment methods are considered as the basis and the basis for assessing the risk of musculoskeletal disorders associated with work. We decided to do a posture assessment in these persons while working to determine the posture hazard level. The purpose of this study was to identify inappropriate working conditions in sugarcane fields at the cutting, planting and harvesting manual stages. Materials and Methods This study was a descriptive-analytical approach performed on 300 workers by using the REBA method. The Rapid Entire Body Assessment (REBA) method was used to determine the risk of MSDs. The REBA posture-targeting method is probably the most well-known method for rapid assessment of risks. The REBA method is ideal for rapid assessment of standing work. In order to collect the required data, each part of the body was scored and work frequency, load/force, coupling were considered to achieve a REBA score. The REBA provides a quantitative value to the evaluation that indicates the level of severity of each task. The calculation was made by using the REBA Employee Assessment Worksheet that has been divided into two groups; Group A (Trunk, Neck, and Legs) postures and Group B (Upper Arms, Lower Arms, and Wrists) postures for left and right. A summary of the procedure for the REBA score and the degree of risk is found in the REBA decision table. The risk score of this approach should be in the range of one of fifteen, where the higher scores signify greater levels of apparent risk. An analysis of scores represents the work’s risks and indicates possible actions to avoid or minimize the risks. The method of work was to photograph workers in sugar cane fields of Khuzestan province during the activity and analysis of photographs using modeling the body of workers with REBA 6 software and analyzing different situations using REBA method. Results and Discussion By cutting stage, a total of 6.6% of evaluating postures by REBA technique obtained scores of 8-10 (very high risk level) and 93.4% had scores of 11-15 (very high risk level) that correspond to the action level 3 and 4, respectively. In planting stage, a total of 12.10% of evaluating postures by REBA technique obtained scores of 8-10 (very high risk level) and 87.90% had scores of 11-15 (very high risk level) that correspond to the action level 3 and 4, respectively. In the harvesting stage, a total of 15.30% of evaluating postures by REBA technique obtained scores of 8-10 (very high-risk level) and 84.70% had scores of 11-15 (very high risk level) that correspond to the action level 3 and 4, respectively. The results showed that according to the REBA method, in preparation cuttings, planting and harvesting sugarcane manually, respectively, 93.48, 90.87 and 84.77% of the workers' posture are in the most critical group that should be avoided. Risk level should be reduced, especially in sugarcane fields. More training and instructions are needed to have a good working position in sugarcane procedures. Improvement of working posture need to be done by improving all aspects that related to physical workload such as by reducing the workload on the back, neck, shoulder/arm, and also hand/wrist. Conclusion A high percentage of musculoskeletal disorders in workplaces occur due to awkward posture and non-ergonomic design of the workstations for lifting and carrying of materials. To avoid these injuries, jobs should be designed in a way that ergonomics risk factors are controlled properly. The results of this study can be used to develop WMSDs preventive strategies in the workplace and improve workers’ health. Educational intervention can be an appropriate way to improve the physical condition and ultimately reduce musculoskeletal disorders. Some proposed corrective actions include: standardizing the design and construction of the work tool used by the user's anthropometric study (especially sharp sickle), establishing suitable work-resting cycles and conducting periodic examinations for the early detection of musculoskeletal disorders. Of course, given the high percentage of damage to sugarcane production during manual operation, it's definitely a move to mechanized operations in sugarcane crops.
K. Andekaeizadeh; M. J. Sheikhdavoodi; M. Byria
Abstract
Introduction Sugarcane is an important plant in the world that cultivate for the production of sugar and energy. For this purpose, evaluation of Sugarcane (SC) and Energycane (EC) methods is necessary. Energy is vital for economic and social development and the demand for it is rising. The international ...
Read More
Introduction Sugarcane is an important plant in the world that cultivate for the production of sugar and energy. For this purpose, evaluation of Sugarcane (SC) and Energycane (EC) methods is necessary. Energy is vital for economic and social development and the demand for it is rising. The international community look toward alternative to fossil fuels is the aim of using liquid fuel derived from agricultural resources. According to calculations, about 47% from renewable energy sources in Brazil comes from sugarcane so as, the country is known the second largest source of renewable energy. Sugarcane in Brazil provides about 17.5% of primary energy sources. Material such as bagasse and ethanol are derived from sugarcane that provide 4.2% and 11.2 % consumed energy, respectively . In developing countries, the use of this product increase in order to achieve self-sufficiency in the production of starch and sugar and thus independence in bioethanol production. Evaluation of energy consumption in manufacturing systems, show the measurement method of yield conversion to the amount of energy. Many of products of Sugarcane have ability to produce bioenergy. Many materials obtain from sugarcane such as, cellulosic ethanol, biofuels and other chemical materials. Hence, Energycane is introduced as a new method of sugarcane harvesting. But, one of the problems of this method is high cost and high energy consumption of harvester. So that the total cost of Energycane method is 38.4 percent of production total costs, whereas, this cost, in Sugarcane method is 5.32 percent of production total costs. In a study that was conducted by Matanker et al. (2014) with title “Power requirements and field performance in harvesting EC and SC”, the power requirements of some components of sugarcane harvester and its field capacity, in Sugarcane and Energycane methods were examined. The consumed power by basecutter, elevator and chopper was measured in terms of Mega grams per hour (Mg.h-1) Chopper energy consumption in Energycane method was 1.65 KJ more than Sugarcane method. The quantitative parameters including forward speed (km.h-1), field capacity (ha.h-1), the field performance (Mg.ha-1) and reed output (Mg.h-1) were also measured. Finally, statistical comparison was conducted between the two methods. The aim of this study is to provide Simple Additive Weighting (SAW) method using the calculated parameters by the Matanker et al. This method provides decision-making ability for a manager. Materials and Methods In this study, quantitative parameters including fuel consumption (Lit.ha-1), harvester power (kW), efficiency of engine torque (%), energy of used hydraulic oil in basecutter, chopper and elevator (Mj.Mg-1), forward speed (km.h-1), field capacity (ha.h-1), the field performance (Mg.ha-1) and reed output (Mg.h-1 ) and qualitative parameters including the mean of average diameter of the stem (mm), stem height (m), number of stems on the meter (m-1), the percentage of cut stems and intact, cut stems and partially damaged and strongly damaged stems. The average height of straw and the stubble (mm), average of bulk density (kg.m-3), the average of moisture content, average of dry matter (biomass), (Mg.ha-1) were measured. Data analysis was conducted with Simple Additive Weighting (SAW) method. Tables 1 and 2 in terms of qualitative and quantitative parameters for the two methods of A and B, to form of rij matrix and based on measured criteria (C) have arranged, respectively. Conclusion Choosing the appropriate method for sugarcane harvesting should be according to the purpose of harvesting. Energycane method has high energy consumption that it increases the operational costs. On the other hand, the quality of the obtained biomass from it is better, but Sugarcane method has high energy efficiency. But in terms of quality, the plant is not in good condition. For this reason, it is necessary, aim of harvesting and its type, be specified before crop planting.
M. R. Mostofi Sarkari; M. S. Valiahdi; I. Ranjbar
Abstract
Grain loss monitors are installed on combine harvester and make it possible to measure grain loss on different parts of the combine. The instrument permits the operator to adjust a proper ground speed to keep grain loss within an acceptable range. In this study a loss monitoring system was implemented ...
Read More
Grain loss monitors are installed on combine harvester and make it possible to measure grain loss on different parts of the combine. The instrument permits the operator to adjust a proper ground speed to keep grain loss within an acceptable range. In this study a loss monitoring system was implemented to measure grain losses continuously on straw walker and sieves. Two grain loss monitors (KEE and TeeJet) were installed behind the straw walker and the sieves of JD-955 and JD-1165 combine harvesters. Harvesting performance parameters such as combine total and processing losses were then measured. To evaluate the precision and accuracy of the instruments, the measured and monitored losses were compared and investigated. The results of a two-year research showed that the average processing loss of the combine harvesters with 10-12% grain moisture content and 750 rpm drum speed was 0.82% which is whitin the acceptable range recommended by ASAE Standard No. S343.3. Furthermore, there was no significant difference between the measured and monitored values of processing loss.
H. Ghorbanpour; M. H. Khoshtaghaza; M. R. Mostofi Sarkari
Abstract
Manual citrus harvesting is commonly performing hard, expensive and time consuming. In this study, a factorial experiment with a completely randomized design in three replications was performed to find out the effect of frequency (three levels of 5, 7.5 and 10 Hz), vibration time (three levels of 10, ...
Read More
Manual citrus harvesting is commonly performing hard, expensive and time consuming. In this study, a factorial experiment with a completely randomized design in three replications was performed to find out the effect of frequency (three levels of 5, 7.5 and 10 Hz), vibration time (three levels of 10, 15 and 20 seconds) on harvesting capacity and losses of Thomson cultivar of orange. The results indicated that the effect of frequency and vibration time was significant (P≤0.01) on the harvesting capacity and losses, but their interaction effects weren’t significant. The harvesting capacity significantly increased by increasing frequency, and the highest harvesting capacity was 62.8 % at 10 Hz frequency. Although the harvesting capacity increased by increasing the vibration time, but there was no significant difference in vibration times between 15 and 20 seconds at 10 Hz frequency. Also the fruit loss was increased by increasing the vibration time. Due to these reasons, frequency of 10 Hz and vibration time of 15 seconds were selected as the most suitable condition for mechanized harvesting of this cultivar of orange. Finally a linear mathematical model was developed based on the frequency and vibration time for the harvesting capacity and fruit loss of Thomson cultivar of orange.
M. Soleimani; M. Kasraei
Abstract
In recent decades, canola has been considered as the most important oilseed. Harvesting is the most major problem of canola cultivation, since canola pods are very sensitive to shocks and vibrations. Large amount of produce will fall on the ground especially when the combine's head is not adjusted properly. ...
Read More
In recent decades, canola has been considered as the most important oilseed. Harvesting is the most major problem of canola cultivation, since canola pods are very sensitive to shocks and vibrations. Large amount of produce will fall on the ground especially when the combine's head is not adjusted properly. When canola harvested with a combine, the losses may reach up to 50%. The yields can be improved by decreasing seed losses during the harvesting operation. The objective of this study was to determine the optimal harvesting conditions of combine platform to minimize grain losses. In order to achieve this, a laboratory test stand platform was designed and built in the Department of Mechanics of Agricultural Machinery in Shiraz University. Three factors which are more effective on the losses were assessed to determine the best adjustments. These factors were combine forward speed at three levels; 1.5, 2 and 2.5 km h-1, cutter bar speed at three levels; 800, 1100 and 1400 cycles per minute and the relative linear speed of reel in respect of forward speed also at three levels; 1, 1.3 and 1.5. Desired experiment were accomplished on Talaeie variety at 16% m.c) d.b(. The grain losses were measured at each level, with three replicates. By considering the interaction of factors, results showed that the effect of these factors at 5% level was significant, and the minimum loss occurred at 2 km h-1 for forward speed, 1400 cut per minute for cutter bar speed and 1.5 for relative reel speed to forward speed.
M. R. Mostofi Sarkari
Abstract
Corn harvesting involves some losses. These losses result in decreased benefits. It is almost impossible to lower losses to zero percent but it can be controlled in an acceptable level. As a result of this research, appropriate methods are introduced to decrease losses and reduce waste. In this project, ...
Read More
Corn harvesting involves some losses. These losses result in decreased benefits. It is almost impossible to lower losses to zero percent but it can be controlled in an acceptable level. As a result of this research, appropriate methods are introduced to decrease losses and reduce waste. In this project, losses in different part of combine were measured and evaluated according to the available standard method (ASAE S396.2 & S343.3). Harvesting losses include preharvest and during harvest losses comprising ear loss and kernal loss in the header, cylinder and cleaning losses. This project was conducted on farmers’ lands in Gazvin province. Some assessments related to yield factors were evaluated in different parts of farm with specified area, e.g. Plant height, ear number, stem diameter, ear diameter, cob diameter, row/ear and seed/row. All losses evaluated in three treatments which they were: seed moisture content (w.b.) in three levels of 19%, 23% and 27%, ground speed in three levels of 0.8, 1.2 and 1.6 ms-1 and cylinder speed of 400, 600 and 800 rpm. The split plot experimental design based on the randomised complete block design (RCBD) was used to evaluate treatments. Measured losses compared with standard values to introduce the proper methods to decrease losses and proper adjustments. The results show that appropriate seed moisture content, cylinder and ground speed were 23%, 400 rpm and 1.2 ms-1, respectively. They had minimum total loss which WAS 1.55%, 2.65% and 2.34%, respectivily. The results also show that there was an ear loss in preharvest loss (because of bad weather condition) that was 0.95-5.42%, also kernal loss on the header and cylinder loss which all related to improper adjustment of combine but total loss was in an acceptable level and standard. It was variable from 1.55% to 4.02%. Other parameters such as using inexperienced driver, improper combine adjustment, and also nonuniformity of field and ear moisture content in different parts of field prevent using the outputs and recommendations of this research.