نوع مقاله: مقاله علمی- پژوهشی

نویسندگان

1 بوعلی سینا

2 تهران، پردیس ابوریحان

10.22067/jam.v5i1.21550

چکیده

شناسایی ارقام برنج در کشاورزی مدرن از اهمیت بالایی برخوردار است. ویژگی های بافتی از میان عوامل مختلف می تواند برای شناسایی ارقام برنج استفاده شود. پردازش تصاویر دیجیتال به‌عنوان روشی جدید می‌تواند برای استخراج ویژگی‌های بافت به‌کار برده شود. هدف از این پژوهش شناسایی ارقام برنج با استفاده از ویژگی های بافت تصویر به‌کمک پردازش تصویر و شبکه های عصبی مصنوعی پس انتشار می باشد. برای تشخیص ارقام برنج، پنج رقم برنج ایرانی به نام‌های فجر، شیرودی، ندا، طارم محلی و خزر تهیه شدند. 108 ویژگی بافتی از تصاویر برنج با استفاده از ماتریس هم وقوعی تصویر سطوح خاکستری استخراج گردید. سپس شناسایی ارقام با استفاده از شبکه عصبی مصنوعی پس انتشار صورت پذیرفت. پس از ارزیابی شبکه های یک لایه با استفاده از ویژگی های بافتی، بیشترین دقت طبقه بندی برای ارقام شلتوک، برنج قهوه‌ای و سفید به‌ترتیب: 2/92%، 8/97% و 9/98% به‌دست آمد. پس از اینکه شبکه با دولایه پنهان مورد ارزیابی قرار گرفت، بهترین میانگین دقت طبقه بندی برای تشخیص ارقام شلتوک 67/96%، برای برنج قهوه ای 78/97% و برای برنج سفید 88/98% حاصل شد. بیشترین دقت طبقه بندی پس از انتخاب ویژگی برای شلتوک با 45 ویژگی 9/98%، برای ارقام برنج قهوه ای با 11 ویژگی انتخاب شده 3/93% و برای ارقام برنج سفید 7/96% با 18 ویژگی انتخاب شده به‌دست آمد.

کلیدواژه‌ها

  1. Anami, B. S., J. D. Pujari, and R. Yakkundimath. 2011. Identification and classification of normal and affected agriculture/horticulture produce based on combined color and texture feature extraction. International Journal of Computer Applications in Engineering Sciences 1: 356-360.
  2. Arefi, A., A. Modarres Motlagh, and R. Farrokhi Teimourlou. 2011. Wheat class identification using computer vision system and artificial neural networks. International Agrophysics 25: 319-323.
  3. ElMasry, G. N., A. Wang, A. ElSayed, and M. Ngadia. 2006. Hyperspectral imaging for nondestructive determination of some quality attributes for strawberry. Journal of Food Engineering 81 (1): 98-107.
  4. Haykin, S. 1999. Neural networks: A comprehensive foundation. 2nd ed. Prentice Hall. New York.
  5. Haralick, R. M., K. Shanmugam, and I. H. Dinstein. 1973. Textural features for image classification. IEEE Transactions on Systems, Man and Cybernetics 3: 610-621.
  6. Heinzow, T., and R. S. J. Tol. 2003. Prediction of crop yields across four climate zones in Germany: An artificial neural network approach. FNU-34. Centre for Marine and Climate Research, Hamburg University, Hamburg, Germany.
  7. Kannur, A., A., Kannur, V. S. Rajpurohit. 2011. Classification and grading of bulk seeds using artificial neural network. International Journal of Machine Intelligence 3: 62-73.
  8. Khazaei, J., M. R. Naghavi, M. R. Jahansouz, and G. Salimi-Khorshidi 2008. Yield estimation and clustering of chickpea genotypes using soft computing techniques. Agronomy Journal 100: 1077-1087.
  9. Majumdar, S., and D.S. Jayas. 1999. Classification of bulk samples of cereal grains using machine vision system. Journal of Agricultural Engineering Research 73 (1): 35-47.
  10. Majumdar, S., and D.S. Jayas. 2000. Classification of cereal grains using machine vision. I. Morphology models. Transactions of the ASAE, 43 (6): 1669-1675.
  11. Majumdar, S. and D.S. Jayas 2000c. Classification of cereal grains using machine vision. III. Texture models. Transactions of the ASAE, 43 (6): 1681-1687.
  12. Narendra, V. G., and K. S. Hareesh. 2011. Cashew kernels classification using color features. International Journal of Machine Intelligence 3 (2): 52-57.
  13. Neelamma, K. P., S. M. Virendra, and M. Y. Ravi. 2011. Color and texture based identification and classification of food grains using different color models and haralick features. International Journal on Computer Science and Engineering (IJCSE) 3: 3669-3680.
  14. Paliwal, J., M. S. Borhan, and D. S. Jayas. 2004. Classification of cereal grains using a flatbed scanner. Canadian Biosystems Engineering 46: 3.1-3.5.
  15. Petersen, P. H. 1992. Weed seed identification by shape and texture analysis of microscope images. Unpublished Ph.D. Dissertation. The Danish Institute of Plant and Soi1 Science. Copenhagen, Denmark.
  16. Shahin, M. A., and S. J. Symons. 2001. A machine vision system for grading lentils. Canadian Biosystems Engineering 43: 7-14.
  17. Shantaiya, S., and U. Ansari. 2010. Identification of food grain and its quality using pattern classification. International Conference [ICCT-2010], December 3–5. Special Issue of IJCCT, 2, 3, 4: 70–74.
  18. Tsheko, R. 2002. Discrimination of plant species using co-occurrence matrix of leaves. Agricultural Engineering International. The CIGR Journal of Scientific Research and Development, IV (May), Manuscript IT 01 004.
  19. Visen, N. S., D. S. Jayas, J. Paliwal, and N. D. G. White. 2004. Comparison of two neural network architectures for classification of singulated cereal grains. Journal of Canadian Biosystem Engineering 46: 7-14.