نوع مقاله: مقاله علمی- پژوهشی

نویسندگان

دانشگاه فردوسی مشهد

چکیده

در سال‌های اخیر، اتوماسیون در بخش کشاورزی به‌خصوص کشت گلخانه‌ای بیش از پیش مورد توجه محققین و همچنین استقبال تولیدکنندگان قرار گرفته است. دلیل اصلی این مسئله کاهش هزینه‌های تولید به‌ویژه هزینه نیروی انسانی و شرایط سخت کاری در فضای گلخانه می‌باشد. در این پژوهش سامانه بینایی یک روبات برای برداشت فلفل دلمه ارائه می‌شود که قادر به تشخیص فلفل دلمه‌ای سبز رنگ روی بوته در شرایط نور طبیعی می‌باشد. چالش بزرگ پیش روی این تحقیق و برخی محصولات دیگر، مشابهت رنگ محصول با برگ‌ها به‌خصوص در شرایط نور طبیعی بود. برای غلبه بر این چالش، یک شاخص جدید بافتی بر پایه تخمین چگالی لبه تعریف و در ترکیب با شاخص‌های رنگی شامل رنگمایه، شدت اشباع رنگی و سبزینگی تشدید شده (EGI) برای شناسایی میوه‌های مورد نظر استفاده شد. برای ارزیابی سامانه نرم افزاری روبات، از بوته‌های مختلف 50 تصویر تهیه و از مجموع 107 فلفل دلمه موجود در فضای کاری بازوی روبات سامانه قادر به تشخیص 92 عدد از آن‌ها (دقت تشخیص 86% ) بود. با استفاده از پارامتر تعریف شده بافتی، خطای سامانه در شناسایی پس زمینه مخصوصاً برگ‌ها به‌عنوان فلفل دلمه‌های سبز به‌میزان 98/92 درصد کمتر از آنالیز صرفاً رنگی شد، که نشان از مؤثر بودن شیوه تعریف شده جدید در این پژوهش دارد. از مهم‌ترین عوامل بروز خطا، علاوه بر تشابه رنگی میان فلفل دلمه و برگ، می‌توان به سطح براق و ناصاف فلفل دلمه اشاره نمود که به‌ترتیب باعث بازتابش زیاد و ناهمگنی روشنایی روی سطح فلفل دلمه می‌شود.

کلیدواژه‌ها

عنوان مقاله [English]

Desigining of Computer Vision Algorithm to Detect Sweet Pepper for Robotic Harvesting Under Natural Light

نویسندگان [English]

  • A Moghimi
  • M. H Aghkhani
  • M. R Golzarian

Ferdowsi University of Mashhad

چکیده [English]

In recent years, automation in agricultural field has attracted more attention of researchers and greenhouse producers. The main reasons are to reduce the cost including labor cost and to reduce the hard working conditions in greenhouse. In present research, a vision system of harvesting robot was developed for recognition of green sweet pepper on plant under natural light. The major challenge of this study was noticeable color similarity between sweet pepper and plant leaves. To overcome this challenge, a new texture index based on edge density approximation (EDA) has been defined and utilized in combination with color indices such as Hue, Saturation and excessive green index (EGI). Fifty images were captured from fifty sweet pepper plants to evaluate the algorithm. The algorithm could recognize 92 out of 107 (i. e., the detection accuracy of 86%) sweet peppers located within the workspace of robot. The error of system in recognition of background, mostly leaves, as a green sweet pepper, decreased 92.98% by using the new defined texture index in comparison with color analysis. This showed the importance of integration of texture with color features when used for recognizing sweet peppers. The main reasons of errors, besides color similarity, were waxy and rough surface of sweet pepper that cause higher reflectance and non-uniform lighting on surface, respectively.

کلیدواژه‌ها [English]

  • Automatic harvesting
  • Computer vision
  • Image processing
  • Robot
  • Texture index

  1. Canny, J. 1986. A computational approach to edge detection. The IEEE Transactions on Pattern Analysis and Machine Intelligence 8: 679-698.
  2. De-An, Z., L. Jidong, J. Wei, Z. Ying, and C. Yu. 2011. Design and control of an apple harvesting robot. Biosystems Engineering 110: 112-122.
  3. Golzarian, M. R., M. K. Lee, and J. M. A. Desbiolles. 2012. Evaluation of color indices for improved segmentation of plant images. Transactions of the ASABE 55: 261-273.
  4. Hayashi, S., K. Shigematsu, S. Yamamoto, K. Kobayashi, Y. Kohno, J. Kamata, and M. Kurita. 2010. Evaluation of a strawberry-harvesting robot in a field test. Biosystems Engineering 105: 160-171.
  5. Hemming, J., J. L. Ruizendaal, J. W. Hofstee, and E. J. van Henten. 2012. Fruit detectability analysis for different camera positions in sweet-pepper. Sensors 14 (4): 6032-6044.
  6. Kassler, M. 2001. Agricultural automation in the new millennium. Computers and Electronics in Agriculture 30: 237-240.
  7. Kitamura, S., K. Oka, K. Ikutomo, Y. Kimura, and Y. Taniguchi. 2008. A distinction method for fruit of sweet pepper using reflection of LED light. In SICE Annual Conference. The University Electro-Communications, Japan.
  8. Lamm, R. D., D. C. Slaughter, and D. K. Giles. 2002. Precisionweed control system for cotton. Transactions of the ASAE 45 (1): 231-238.
  9. Mohamadi Monavar, H., R. Alimardani, and M. Omid. 2013. Computer vision utilization for detection of green house tomato under natural illumination. Journal of Agricultural Machinery 3: 9-15. (In Farsi).
  10. Ohta, Y., T. Kanade, and T. Sakai. 1980. Color information for region segmentation. Computer Graphics and Image Processing 13: 222-241.
  11. Sarig, Y. 2005. Mechanized fruit harvesting-site specific solutions. Information and Technology for Sustainable Fruit and Vegetable Production, FRUTIC. Montpellier, France.
  12. Tanigaki, K., T. Fujiura, A. Akase, and J. Imagawa. 2008. Cherry-harvesting robot. Computers and Electronics in Agriculture 63: 65-72.
  13. Van Henten, E. J., B. A. J. Van Tuijl, J. Hemming, J. G. Kornet, J. Bontsema, and E. A. Van Os. 2003. Field test of an autonomous cucumber picking robot. Biosystems Engineering 86: 305-313.