با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

2 گروه مهندسی مکانیک بیوسیستم، دانشکده کشاورزی، واحد کرمانشاه، دانشگاه آزاد اسلامی، کرمانشاه، ایران

چکیده

تشخیص به موقع عیوب ماشین های کشاورزی برای انجام کارهای کشاورزی در زمان مناسب بسیار مهم است. تاکنون روش های تجربی و تئوری متعددی برای تشخیص خرابی قسمت های متحرک ماشین آلات ارائه شده است. در این مقاله، ساختار مطلوب شبکه های عصبی بر پایه الگوریتم ژنتیک با استفاده از نرم افزار متلب برای تشخیص عیب مکانیزم کلاچ تراکتور مسی فرگوسن 285 ارائه شده است. یک تابع ارزیاب با هدف دستیابی به ساختار مطلوب شبکه های عصبی با انتخاب مناسب تعداد لایه های پنهان، تعداد نرون ها در لایه های پنهان، تابع انتقال، توابع یادگیری، تابع کارایی و تعداد دوره‌ها مورد استفاده قرار گرفته است، به گونه ای که مقدار پارامتر خطای خروجی (MSE) محاسبه شده نیز به حداقل رسیده باشد. داده ها از سنسور شتاب سنج نصب شده بر روی مکانیزم کلاچ در سه حالت سالم، خرابی بلبرینگ و ساییدگی محور و سه سرعت 1000، 1500 و 2000 دور بر دقیقه جمع آوری شدند. تبدیل موجک بسته برای استخراج بردار خصوصیات و آنالیز مؤلفه های اصلی جهت کاهش ابعاد بردار خصوصیات اعمال شد. مناسب‌ترین پیکربندی شبکه عصبی وقتی به دست آمد که شبکه با توجه به داده های آموزش و آزمایش دارای حداقل خطا بود. بیشترین خطا مربوط به خصوصیات پایگاه اطلاعاتی Db20 بود که MSE آن برابر 0/011 به دست آمد. بهترین پایگاه داده به دست آمده از آزمایش ها و محاسبات مربوط به خانواده Db4 است که کمترین خطا را داشته و دارای یک لایه پنهان و 14 سلول عصبی می باشد، که MSE آن برابر با 7-10 × 4/09 و r آن برابر با 0/9 است که نشان می دهد، می تواند سالم بودن یا خرابی بلبرینگ و شفت کلاچ را با دقت بالا تشخیص دهد.

کلیدواژه‌ها

1. Alfredson, R. J., and J. Mathew. 1985. Frequency domain methods for monitoring the condition of rolling element bearings. Mechanical Engineering Transactions - Institution of Engineers, Australia, ME 10 (2): 108-112.
2. Cao, G., J. Platisa, V. A. Pieribone, D. Raccuglia, M. Kunst, and M. N. Nitabach. 2013. Genetically targeted optical electrophysiology in intact neural circuits. Cell Press 154 (4): 904-913.
3. Demetgul, M., O. Yazicioglu, and A. Kentli. 2011. Radial basis and LVQ neural network algorithm for real time fault diagnosis of bottle filling plant. Technical Gazette 21 4: 689-695.
4. Haykin S. 1998. Neural Networks: A Comprehensive Foundation. Prentice Hall PTR Upper Saddle River, NJ, USA.
5. He, Q. 2013. Vibration signal classification by wavelet packet energy flow manifold learning. Journal of Sound and Vibration 332 (7): 1881-1894.
6. He, Q. 2013. Time-frequency manifold for nonlinear feature extraction in machinery fault diagnosis. Mechanical Systems and Signal Processing 35(1-2): 200-218.
7. Jack, L. B., and A. K. Nandi. 2002. Fault detection using support vector machines and artificial neural networks, augmented by genetic algorithms. Mechanical Systems and Signal Processing 16: 373-390.
8. Jolliffe, I. T. 1986. Principal Component Analysis. Springer, New York.
9. Kim, Y. W. 1995. Analysis and processing of shaft angular velocity signals in rotating machinery for diagnostic applications. in Acoustics, Speech, and Signal Processing, 1995. ICASSP-95., 1995 International Conference on. Dept. of mechanical engineering, Ohio State University, USA: Theoretical or Mathematical 5: 2971-2974.
10. McFadden, P. D., and J. D. Smith. 1985. The vibration produced by multiple point defects in a rolling element bearing. Journal of Sound and Vibration 98 (2): 263-273.
11. Rafiee, J., P. W. Tse, A. Harifi, and M. H. Sadeghi. 2009. A novel technique for selecting mother wavelet function using an intelligent fault diagnosis system, Expert Systems with Applications 36: 4862-4875.
12. Samanta, B. 2004. Artificial neural networks and genetic algorithms for gear fault detection. Mechanical Systems and Signal Processing 18: 1273-1282.
13. Samanta, B. 2004. Gear fault detection using artificial neural networks and support vector machines with genetic algorithms, Mechanical Systems and Signal Processing 18: 625-644.
14. Wang, M., and A. Nandi. 2001. Automatic digital modulation recognition using artificial neural network and genetic algorithm. Signal Processing 84 (2): 351-365.
15. Wang, W. Q., F. Ismail, and M. F. Golnaraghi. 2001. Assessment of gear damage monitoring techniques using vibration measurements. Mechanical Systems and Signal Processing 15 (5): 905-22.
16. Yang, H., J. Mathew, and L. Ma. 2002. Intelligent diagnosis of rotating machinery faults- a review, Proceedings of the 3rd Asia-Pacific Conference on System Integrity and Maintenance, (ACSIM 2002). 385-92. Cairns, Queensland, Australia: Queensland, University of Technology.
17. Yang, H., J. Mathew, and L. Ma. 2004. Vibration Feature Extraction for Diagnosis of Rotating Machinery Faults-A Literature Survey. In Proceedings of the 3rd 10th Asia-Pacific Vibration Conference. Gold coast, Queensland, Australia: Queensland University of Technology. 801-808.
CAPTCHA Image