با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مکانیک ماشین‌های کشاورزی پردیس ابوریحان دانشگاه تهران، ایران

چکیده

خشک کردن یکی از رایج ترین روش های نگهداری مواد غذایی و محصولات کشاورزی می باشد. با عمل خشک کردن آب آزاد که باعث رشد میکروارگانیسم ها و فساد می شود، از محصول حذف شده و باعث افزایش مدت نگهداری می گردد. روش‌های مختلفی برای خشک کردن وجود دارد که یکی از مهم ترین روش ها از نظر هزینه سرمایه گذاری و عملیات، روش خشک کردن با استفاده از انرژی خورشیدی است. در این تحقیق روند انتقال گرما و ضریب انتقال حرارت صفحه جاذب تخت برای دو حالت بدون چرخش و با چرخش (با قابلیت تعقیب تابش خورشید) در یک خشک کن خورشیدی با صفحه تخت مقایسه شد. آزمایشات در شهریور ماه و در شهرستان آذرشهر استان آذربایجان شرقی انجام گرفت. برای این منظور سطح صفحه جاذب به چهار ناحیه مساوی تقسیم گردید. دبی هوای جاری در خشک کن 0/0185 متر مکعب بر ثانیه بود. نتایج حاصل از آزمایش و تحلیل داده ها نشان داد که انتقال گرما در هر دو حالت از اوایل صبح روندی افزایشی داشته و در ساعات 14-12 به مقدار حداکثر خود رسید. این روند در نوع بدون چرخش به‌دلیل کاهش انباشت گرمایی همگن تر از نوع با چرخش بود. مقدار گرمای انتقال یافته در نوع با چرخش 36/1 درصد بیش تر از نوع بدون چرخش بود. برای افزایش گرمای انتقالی از خشک کن طراحی سیستمی که بتواند همزمان با افزایش دما، دبی جریان هوا را تغییر دهد می تواند راندمان خشک کن را افزایش دهد.

کلیدواژه‌ها

1. Aghanajafi, S., and A. Dehghani. 2007. Advanced solar radiation and industrial applications. Khaje Nasir Toosi University press, Tehran.
2. Amer, B. M. A., M. A. Hossain, and K. Gottschalk. 2010. Design and performance evaluation of a new hybrid solar dryer for banana. Energy Conversion and Management 51: 813-820.
3. Bagheri, H. 2008. Design, construction and evaluation of a experimental vegetable solar dryer. M.Sc. thesis of mechanics of agricultural machinery, Abouraihan campus, University of Tehran.
4. Bennamoun, L., and A. Belhamri. 2003. Design and simulation of a solar dryer for agriculture products. Journal of Food Engineering 59: 259-266.
5. Bulemtafes-Boukadoum, A., and A. Benzaoui. 2011. Energy and energy analysis of solar drying process of Mint. Energy Procedia 6: 583-591.
6. Chandrakumar, B. P., and L. B. Jivwanlal. 2013. Development and performance evaluation of mixed-mode solar dryer with forced convection. International journal of energy and environmental engineering 423: 1-8.
7. Delgado, E. A., H. E. Martinez Flores, M. G. GarnicaRomo, J. I. Arand Sanchez, C. S. Aguirre, C. C. Penagos, and J. L. Fernandez-Munoz. 2012. Optimization of solar dryer for the dehydration of fruits and vegetables. Journal of Food Processing and Preservation 11 (2): 2546-2558.
8. Holman, J. P. 2002. Heat transfer. Published by Mc-Grow Hill, Southern Methodist University, New York. Tenth edition.
9. Huff, R. G. 1969. Variation of convective heat-transfer coefficient around a simulated rocket cooling tube section. National aeronautics and space administration. NASA TN, D-5168.
10. Incropera, F., D. Dewitt, T. Bergman, and A. Lavine. 2006. Fundamental of heat and mass transfer. Published by John Wiley and Sons, sixth edition.
11. Ivanova, D., and K. Andonov. 2001. Analytical and experimental study of combined fruit and vegetable drier. Energy and Conversion Management 42 (7): 975.
12. Jokar, A., A. Zomorodian, N. Mafton Azad, and L. Jokar. 2007. Determination of optimized drying condition of pomegranate seeds using response surface methodology. Journal of Agricultural Engineering Research 1: 57.
13. Karim, M. A., and M. N. A. Hawlader. 2005. Drying characteristics of banana: theoretical modeling and experimental validation. Journal of Food Engineering 70: 35-45.
14. Khodaei, J., and H. Samimi. 2013. Investigation of specific heat and thermal conductivity of Rasa grape (Vitisvinifera L.). Journal of Agricultural Machinery 3 (2): 123-132.
15. Madhlopa, A., and G. Ngwalo. 2006. Solar dryer with thermal storage and biomass-backup heater. Solar energy 11 (3): 1252-1263.
16. Mujumdar, A. S. 2000. Drying technology in agriculture and food sciences. Enfield NH, USA: Science Publishers, Inc.
17. Roncati, D. 2013. Iterative calculation of the heat transfer coefficient. A project in Lisa finite element software analysis site.
18. Singh, S., and S. Kumar. 2012. Development of convective heat transfer correlations for common designs of solar dryer. Energy and conversion management 64: 403-414.
19. Soheilimehdizadeh, A. 2004. Design of a solar forced convection dryer for leaf vegetables. Msc thesis of mechanics of agricultural machinery, College of Biosystem Engineering, University of Tehran.
20. Soheilimehdizadeh, A., A. Keyhani, K. Abaspoursani, and A. Akram. 2006. Design of a solar forced convection dryer for leaf vegetables and evaluation of its performance. Journal of Agricultural Engineering Research 27: 164-167.
21. Sreekumar, A., P. E. Manikantan, and K. P. Vijayakumar. 2008. Performance of indirect solar cabinet dryer. Energy Conversion and Management 49: 1388-1395.
22. Zare, D., A. Zomorodian, and H. Ghasemkhani. 2005. Effect of mass flow rate of air and moisture to reduce the drain on the rice crop in a semi-continuous solar dryer. Journal of Science and Technology of Agriculture and Natural Resources 9 (4): 251-264.
CAPTCHA Image