با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مکانیک ماشین‌های کشاورزی، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات تهران، تهران، ایران

2 گروه علوم و صنایع غذایی، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات تهران، تهران، ایران

چکیده

گرمایش اهمی یک روش جدید در فرآوری مواد غذایی است که در آن از جریان الکتریکی برای ایجاد گرما استفاده می شود. گرادیان ولتاژ اعمال شده و نوع الکترود نقش به سزایی در این سامانه دارد. در این تحقیق اثر گرادیان ولتاژ و نوع الکترود در گرمایش اهمی رب گوجه‌فرنگی بر زمان گرمایش، میزان مصرف انرژی وکیفیت محصول مورد بررسی قرار گرفته است. گرادیان‌های ولتاژی V cm-1 5، 7، 9 و 11 و چهار نوع الکترود گرافیت، فولاد ضد زنگ، برنج و آلومینیوم به‌کار برده شد. نتایج نشان داد که بین میزان مصرف انرژی، زمان گرمایش و کیفیت محصول با گرادیان ولتاژ رابطه معنی‌داری در سطح احتمال 1% و با نوع الکترود در سطح احتمال 5% وجود دارد. همچنین اثر متقابل این دو تیمار بر روی سه فاکتور زمان، انرژی مصرفی و کیفیت محصول معنی‌دار بود. کمترین مدت زمان و کمترین مصرف انرژی با الکترود گرافیتی و در گرادیان ولتاژ V cm-111 و بیشترین مدت زمان و بیشترین مصرف انرژی در الکترود آلومینیومی و در گرادیان ولتاژ V cm-15 مشاهده گردید. اما بهترین کیفیت محصول با الکترود فولادی ضد زنگ و در گرادیان ولتاژ V cm-111 به‌دست آمد.

کلیدواژه‌ها

1. AlHussein, M., K. Assiry, S. K. Sastry, and P. Chaminda Samaranayake. 2006. Influence of temperature, electrical conductivity, power and pH on ascorbic acid degradation kinetics during ohmic heating using stainless steel electrodes. Bioelectrochemistry 68: 7-13.
2. Patras, A., N. Brunton, S. D. Pieve, F. Butler, and G. Downey. 2009. Effect of thermal and high pressure processing on antioxidant activity and instrumental colour of tomato and carrot purees. Innovative Food Science and Emerging Technologies 10: 16-22.
3. Assiry, A. M., S. K. Sastry, and C. Samaranayake. 2010. Influence of temperature, electrical conductivity, power and pH on ascorbic acid degradation kinetics during heating using stainless steel electrodes. Bioelectrochem 68: 7-13.
4. Bansal, B., X. D. Chen, and S. X. Q. Lin. 2005. Skim Milk Fouling During Ohmic Heating. ECI Symposium Series, Volume RP2: Proceedings of 6th International Conference on Heat Exchanger Fouling and Cleaning -Challenges and Opportunities, Editors Hans Müller-Steinhagen, M. Reza Malayeri, and A. Paul Watkinson, Engineering Conferences International, KlosterIrsee, Germany, June 5-10.
5. Belghysi, S., and A. Taslimi. 2008. Effects of processing on tomato linchpin. Eighteen national Conference of food science and industrial, Iran, Mashhad.
6. Bozkurt, H., and F. Icier. 2009b. Electrical conductivity changes of minced beef–fat blends during ohmic cooking. Journal of Food Engineering 96: 86-92.
7. Castro, I., J. A. Teixeira, S. Salengke, S. K. Sastry, and A. A. Vicente. 2004. Ohmic heating of strawberry products: electrical conductivity measurements and ascorbic acid degradation kinetics. Innovative Food Science and Emerging Technologies 5: 27-36.
8. Castro, I., O. Gonc alves, J. A.Teixeira, and A. A. Vicente. 2002. Comparative study between Selva strawberries and other varieties for industrialization. Journal of Food Science (forthcoming).
9. Chang, C. H., H. Y. Lin, C. Y. Chang, and Y. C. Liu. 2006. Comparisons on the antioxidant properties of fresh, freeze-dried and hot-air-dried tomatoes. Journal of Food Engineering 77: 478-485.
10. Darvishi, H., A. Hosainpour, F. Nargesi, M. H. Khoshtaghza, and H. Torang. 2012. Ohmic processing: temperature dependent electrical conductivities of lemon juice. Modern Applied Science 5 (1): 210-216.
11. De Alwis, A. A. P., and P. J. Fryer. 1990. A finite-element analysis of heat generationand transfer during ohmic heating of food.Chemical Engineering Science 45 (6): 1547-1559.
12. Rodrigo D., A. Van Loey, and M. Henndrikx. 2007. Combined thermal and high pressure coloure degradation of tomato puree and strawberry juice. Journal of Food Engineering 79: 553-560.
13. Ghanbarzadeh, B., and S.Ghanbarzadeh. 2004. Physical properties of food and processing system. Tehran: Arvan. (In Farsi).
14. Pataro, G., M. J. B. Giuseppe, N. P. Ricardo, A. V. Antonio, A. T. Jose, and G. Ferrari. 2013. Quantification of metal release from stainless steel electrodes during conventional and pulsed ohmic heating. Innovative Food Science and Emerging Technologies 15e: 721-730.
15. Hosainpour, A., H. Darvishi, F. Nargesi, and A. Fadavi. 2013. Ohmic pre-drying of tomato paste. Food Science and Technology International Journal. SG-FSTJ130080.3d. 1-12
16. Icer, F., and C. Ilicali. 2005. Temperature dependent electrical conductivities of fruit purees during ohmic heating. Food Research International 38: 1135-1142.
17. Icier, F., M. Engin, and H. Bozkurt. 2009. Investigation of Applications of OhmicThawing and Ohmic Cooking in Meat Processing. Project Report: TUBITAK TOVAG 107O898, p. 171. (in Turkish).
18. Icier, F., and C. Ilicali. 2005. The use of tylose as a food analog in ohmic heating studies. Journal of Food Engineering 69: 67-77.
19. Lei, L., H. Zhi, Z. Xiujin, I. Takasuke, and L. Zaigui. 2007. Effects of different heating methods on the production of protein_lipid film. Journal of Food Engineering 82: 292-297.
20. Sanjay Sarang, S., S. K. Sastry, and L. Knipe. 2008. Electrical conductivity of fruits and meats during ohmic heating. Journal of Food Engineering 87: 351-356.
21. Mazaheri Tehrani, M., and S. A. Mortazavi. 2005. Optimization of initial conditions heating in order to optimize the production of tamato paste. Food Science and Technology 11: 61-74.
22. Pisit Wongsa, N. 2004. Ohmic Heating of Biomaterials: Peeling and Effects of Rotating Electric Fileld, Presented in Partial Fulfillment of the Requirements for The Degree Doctor of Philosophy in the Graduate School of The Ohio State University.
23. Shirsat, N., J. G. Lyng, N. P. Brunton, and B. McKenna. 2004. Ohmicprocessing: electrical conductivities of pork cuts. Meat Science 67: 507-514.
24. Stancl, J., and R. Zitny. 2010. Direct ohmic Heating and Foulig of Milk. Journal of Food Engineering 99 (4): 437-444.
25. Valencia, C., M. C. Sanchez, A. Ciruelos, A. Lattore, J. M. Madiedo, and C. Gallegos. 2003. Non-linear viscoelasticity modeling of tomato paste products. Food Research Int. 36: 911-919.
26. Www. Fao.org/Faostat/en/#ranking/countries by commodity/2013.
27. Zanoni, B., E. Pagliarini, G. Giovanelli, and V. Lavelli. 2003. Modelling the effects of thermal sterilization on the quality of tomato puree, Journal of Food Engineering 56: 203-206.
28. Zareifard, M. R., H. S. Ramaswamy, M. Trigui, and M. Marcotte. 2003. Ohmic heating behaviour and electrical conductivity of two-phase food systems.InnovativeFood Science and Emerging Technologies 4 (1): 45-55.
29. Zell, M., J. G. Lyng, D. J. Morgon, and D. A. Cornin. 2010. Minimising heat losses during batch ohmic heating of solid food. Food and Bioproducts Processing 38: 1135-1142.
30. Zell, M., J. G. Lyng, D. J. Morgan, and D. A. Cronin. 2011. Minimising heat losses during batch ohmic heating of solid food. Food and Bioproducts Processing 8 9: 128-134.
31. Zell, M., J. G. Lyng, D. A. Cronin, and D. J. Morgan. 2009. Ohmic cooking of wholebeef muscle – Optimisation of meat preparation. Meat Science 81 (4): 693-698.
32. Zhu, S. M., M. R. Zareifard, C. R. Chen, M. Marcotte, and M. Grabowski. 2010. Electrical conductivity of particle–fluid mixtures in ohmic heating: Measurement and simulation. Food Research International Journal 43: 1666-1672.
CAPTCHA Image