با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته دکتری تکنولوژی مواد غذایی، دانشگاه فردوسی مشهد، مشهد، ایران

2 گروه علوم و صنایع غذایی، دانشگاه فردوسی مشهد، مشهد، ایران

3 مرکز تحقیقات نانوفناوری دانشگاه علوم پزشکی مشهد، مشهد، ایران

چکیده

اطلاع از سینتیک کاهش رطوبت جهت پیش بینی رفتار مواد غذایی در طی فرآیند برشته کردن و طراحی برشته کن ها ضروری است. هدف اصلی در این پژوهش تعیین مدل مناسب تجربی و نیمه‌تجربی برای پیشبینی نسبت رطوبت پسته در فرآیند برشته کردن، بررسی تأثیر دما و سرعت جریان هوا بر سینتیک کاهش رطوبت پسته حین برشته شدن واریته احمدآقایی و به‌دست آوردن ضریب انتشار مؤثر و انرژی فعالسازی در فرآیند کاهش رطوبت در حین برشته کردن پسته بوده است. پسته واریته احمد آقایی در آب‌نمک غلیظ غوطه ور شده و برشته کردن در دماهای 130،120، 145، 160 و 170 درجه سلسیوس با سرعت جریان هوای 6/0، 88/0، 3/1، 72/1 و 2 متر بر ثانیه مورد بررسی قرار گرفت. داده های آزمایشی با 7مدل تجربی و نیمه‌تجربی با استفاده از تکنیک آنالیز غیرخطی رگرسیون برازش داده شدند. بیشترین ضریب تبیین، کمترین مربع کای کاهشیافته، مدول میانگین نسبی درصد انحراف نشان داد که مدل ویبال، مدل مناسبی برای پیشبینی نسبت رطوبت پسته می‌باشد. همبستگی ثابتهای مدل ویبال با دما و سرعت جریان هوا تعیین گردیده و ضریب انتشار مؤثر در پسته به‌وسیله قانون دوم فیک در محدوده دمایی 120 تا 170 درجه سلسیوس در محدوده m2s-19-10×418/4 تا m2s-18-10×648/2 محاسبه گردید. میانگین انرژی فعال‌سازی کاهش رطوبت با استفاده از مدل آرنیوسی مقدار kJmol-1156/26 تعیین گردید. ضریب انتشار مؤثر بخار آب در برشته کردن بیشتر از محدوده مشخص شده در خشک کردن در دمای پایین بوده و رابطه مستقیم با دما و سرعت جریان هوا داشت و انرژی فعالسازی واکنش، نزدیک به مقادیر گزارش شده برای اغلب فراورده های کشاورزی است.

کلیدواژه‌ها

1. Aghbashlo, M., M. H. Kianmehr, and S. R. Hassan-Beygi. 2010. Drying and rehydration characteristics of sour cherry (Prunus cerasus L.). Journal of food processing and preservation 34: 351-365.
2. Akpinar, E. K. 2006. Determination of suitable thin layer drying curve model for some vegetables and fruits. Journal of food engineering 73: 75-84.
3. Bruce, D. 1985. Exposed-layer barley drying: three models fitted to new data up to 150 C. Journal of Agricultural Engineering Research 32: 337-348.
4. Corzo, O., N. Bracho, and C. Alvarez. 2010. Weibull Model for thin-layer drying of mango slices at different maturity stages. Journal of food processing and preservation 34: 993-1008.
5. Corzo, O., N. Bracho, A. Pereira, and A. Vasquez. 2008. Weibull distribution for modeling air drying of coroba slices. LWT-Food Science and Technology 41: 2023-2028.
6. FAO. Food and Agriculture organization. 2014. Available at: http://faostat3.fao.org/browse/Q/QC/E
7. Fortes, M., and M. R. Okos. 1981. Non-equilibrium thermodynamics approach to heat and mass transfer in corn kernels. Transactions of the ASAE [American Society of Agricultural Engineers] 24: 761-0769.
8. Henderson, S. 1974. Progress in developing the thin layer drying equation [for maize]. Transactions of the ASAE 17:1167-1168.
9. Henderson, S., and S. Pabis. 1961. Grain drying theory I. Temperature effect on drying coefficient. Journal of Agricultural Engineering Research 6: 169-174.
10. Henderson, S., and S. Pabis. 1962. Grain drying theory: IV. The effect of air flow rate on the drying index. Journal of Agricultural Engineering Research 7: 85-89.
11. Hutchinson, D., and L. Otten. 1983. Thin‐layer air drying of soybeans and white beans. International Journal of Food Science & Technology 18: 507-522.
12. IPA (Iranian Pistachio Association website). 2015. Iran and US annual pistachio production comparison. Available at: http://iranpistachio.org/en/statistical-archive.
13. Karatas, S., and F. Battalbey. 1991. Determination of moisture diffusivity of pistachio nut meat during drying. Lebensmittel-Wissenschaft Technologie 24: 484-487.
14. Kashaninejad, M., A. Mortazavi, A. Safekordi, and L. Tabil. 2007. Thin-layer drying characteristics and modeling of pistachio nuts. Journal of Food Engineering 78: 98-108.
15. Kouchakzadeh, A. 2011. Moisture diffusivity of five major varieties of Iranian pistachios. American Journal of Food Technology 6: 253-259.
16. Madamba, P. S., R. H. Driscoll, and K. A. Buckle. 1996. The thin-layer drying characteristics of garlic slices. Journal of food engineering 29: 75-97.
17. Mohammadpour, V., M. H. Mosavian, and A. Etemadi. 2007. Determination of effective diffusivity coefficient and activation energy of shelled pistachio by using fluidized bed dryer. Archive of SID.
18. O’callaghan, J., D. Menzies, and P. Bailey. 1971. Digital simulation of agricultural drier performance. Journal of Agricultural Engineering Research 16: 223-244.
19. Overhults, D., G. White, H. Hamilton, and I. Ross. 1973. Drying soybeans with heated air. Transactions of the ASAE 16: 112-0113.
20. Özdemir, M., and Y. Onur Devres. 1999. The thin layer drying characteristics of hazelnuts during roasting. Journal of Food Engineering 42: 225-233.
21. Özdemir, M., and O. Devres. 2000. Analysis of color development during roasting of hazelnuts using response surface methodology. Journal of Food Engineering 45: 17-24.
22. Palipane, K. B., and R. H. Driscoll. 1994. The thin-layer drying characteristics of macadamia in-shell nuts and kernels. Journal of food engineering 23: 129-144.
23. Parti, M. 1993. Selection of mathematical models for drying grain in thin-layers. Journal of Agricultural Engineering Research 54: 339-352.
24. Rafiee, S., M. Sharifi, A. Keyhani, M. Omid, A. Jafari, S. S. Mohtasebi, and H. Mobli. 2010. Modeling effective moisture diffusivity of orange slice (Thompson Cv.). International Journal of Food Properties 13: 32-40.
25. Razavi, S. M., B. Emadzadeh, A. Rafe, and A. M. Amini. 2007. The physical properties of pistachio nut and its kernel as a function of moisture content and variety: Part I. Geometrical properties. Journal of Food Engineering 81: 209-217.
26. Rizvi, S. S. 1986. Thermodynamic properties of foods in dehydration. Engineering properties of foods 2:223-309.
27. Saklar, S., S. Katnas, and S. Ungan. 2001. Determination of optimum hazelnut roasting conditions. International Journal of Food Science & Technology 36: 271-281.
28. Tavakolipour, H. 2011. Drying kinetics of pistachio nuts (Pistacia vera L.). World Appl Sci J 12: 1639-1646.
29. Thompson, T., R. Peart, and G. Foster. 1968. Matllematical Simulation of Corn Drying A New Model. Transaction of the ASAE 11: 582-586.
30. Vega-Galvez, A., K. Di Scala, K. Rodriguez, R. Lemus-Mondaca, M. Miranda, J. Lopez, and M. Perez-Won. 2009. Effect of air-drying temperature on physico-chemical properties, antioxidant capacity, colour and total phenolic content of red pepper (Capsicum annuum L. var. Hungarian). Food Chemistry 117: 647-653.
31. Wang, C., and R. Singh. 1978. Use of variable equilibrium moisture content in modeling rice drying. Transactions of American Society of Agricultural Engineers 11: 668-672.
32. Xiao, H. W., C. L. Pang, L. H. Wang, J. W. Bai, W. X. Yang, and Z. J. Gao. 2010. Drying kinetics and quality of Monukka seedless grapes dried in an air-impingement jet dryer. Biosystems Engineering 105: 233-240.
33. ZaMan, W. Z., and T. A.Yang. 2013. Effect of Superheated Steam and Convection Roasting on Changes in Physical Properties of Cocoa Bean (Theobroma cacao). Food Science Technology Research 19 (2): 181-186.
34. Zhu, A., and X. Shen. 2014. The model and mass transfer characteristics of convection drying of peach slices. International Journal of Heat and Mass Transfer 72: 345-351.
CAPTCHA Image