با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی ماشین‌های کشاورزی، دانشکده مهندسی و فناوری پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران

چکیده

این مطالعه با هدف ارزیابی چرخه زندگی تولید یونجه و همچنین مدل‌سازی میزان شاخص پتانسیل گرمایش جهانی بر اساس نهاده‌های ورودی به کمک سامانه انفیس چندلایه انجام گرفت. داده‌های اولیه از طریق مصاحبه رو در رو با کشاورزان یونجه‌کار روستاهای شهرستان بوکان و پر کردن 75 پرسشنامه‌ تخصصی جمع‌آوری شد. دروازه مزرعه و یک هکتار زمین زراعی به‌ترتیب به‌عنوان مرز سامانه و واحد عملکردی انتخاب شدند. به‌منظور ارزیابی اثرات زیست‌محیطی از نرم‌افزار سیماپرو نسخه 8.2.3.0 استفاده شد. مقادیر دسته‌های اثر پتانسیل گرمایش جهانی، تقلیل منابع غیر‌آلی، تقلیل منابع غیر‌آلی (سوخت‌های فسیلی)، پتانسیل اسیدی شدن، اختناق دریاچه‌ای، مسمومیت انسان‌ها، مسمومیت خاک و اکسیداسیون فتوشیمیایی به‌ترتیب برابر kg CO2 eq 13373، kg Sb eq 0/015، MJ 205169، kg SO2 eq 90/64، kg PO4-2 eq 19/78، kg 1,4-DB eq 2054، kg 1,4-DB eq 38/7 و kg C2H4 eq 3/84 به‌دست آمد. نتایج نشان داد که الکتریسیته بر همه شاخص‌ها به‌جز پتانسیل اختناق دریاچه‌ای بیشترین تأثیر را داشت و بیشترین سهم آلایندگی شاخص پتانسیل اختناق دریاچه‌ای مربوط به انتشارات مستقیم مزرعه‌ای بود. نتایج ارزیابی آسیب نیز نشانگر تأثیر بالای الکتریسیته بر همه دسته‌های آسیب به‌جز کیفیت اکوسیستم بود. نتایج مدل‌سازی نشان داد که روش C-means با دقت بالاتری از روش k-fold مقدار پتانسیل گرمایش جهانی را پیش‌بینی می‌کند. مقدار ضریب تبیین (R2) بین مقادیر واقعی و پیش‌بینی شده GWP (Global warming potential) برای دو مدل k-fold و C-means به‌ترتیب برابر 0/994 و 0/99 بود. به‌طور کلی نتایج مدل‌سازی بیانگر دقت بالای انفیس نهایی برای پیش‌بینی میزان آلایندگی در هر دو روش مدل‌سازی بود.

کلیدواژه‌ها

1. Asgharipour, M. R., S. M. Mousavinik, and F. F. Enayat. 2016. Evaluation of energy input and greenhouse gases emissions from alfalfa production in the Sistan region, Iran. Energy Reports 2: 135-140.
2. Anonymous. 2014. Agricultural Jihad statistics. Available from: http://www.maj.ir/Portal/Home/Default.aspx?CategoryID=95a8e7d0-e5f0-4f2d-a241-92106c74dcc.
3. Anonymous. 2010. Statistical Center of Iran. The estimated population of each city. Available from: http://www.amar.org.ir.
4. Azamathulla, H. M., A. A. Ghani, and S. Y. Fei. 2012. ANFIS-based approach for predicting sediment transport in clean sewer. Applied Soft Computing 12 (3): 1227-1230.
5. Bacenetti, J., A. Fusi, M. Negri, R. Guidetti, and M. Fiala. 2014. Environmental assessment of two different crop systems in terms of biomethane potential production. Science of the total environment 466: 1066-1077.
6. Brentrup, F., J. Küsters, H. Kuhlmann, and J. Lammel. 2004. Environmental impact assessment of agricultural production systems using the life cycle assessment methodology: I. Theoretical concept of a LCA method tailored to crop production. European Journal of Agronomy 20 (3) :247-264.
7. Carozzi, M., R. M. Ferrara, G. Rana, and M. Acutis. 2013. Evaluation of mitigation strategies to reduce ammonia losses from slurry fertilisation on arable lands. Science of the Total Environment 449: 126-133.
8. Cellura, M., S. Longo, and M. Mistretta. 2012. Life Cycle Assessment (LCA) of protected crops: an Italian case study. Journal of cleaner production 28: 56-62.
9. CML, 2013. CML e IA (Version 4.2). Institut of Environmental Sciences, Leiden
University, Leiden, The Netherlands.
10. Fahimifard, S. M., M. Salarpour, and M. Sabouhi. 2011. Comparison of ANFIS, ANN and ARIMA Models Performance to Forecasting Case study: Weekly Egg Price. Agricultural Economics and Development 19 (74): 181-205. (In Farsi).
11. Farjam, A., M. Omid, A. Akram, and Z. Fazel Niari. 2014. A neural network based modeling and sensitivity analysis of energy inputs for predicting seed and grain corn yields. Journal of Agricultural Science and Technology 16 (4): 767-778.
12. Ghaderpour, O., and Sh. Rafiee. 2015. Analysis and modeling of energy and production of dryland chickpea in the city of Bukan. The 9th National Congress of Agricultural Machinery Engineering and mechanization. Karaj, Iran. (In Farsi).
13. Ghobadian, B., H. Rahimi, A. M. Nikbakht, G. Najafi, and T. F. Yusaf. 2009. Diesel engine performance and exhaust emission analysis using waste cooking biodiesel fuel with an artificial neural network. Renewable Energy 34 (4): 976-982.
14. Guinee, J. B., M. Gorree, R. Heijungs, G. Huppes, K. R. A. de Koning, A. Wegener Sleeswijk, S. Suh, H. Udo de Haes, H. Bruijn, R.v. Duin, and M. A. J. Huijbregts. 2002. Handbook on life cycle assessment. Operational guide to the ISO standards. Kluwer, Dordrecht, the Netherlands.
15. Ho, Y. C., and C. T. Tsai. 2011. Comparing ANFIS and SEM in linear and nonlinear forecasting of new product development performance. Expert Systems with Applications 38 (6): 6498-6507.
16. IPCC. IPCC Assessment Report 4. 2007.
17. Iriarte, A., J. Rieradevall, and X. Gabarrell. 2010. Life cycle assessment of sunflower and rapeseed as energy crops under Chilean conditions. Journal of Cleaner Production 18(4): 336-345.
18. Joseph, T., K. Baah, A. Jahanfar, and B. Dubey. 2015. A comparative life cycle assessment of conventional hand dryer and roll paper towel as hand drying methods. Science of The Total Environment 515: 109-117.
19. Khoshnevisan, B., Sh. Rafiee, M. Omid, A. Keyhani, and M. Movahedi. 2013a. Evaluating of Energy and environmental indexes in Cultivation of potato with a life-cycle approach in the Fereydoun city of Esfahan province of Iran. Biosystem Engineering 44 (1): 66-57. (In Farsi).
20. Khoshnevisan, B., Sh. Rafiee, M. Omid, H. Mousazadeh, and P. Sefeedpari. 2013b. Prognostication of environmental indices in potato production using artificial neural networks. Journal of Cleaner Production 52: 402-409.
21. Khoshnevisan, B., Sh. Rafiee, M. Omid, and H. Mousazadeh. 2013c. Regression modeling of field emissions in wheat production using a life cycle assessment (LCA) approach. Electronic Journal of Energy & Environment 1 (2): 9-19.
22. Khoshnevisan, B., Sh. Rafiee, M. Omid, H. Mousazadeh, and S. Clark. 2014a. Environmental impact assessment of tomato and cucumber cultivation in greenhouses using life cycle assessment and adaptive neuro-fuzzy inference system. Journal of Cleaner Production 73: 183-192.
23. Khoshnevisan, B., Sh. Rafiee, M. Omid, and H. Mousazadeh, 2014b. Development of an intelligent system based on ANFIS for predicting wheat grain yield on the basis of energy inputs. Information processing in agriculture 1 (1): 14-22.
24. Khoshnevisan, B., Sh. Rafiee, M. Omid, and H. Mousazadeh. 2014c. Prediction of potato yield based on energy inputs using multi-layer adaptive neuro-fuzzy inference system. Measurement 47: 521-530.
25. Khoshnevisan, B., S. Rafiee, J. Iqbald, S. Shamshirbande, M. Omid, N. B. Anuarf, and A.W. Abdul Wahabg. 2015. A Comparative Study between Artificial Neural Networks and Adaptive Neuro-fuzzy Inference Systems for Modeling Energy Consumption in Greenhouse Tomato Production-A Case Study in Isfahan Province. Journal of Agricultural Science and Technology 17 (1): 49-62.
26. Kizilaslan, H. 2009. Input–output energy analysis of cherries production in Tokat Province of Turkey. Applied Energy 86 (7): 1354-1358.
27. Mirhaji, H., M. Khojastehpour, M. H. Abbaspour-Fard, and S.M. Mahdavi-Shahri. 2012. Environmental impact assessment of Sugarbeet (Beta vulgaris L.) production with life cycle assessment method (Case Study: South Khorasan province farms). Journal of Agroecology 4 (2): 112-120. (In Farsi).
28. Mohaddes, S. A., and S. M. Fahimifard. 2015. Application of Adaptive Neuro-Fuzzy Inference System (ANFIS) in Forecasting Agricultural Products Export Revenues (Case of Iran’s Agriculture Sector). Journal of Agricultural Science and Technology 17 (1): 1-10.
29. Mousavi-Avval, Sh., Sh. Rafiee, M. Sharifi, and S. Hoseynpour. 2015. Energy and environmental life cycle assessment of canola production in Mazandaran province of Iran by applying two different approaches. Biosystem Engineering 46 (3): 265-274. (In Farsi).
30. Mousavi-Avval, S. H., Sh. Rafiee, M. Sharifi, S. Hosseinpour, B. Notarnicola, G. Tassielli, and P. A. Renzulli. 2016. Application of multi-objective genetic algorithms for optimization of energy, economics and environmental life cycle assessment in oilseed production. Journal of Cleaner Production. (In Press).
31. Naderloo, L., R. Alimardani, M. Omid, F. Sarmadian, P. Javadikia, M. Y. Torabi, and F. Alimardani. 2012. Application of ANFIS to predict crop yield based on different energy inputs. Measurement 45 (6): 1406-1413.
32. Nemecek, T., X. Bengoa, J. Lansche, P. Mouron, V. Rossi, and S. Humbert. 2014. Methodological Guidelines for the Life Cycle Inventory of Agricultural Products, Version 2.0, July 2014, World Food LCA Database (WFLDB). Quantis and Agroscope, Lausanne and Zurich, Switzerland.
33. Nemecek, T., D. Dubois, O. Huguenin-Elie, and G. Gaillard. 2011. Life cycle assessment of Swiss farming systems: I. Integrated and organic farming. Agricultural Systems 104 (3): 217-232.
34. Nemecek, T., T. Kagi. 2007. Life cycle inventories of agricultural production system. Ecoinvent report No. 15.
35. Pourshirazi, Sh., Gh. Resam, and M. H. Rajabi. 2013. Evaluation of the environmental impact and energy consumption in rice production systems. The 1th conference and exhibition on environmental energy & clean industry. Tehran, Iran.
36. PRe Consultants. 2014. SimaPro 8.2.3.0 Database Manual. More information on: http://cml.leiden.edu/software/data-cmlia.html and http://www.pre-sustainability.
com /simapro/.
37. Ramedani, Z., M. Omid, and A. Keyhani. 2012. A method based on neural networks for generating solar radiation map. International journal of energy and environment 3 (5): 775-786.
38. Rebitzer, G., T. Ekvall, R. Frischknecht, D. Hunkeler, G. Norris, T. Rydberg, W.P. Schmidt, S. Suh, B.P. Weidema, and D.W. Pennington. 2004. Life cycle assessment: Part 1: Framework, goal and scope definition, inventory analysis, and applications. Environment international 30 (5): 701-720.
39. Sahle, A., and J. Potting. 2013. Environmental life cycle assessment of Ethiopian rose cultivation. Science of the total environment 443: 163-172.
40. Sedghi, R., and Y. Abbaspour-Gilandeh. 2014. Prediction of the fragmentation of soil during tillage operations using adaptive neuro-fuzzy inference system. Journal of Agricultural Machinery 4 (2): 387-398. (In Farsi).
41. Sherafat, M., H. Mobli, and M. Khanali. 2015. Analysis of energy consumption and greenhouse gas emission in tea production. The 9th National Congress of Agricultural Machinery Engineering and mechanization. Karaj, Iran. (In Farsi).
42. Sonesson, U., J. Berlin, and F. Ziegler. 2010. Book of environmental assessment and management in the food industry. Woodhead Publishing Series in Food Science, Technology and Nutrition, Num 194.
43. Taheri-Rad, A., A. Nikkhah, M. Khojastehpour, and Sh. Nowrozie. 2014. Assessing GHG emissions, and energy and economic analysis of cotton production in the Golestan province. Journal of Agricultural Machinery 5 (2): 428-445. (In Farsi).
44. Weidema, B. P., C. Bauer, R. Hischier, C. Mutel, T. Nemecek, J. Reinhard, and G. Wernet. 2013. Overview and methodology: Data quality guideline for the ecoinvent database version 3. Swiss Centre for Life Cycle Inventories.
45. Yang, Z., Y. Liu, and C. Li. 2011. Interpolation of missing wind data based on ANFIS. Renewable Energy 36 (3): 993-998.
CAPTCHA Image