با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه صنعتی شاهرود

2 دانشگاه تهران

چکیده

برآورد میزان تابش خورشیدی در هواشناسی، کشاورزی و سامانه‌های مبتنی بر این منبع انرژی پاک و تجدیدپذیر اهمیت دارد. در این پژوهش از دمای روزانه که در دسترس‌ترین داده هواشناسی است به‌عنوان تنها پارامتر مورد نیاز در اقلیم‌های مختلف، استفاده و با کمک شبکه‌های عصبی‌مصنوعی مدل‌های پیش‌بینی تابش خورشیدی توسعه داده شد. معیارهای ارزیابی مدل‌ها شامل R، RMSE و MAPE و نمودارهای پراکندگی مقادیر واقعی و پیش‌بینی شده بود. برای تأمین داده‌های طولانی‌مدت و معتبر، ایالت واشنگتن در شمال‌غربی امریکا با 19 ایستگاه هواشناسی در اقلیم‌های مختلف، انتخاب شد. ابتدا، یک ایستگاه با بیشترین داده معتبر برای توسعه شبکه‌های عصبی لحاظ شد. برای آن، مدل‌هایی با سه تابع آموزشی لونبرگ- مارکوارت (LM)، گرادیان توأم مقیاس‌شده (SCG) و تنظیم بیزین (BR) در حالات یک و دولایه پنهان با حداکثر 20 نرون در هرلایه (در مجموع 1260 مدل) توسعه داده شد و شش مدل برتر انتخاب گردید. این مدل‌ها سپس در سایر ایستگاه‌های این ایالت سنجیده شد و در نهایت، دقیق‌ترین و همه جانبه‌ترین آنها برای ارزیابی میزان تابش خورشیدی در اقلیم مشهد به‌عنوان نمونه‌ای از اقلیم داخل کشور انتخاب شد. نتایج نشان داد که شبکه‌های عصبی بیزین دقیق‌ترین پاسخ و الگوریتم SCG با بالاترین سرعت‌های پردازش، کمترین دقت را در ایالت واشنگتن دارد. بررسی کارایی دقیق‌ترین مدل‌ها (شبکه‌های عصبی بیزین) در ایستگاه هواشناسی مشهد نیز حاکی از توانایی آن بود که نشان داد به کمک این شبکه‌ها، با کمترین داده‌های هواشناسی می‌توان به برآورد مناسبی از تابش خورشیدی در اقلیم‌های متفاوت دست‌یافت.

کلیدواژه‌ها

1. Ahmad, E. A., and E. N. Adam. 2013. Estimate of global solar radiation by using artificial neural network in Qena, Upper Egypt. Journal of Clean Energy Technologies 1: 148-150.
2. Aksoy, B., S. Ener Rusen, and B. Akinoglu. 2011. A Simple correlation to estimate global solar irradiation on a horizontal surface using METEOSTAT sattellite images. Turkish Journal of Engineering and Environmental Sciences 35 (2): 125-137.
3. Allen, R. G. 1997. Self-calibrating method for estimating solar radiation from air temperature. Journal of Hydrologic Engineering 2 (2): 56-67.
4. Almorox, J., M. Bocco, and E. Willington. 2013. Estimation of daily global solar radiation from measured temperatures at Canada de Lugue, Cordoba, Argentina. Renewable Energy 60: 382-387.
5. Anjavi Arsanjani, M., M. Yaghoubi, and K. JafarPour, 2014. Evaluation of solar energy potential in some climatical zones of Iran using artificial neural nework. The first International Solar Energy Conference and Exhibition, Tehran, Iran. (In Farsi).
6. Anonymous. 2017. I.R. of Iran Meteorological Organization. from: http://www.razavimet.ir/node/114. Accessed 7 March 2017.
7. Anonymous. 2015. Pacific Northwest Region. from: https://www.usbr.gov/pn/agrimet/. Accessed 10 April 2016.
8. Behboudian, J. 2015. Introductory Probability and Statistics. Emam Reza publication. (In Farsi).
9. Bindi, M., and F. Miglietta. 1991. Estimating daily global radiation from air temperature and rainfall measurements. Climate Research 1 (2): 117-124.
10. Bristow, K. L. and G. S. Campbell. 1984. On the relationship between incoming solar radiation and daily maximum and minimum temperature. Agricultural and Forest Meteorology 31: 159-166.
11. Burden, F., and D. Winkler. 2008. Bayesian regularization of neural networks. Methods in Molecular Biology 458: 25-44.
12. Cornaro, C. F. 2013. Solar radiation forecast using neural networks for the prediction of grid connected PV plants energy production (DSP). Proceedings of 28th European Photovoltaic Solar Energy Conference and Exhibition. Paris, France.
13. Dehghani, R., M. Ghorbani, M. Teshnehlab, A. Rikhtehgar Gheasi, and E. Asadi, 2015. Comparison and evalution of bayesian neural network, gene gramming, support vector machine and multiple expression proLinear regression in river discharge estimation (Case Study: Sufi Chay Basin). Journal of Irrigation and Water Engineering 20: 66-85. (In Farsi).
14. Faraji Mahyari, K., Z. Faraji Mahyari, and M. Khanali. 2015a. Modeling daily solar radiation temperature-based in four climate regions of Iran. 9th National Congress on Agricultural Machinery Engineering (Mechanics of Biosystems) and Mechanization, Tehran, Iran. (In Farsi).
15. Faraji Mahyari, Z., K. Faraji Mahyari, and M. Khanali. 2015b. Evaluation of performance of empirical sunshine-based models for predicting the daily global solar radiation (Case Study: Bandar Abbas Station). 9th National Congress on Agricultural Machinery Engineering (Mechanics of Biosystems) and Mechanization, Tehran, Iran. (In Farsi).
16. Forsee, F., and M. Hagan. 1997. Gauss-Newton approximation to bayesian learning. In 1997 IEEE international conference on neural networks, 1-4, pp. 1930-1935.
17. Gadiwala , M., A. Usman, M. Akhtar, and K. Jamil. 2013. Empirical models for the estimation of global solar radiation with sunshine hours on horizontal surface in various cities of Pakistan. Pakistan Journal of Meteorology 9 (18): 43-49.
18. Ghahreman, N., and B. Bakhtiari. 2009. Solar radiation estimation from rainfall and temerature data in arid and semi-arid climates of Iran. Desert 14: 141-150.
19. Hargreaves, G. L., G. H. Hargreaves, and J. P. Riley. 1985. Irrigation water requirements for Senegal River basin. Journal of Irrigation and Drainage Engineering, ASCE, 111 (3): 265-275.
20. Hunt, L. A., L.Kuchar, and C. J. Swanton. 1998. Estimation of solar radiation for use in crop modeling. Agric. Forest. Meteorol. 91: 293-300.
21. Kia, M. 2010. Soft Computing in MATLAB. Kian Rayaneh Sabz. (In Farsi).
22. Kim, K. H., J. C. Baltazar, and J. S. Haberl. 2014. Evaluation of meteorological base models for estimating hourly global solar radiation in Texas. Energy Procedia 57: 1189-1198.
23. Layeghi, M. 2015. Solar energy, technologies and applications. Jahad daneshgahi publication. (In Farsi).
24. Li, H., F. Cao, X. Wang, and W. Ma. 2014. A temperature-based model for estimating monthly average daily global solar radiation in China. The Scientific World Journal. 2014, 9 pages.
25. Li, M. F., L. Fan, H. B.Liu, P. T.Guo, and W. Wu. 2013a. A general model for estimation of daily global solar radiation using air temperature and site parameters in Southwest China. Journal of Atmospheric and Solar-Terrestrial Physics 92: 145-150.
26. Li, M. F., X. P. Tang, W. Wu, and H. B. Liu. 2013b. General models for estimating daily global solar radiation for different solar radiation zones in Mainlan China. Energy Conversion and Management 70: 139-148.
27. Liu, X., M. Xurong, Y. Li, Q. Wang, J. Raunso Jensen, Y. Zhang, and J. R. Porter. 2009. Evaluation of temperature-based global solar radiatin models in China. Agricultural and Forest Meteorology 149: 1433-1446.
28. Mackay, D. J. 1992. A practical bayesian framework for backpropagation networks. Neural Computation 4: 448-472.
29. Mirzaee ghale, E., M. Omid, A. Keyhani, and S. Behzadi Pour. 2014. The use of solar energy for a model heating poultry house. Fifth International Conference on heating, cooling and ventilation Systems. Tehran, Iran. (In Farsi).
30. Motamed-Shariati, H. R., H. Mobli, M. Sharifi, and H. Ahmadi. 2016. Prediction of solar radiation by ordinary weather data for Mashhad climate. Iranian Journal of Biosystem Engineering 47 (1): 185-196. (In Farsi).
31. Mousazadeh, H. K. 2010. Optimal power and energy modeling and range evaluation of a solar assist plug-in hybrid electric tractor (SAPHT). Transaction on ASABE, 53 (4): 1-11.
32. Mubiru, J. 2011. Using artificial neural network to predict direct solar irradiation. Advances in Artificial Neural Systems. 2011, 6 pages.
33. Namrata, K., S. Sharma, and S. Saksena. 2013. Comparison of different models for estimation of global solar radiation in Jharkhand (India) Region. Smart Grid and Renewable Energy 4: 384-352.
34. Paoli, C., C. Voyant, M. Muselli, and M. L. Nivet. 2009. Solar radiation forcasting using ad-hoc time series preprocessing and neural network. Emerging Intelligent Computing Technology and Applications 5th International Conference on Intelligent Computing.Ulsan, South Korea.
35. Razafiarison, I., L. Andriazafimahazo, B. Ramamonjisoa, and B. Zeghmati. 2011. Using mutilayered neural networks for determining global solar radiation upon tilted surface in Fianarantsoa Madagascar. Reveu des Energies Renouvelables 14: 329-342.
36. Rivington, M., G. Bellocchi, K. B. Matthews, and K. Buchan. 2005. Evaluation of three model estimation of solar radiation at 24 UK stations. Agricultureal and Forest Meteorology 132: 228-243.
37. Rohani, A., S. Saedi, H. Gerailu, and M. H. Aghkhani. 2015. Prediction of lateral surface, volume and sphericity of pomegranate using MLP artificial neural network. Journal of Agricultural Machinery 5: 292-301. (In Farsi).
38. Sabziparvar, A. A. 2008. A Simple formula for estimation global solar radiation in central arid deserts of Iran. Renewable Energy 33: 1002-1010.
39. Samani, Z. 2000. Estimating solar radiation and evapotranspiration using minimum climatological data. Journal of Irrigation and Drainage Engineering 126 (4): 265-275.
40. Ticknor, J. L. 2013. A bayesian regularized artificial neural network for stock market forcasting. Expert Systems with Applications 40: 5501-5506.
41. Wang, F., Z. Mi, S. Su, and H. Zhao. 2012. Short term solar irradiance forcasting model based on artificial neural network using statistical feature parameters. Energies 5: 1355-1370.
42. Yano, A. O. 2014. Prototype semi-transparent photovoltaic modules for greenhouse roof application. Biosystems Engineering, 122: 62-73.