با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، ایران

2 گروه مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه فردوسی مشهد، ایران

3 گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه آزاد اسلامی، واحد آیت الله آملی، آمل، ایران

چکیده

یکی از جنبه‌های مهم فناوری خشک‌کردن به‌خصوص در فرآیندهای صنعتی، مدل‌سازی و شبیه‌سازی فرآیند خشک‌کردن می‌باشد. در این پژوهش با استفاده از روش عددی شبه‌طیفی معادلات انتقال جرم مربوط به فرآیند خشک کردن سیب حل گردید. جهت بررسی صحت و دقت مدل ارائه شده نتایج حاصل از حل عددی مدل با نتایج آزمایشگاهی مورد مقایسه و ارزیابی قرار گرفت. جهت تأیید بیشتر دقت روش شبه‌طیفی، مثال عددی دارای جواب دقیق حل گردیده و مقدار خطا محاسبه شد. نتایج حاصل از مقایسه داده‌های مدل با نتایج گزارش شده توسط سایر محققین دارای ضریب همبستگی بالاتر از 997/ و ریشه میانگین مربعات خطا کمتر از 1561/0 می‌باشد که بیانگر دقت بالای روش عددی شبه‌طیفی ارائه شده برای حل معادله انتقال جرم خشک شدن سیب می‌باشد.

کلیدواژه‌ها

1. Tavakoli pour, H. 2002. Drying foods, Principles and Methods. Aegee publisher, Tehran.
2. ASHRAE. 2009. ASHRAE Handbook-Fundamentals. American Society of Heating, Refrigeration and Air-Conditioning Engineers Inc., Atlanta.
3. Aregawi, W., T. Defraeye, S. Saneinejad, P. Vontobel, E. Lehmann, J. Carmeliet, P. Verboven, D. Derome, and B. M. Nicolai. 2013. Understanding forced convective drying of apple tissue: Combining neutron radiography and numerical modeling. Innovative Food Science and Emerging Technologies 24: 97-105.
4. Ateeque, M., R. K. Mishra, V. P. Chandra Mohan, and P. Talukdar. 2014. Numerical modeling of convective drying of food with spatially dependent transfer coefficient in a turbulent flow field. International Journal of Thermal Sciences 78: 145-157.
5. Bhrawy, A. H., L. M. Assas, E. Tohidi, and M. A. Alghamdi. 2013. A Legendre-Gauss collocation method for neutral functional-differential equations with proportional delays, Advances in Difference Equations 63: 1-16.
6. Aversa, M., S. Curcio, V. Calabro, and G. Iorio. 2007. An analysis of the transport phenomena occurring during food drying process. Journal of Food Engineering 78 (3): 922-932.
7. Bruce, D. M., and S. A. Giner. 1993. Mathematical modeling of grain drying in counter-flow beds: investigation of crossover of air and grain temperatures, Journal of Agriculture Engineering. 55: 143-161.
8. Canuto, C., M. Y. Hussaini, A. Quarteroni, and T. A. Zang. 1988. Spectral methods in fluid dynamics. Springer, New York.
9. Costa, B. 2004. Spectral Methods for Partial Differential Equations. A Mathematical Journal 6 (4): 1-32.
10. Crank, J. 1975.The Arithmetics of Diffusion, second ed. Oxford University Press, Oxford, UK.
11. Doymaz, I. 2007. Air drying characteristics of tomatoes. Journal of Agriculture Engineering 78: 1291-1297.
12. Graham, N., M. Quandt, and H. Weigel. 2009. Spectral Methods in Quantum Field Theory, Springer-Verlag, Berlin.
13. Hussain, M. M., and I. Dincer. 2003. Numerical simulation of two-dimensional heat and moisture transfer during drying of a rectangular object. Numerical Heat Transfer, Part A: Appl. 43 (8): 867-878.
14. Janjai, S., N. Lamlert, P. Intawee, B. Mahayothee, M. Haewsungcharern, B. K. Bala, and J. Muller. 2008. Finite element simulation of drying of mango. Biosystems Engineering 99 (4): 523-531.
15. Kaya, K., O. Aydın, and C. Demirtas. 2007. Drying Kinetics of Red Delicious Apple. Biosystems Engineering 96 (4): 517-524.
16. Kuo, D. C., J. C. Morales, and K. S. Ball. 1999. Combined natural convection and volumetric radiation in a horizontal annulus: spectral and finite volume predictions. ASME Transaction. Journal of Heat Transfer 121 (3): 610-615.
17. Mujumdar, A. S. 2006. Book Review: Handbook of Industrial Drying, third ed. CRC Press.
18. Lemus-Mondaca, R. A., C. E. Zambra, A. Vega-Galvez, and N. O. Moraga. 2013. Coupled 3D heat and mass transfer model for numerical analysis of drying process in papaya slices. Journal of Food Engineering 116 (1): 109-117.
19. Li, B. W., Y. S. Sun, and D. W. Zhang. 2009. Chebyshev collocation spectral methods for coupled radiation and conduction in a concentric spherical participating medium. ASME Transaction, Journal of Heat Transfer 131 (6).
20. Paitil, N. D. 1988. Evaluation of diffusion equation for simulating moisture movement within an individual grain kernel. Journal of Drying Technology 6 (1): 21-42.
21. Sabarez, H. T. 2014. Mathematical Modeling of the Coupled Transport Phenomena and Color Development: Finish Drying of Trellis-Dried Sultanas. Journal of Drying Technology 32: 578-589.
22. Sadrnia, H., H. Monfared, and M. Khojastehpour. 2015. Comparison of two methods of purple top turnip drying based on energy consumption and quality parameters. Journal of Agricultural Machinery 5 (1):143-153. (In Farsi).
23. Seyedabadi, E., M. Khojastehpour, and M. H. Abbaspour-Fard. 2017. Convective Drying Simulation of Banana Slabs Considering Non-Isotropic Shrinkage Using FEM with Arbitrary Lagrangian- Eulerian Method. International Journal of Food Properties. DOI: 10.1080/10942912.2017.1288134.
24. Shan, X. W., D. Montgomery, and H. D. Chen.1991. Nonlinear magneto hydrodynamics by Galerkin-method computation, Physical Review A. 44 (10): 6800-6818.
25. Srikiatden, J., and J. S. Roberts. 2008. Predicting moisture profiles in potato and carrot during convective hot air drying using isothermally measured effective diffusivity. Journal of Food Engineering. 84: 516-525.
26. Sun, Y., M. Jing, and B. W. Li. 2012. Chebyshev collocation spectral method for three dimensional transient coupled radiative conductive heat transfer. ASME Transaction. Journal of Heat Transfer 134.
27. Tohidi, E., and O. R. N. Samadi. 2013. Optimal control of nonlinear Volterra integral equations via Legendre polynomials, IMA Journal of Mathematical Control and Information 30: 67-83.
28. Tohidi, E., and A. Kilicman. 2014. An Efficient spectral approximation for solving several types of parabolic PDEs with nonlocal boundary conditions. Mathematical Problems in Engineering.
29. Tohidi, E. 2015. Application of chebyshev collocation method for solving two classes of non-classical parabolic PDEs. Ain Shams Engineering Journal 6: 373-379.
30. Tohidi, E., and Saberi Nik, H. 2015. A Bessel collocation method for solving fractional optimal control problems, Applied Mathematical Modeling 39: 455-465.
31. Trefethen LN. Spectral methods in MATLAB. Philadelphia: SIAM; 2000.
32. Tzempelikos, D. A., D. Mitrakos, A. P. Vouros, A. V. Bardakas, A. E. Filios, and D. P. Margaris. 2015. Numerical modeling of heat and mass transfer during convective drying of cylindrical quince slices. Journal of Food Engineering 156: 10-21.
33. Villa-Corrales, L., J. J. Flores-Prieto, J. P. Xaman-Villasenor, and E. Garcia-Hernandez. 2010. Numerical and experimental analysis of heat and moisture transfer during drying of Ataulfo mango. Journal of Food Engineering 98 (2): 198-206.
34. Zare, D., S. Minaei, M. Mohamad Zadeh, and M. H. Khoshtaghaza. 2006. Computer simulation of rough rice drying in a batch dryer. Energy Conversion and Management 47: 3241-3254.
35. Zarein, M., S. H. Samadi, and B. Ghobadian. 2013. Kinetic Drying and Mathematical Modeling of Apple Slices on Dehydration Process. Journal of Food Processing and Technology.
36. Zhou, R. R., and B.W. Li. 2017, Chebyshev collocation spectral method for one-dimensional radiative heat transfer in linearly anisotropic-scattering cylindrical medium. Journal of Quantitative Spectroscopy and Radiative Transfer 189: 206-220.
CAPTCHA Image