با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 واحد علوم و تحقیقات ، دانشگاه آزاد اسلامی

2 دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران

3 دانشگاه تهران

چکیده

در این تحقیق به بررسی وضعیت مصرفی انرژی و میزان انتشار آلاینده‌های زیست‌محیطی با استفاده از ارزیابی چرخه حیات تولید انگور در منطقه هزاوه شهرستان اراک پرداخته شده است. داده‌های لازم از طریق پرسش‌نامه و مصاحبه حضوری از 58 تولیدکننده انگور جمع‌آوری شد. انرژی معادل نهاده‌ها و ستانده با استفاده از هم‌ارزهای انرژی نهاده‌ها و ستانده به‌دست آمد و با استفاده از نرم‌افزار سیماپرو4 و مدل سی‌ام‌ال5، ده گروه تأثیر زیست‌محیطی با نام‌های تقلیل منابع غیرآلی، اسیدی شدن، اختناق دریاچه‌ای، گرمایش جهانی، نقصان لایه‌ ازون، پتانسیل مسمومیت انسان‌ها، مسمومیت آب‌های سطحی، مسمومیت آب‌های آزاد، پتانسیل مسمومیت خاک و اکسیداسیون فتوشیمیایی تولید انگور در ابعاد مختلف زمین مطالعه شد. نتایج مطالعه، کل انرژی ورودی مورد نیاز را برای تولید انگور برابر با 1854 مگاژول بر تن نشان داد. نهاده‌های کود پرندگان و کود نیتروژن هریک 26% از سهم کل انرژی ورودی را به‌خود اختصاص دادند. نتایج مقایسه آماری نشان داد که بین انرژی مصرفی برای تولید هر تن انگور در تاکستان‌های بزرگ و متوسط اختلاف معنی‌داری وجود ندارد، درحالی‌که مصرف انرژی برای تولید هر تن انگور در تاکستان‌های کوچک، اختلاف معنی‌داری نسبت به دو نوع متوسط و بزرگ داشت. همچنین نسبت انرژی و بهره‌وری انرژی در تولید انگور به‌ترتیب 75/5 و 48/0 کیلوگرم بر مگاژول محاسبه شد. نتایج ارزیابی چرخه حیات، میزان گرمایش جهانی به‌عنوان یکی از مهم‌ترین مشکلات قرن حاضر ناشی از تولید هر تن انگور را برابر 63/508 کیلوگرم کربن دی‌اکسید معادل نشان داد. همچنین نتایج وزن‌دهی نشان داد اسیدی شدن ناشی از مصرف مسقیم نهاده‌ها در باغ بیش‌ترین بار زیست‌محیطی را در تولید انگور به‌خود اختصاص داده است. در نهایت نتایج نشان داد تاکستان‌ها با ابعاد باغی بزرگ‌تر، با توجه به میزان عمکلرد بالا سازگاری زیست‌محیطی مناسبی داشته‌اند.

کلیدواژه‌ها

Anonymous. 2014. Agricultural Statistics of Iran, 2013-2014.Horticultural Products, Statistical publications.
2. Brentrup, F., J. Küsters, J. Lammel, and H. Kuhlmann. 2000. Methods to estimate on-field nitrogen emissions from crop production as an input to LCA studies in the agricultural sector. The International Journal of Life Cycle Assessment 5: 349-357.
3. Ingrao, C. A., C. Matarazzo, M. Tricase, T. Clasadonte, and D. Huisingh. 2015. Life cycle assessment for highlighting environmental hotspots in Sicilian peach production systems. Journal of Cleaner Production 92: 109-120.
4. Chaudhary, V., B. Gangwar, and D. Pandey. 2006. Auditing of energy use and output of different cropping systems in India. Agricultural Engineering International: CIGR Journal.
5. Elhami, B., A. Akram, and M. Khanali. 2016. Optimization of energy consumption and environmental impacts of chickpea production using data envelopment analysis (DEA) and multi objective genetic algorithm (MOGA) approaches. Information Processing in Agriculture 3: 190-205.
6. FAO. 2014. World food and agriculture. Food and Agriculture Organization of the United Nations, Rome: 2014.
7. Ferrari, A. M., M. Pini, D. Sassi, E. Zerazion, and P. Neri. 2017. Effects of grape quality on the environmental profile of an Italian vineyard for Lambrusco red wine production. Journal of Cleaner Production.
8. Hamedani, S., R. A. Keyhani, and R. Alimardani. 2011. Energy use patterns and econometric models of grape production in Hamadan province of Iran. Energy 36: 6345-6351.
9. IPCC. 2006. IPCC guidelines for national greenhouse gas inventories. Institute for Global Environmental Strategies, Hayama, Japan 2: 48-56.
10. ISO, I. 2006. 14040 International standards. Environmental Management–Life Cycle Assessment–Principles and Framework, International Organisation for Standardization, Geneva, Switzerland.
11. Karimi, M., and H. Moghaddam. 2016. On-farm energy flow in grape orchards. Journal of the Saudi Society of Agricultural Sciences.
12. Kitani, O. 1999. CIGR Handbook of Agricultural Engineering: Plant production engineering. American Society of Agricultural & Biological Engineers.
13. Mani, I., P. Kumar, J. Panwar, and K. Kant. 2007. Variation in energy consumption in production of wheat–maize with varying altitudes in hilly regions of Himachal Pradesh, India. Energy 32: 2336-2339.
14. Mardani, A., and H. Taghavifar. 2016. An overview on energy inputs and environmental emissions of grape production in West Azerbayjan of Iran. Renewable and Sustainable Energy Reviews 54: 918-924.
15. Marras, S., S. Masia, P. Duce, D. Spano, and C. Sirca. 2015. Carbon footprint assessment on a mature vineyard. Agricultural and Forest Meteorology 214: 350-356.
16. Mousavi-Avval, S., H. S. Rafiee, and A. Mohammadi. 2011. Optimization of energy consumption and input costs for apple production in Iran using data envelopment analysis. Energy 36 (2): 909-916.
17. Mousavi-Avval, S., H. S. Rafiee, M. Sharifi, S. Hosseinpour, B. Notarnicola, G. Tassielli, and P. A. Renzulli. 2017. Application of multi-objective genetic algorithms for optimization of energy, economics and environmental life cycle assessment in oilseed production. Journal of Cleaner Production 140: 804-815.
18. Nabavi-Pelesaraei, A., R. Abdi, S. Rafiee, and H., G. Mobtaker. 2014. Optimization of energy required and greenhouse gas emissions analysis for orange producers using data envelopment analysis approach. Journal of Cleaner Production 65: 311-317.
19. Nemecek, T., T. Kägi, and S. Blaser. 2007. Life cycle inventories of agricultural production systems. Final report ecoinvent v2. 0 No 15.
20. Ozkan, B., C. Fert, and C. F. Karadeniz. 2007. Energy and cost analysis for greenhouse and open-field grape production. Energy 32: 1500-1504.
21. Point, E., P. Tyedmers, C. Naugler. 2012. Life cycle environmental impacts of wine production and consumption in Nova Scotia, Canada. Journal of Cleaner Production 27: 11-20.
22. Rathke, G. W., and W. Diepenbrock. 2006. Energy balance of winter oilseed rape (Brassica napus L.) cropping as related to nitrogen supply and preceding crop. European Journal of Agronomy 24: 35-44.
23. Rebitzer, G., T. Ekvall, R. Frischknecht, D. Hunkeler, G. Norris, T. Rydberg, W. P. Schmidt, S. Suh, B. P. Weidema, and D. W. Pennington. 2004. Life cycle assessment: Part 1: Framework, goal and scope definition, inventory analysis, and applications. Environment International 30: 701-720.
24. Sahle, A., and J. Potting. 2013. Environmental life cycle assessment of Ethiopian rose cultivation. Science of the Total Environment 443: 163-172.
25. Soltanali, H., B. Emadi, A. Rohani, M. Khojastehpour, and A. Nikkhah. 2015. Life cycle assessment modeling of milk production in Iran. Information Processing in Agriculture 2 (2): 101-108.
26. Soltanali, H., A. Nikkhah, and A. Rohani. 2017. Energy audit of Iranian kiwifruit production using intelligent systems. Energy 139: 646-654.
27. Tzilivakis, J., D. Warner, M. May, K. Lewis, and K. Jaggard. 2005. An assessment of the energy inputs and greenhouse gas emissions in sugar beet (Beta vulgaris) production in the UK. Agricultural Systems 85: 101-119.
28. Vazquez-Rowe, I., P. Villanueva-Rey, D. Iribarren, M., T. Moreira and G. Feijoo. 2012. Joint life cycle assessment and data envelopment analysis of grape production for vinification in the Rias Baixas appellation (NW Spain). Journal of Cleaner Production 27: 92-102.
29. Zangeneh, M., M. Omid, and A. Akram. 2010. A comparative study on energy use and cost analysis of potato production under different farming technologies in Hamadan province of Iran. Energy 35: 2927-2933.