با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی مکانیک بیوسیستم، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

2 گروه مهندسی مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه ایلام، ایلام، ایران

چکیده

ارزیابی کیفی محصولات کشاورزی از عوامل بسیار مهم در ارتقای بازارپسندی آن‌ها است. عملیات درجه‌بندی و بسته‌بندی محصولات کشاورزی توسط کارگران با مشکلات فراوانی مثل افزایش هزینه، زمان، نیروی کارگری، تلف شدن محصول و غیره روبه‌رو است. سامانه‌های پردازش تصویر روش‌های نوینی هستند که در بخش کشاورزی کاربردهای مختلفی از جمله درجه‌بندی محصولات دارد. هدف از این پژوهش پیاده‌سازی یک سامانه ماشین بینایی برای طبقه‌بندی هویج بر اساس شکل با استفاده از روش پردازش تصویر می‌باشد. برای این منظور تصویر 135 نمونه هویج در شکل‌های مختلف (معمول و غیرمعمول) تهیه گردید. پس از پیش‌پردازش تصاویر، ویژگی‌های مختلف شکل از تصاویر استخراج شد. در فرآیند انتخاب ویژگی، طول، وسعت، محیط، گردی، ناهمگنی مرکز سطح، ناهمگنی عرضی و تعداد ریشه به عنوان ویژگی­های کارا انتخاب گردید. از روش‌های هوش مصنوعی و ماشین­بردار پشتیبان برای طبقه‌بندی نمونه‌ها استفاده شد. نتایج نشان داد که دقت درجه‌بندی روش شبکه عصبی مصنوعی پرسپترون چندلایه از ماشین بردار پشتیبان بیشتر و برابر با 50/98 درصد می‌باشد. می‌توان گفت که روش پردازش تصویر و ماشین بینایی جهت ارتقا روش سنتی درجه‌بندی هویج کارآمد می‌باشند.

کلیدواژه‌ها

موضوعات

1. Abbas, E. D. 2017. Effect of GA3 on growth and some physiological characterizes in carrot plant (Daucus carota L.). Ibn AL-Haitham Journal for Pure and Applied Science 24: 1-7.
2. Abdollahnejad Barough, A. R., M. Adelinia, and M. Mohamadi. 2016. Sorting of pistachio nuts using image processing techniques and an adaptive neural-fuzzy inference system. Journal of Agricultural Machinery 6: 60-68. (In Farsi).
3. Ali, A. S. M. Y., A. H. M. Solaiman, and K. C. Saha. 2016. Influence of Organic Manures and Neem Products on Growth and Yield of Carrot. International Journal of Crop Science and Technology 2: 19-25.
4. Al-Mallahi, A., T. Kataoka, H. Okamoto, and Y. Shibata. 2010. Detection of potato tubers using an ultraviolet imaging-based machine vision system. Biosystems Engineering 105: 257-265.
5. Batchelor, M. M., and S. W. Searcy. 1989. Computer vision determination of the stem/root joint on processing carrots. Journal of Agricultural Engineering Research 43: 259-269.
6. Blasco, J., N. Aleixos, and E. Molto. 2003. Machine vision system for automatic quality grading of fruit. Biosystems Engineering 85: 415-423.
7. Clement, J., N. Novas, J. A. Gazquez, and F. Manzano-Agugliaro. 2012. High speed intelligent classifier of tomatoes by colour, size and weight. Spanish Journal of Agricultural Research 10: 314-325.
8. Deng, L., H. Du, and Z. Han, 2017. A Carrot Sorting System Using Machine Vision Technique. Applied Engineering in Agriculture 33 (2): 149-156.
9. Du, C. J., and D. W. Sun. 2004. Recent developments in the applications of image processing techniques for food quality evaluation. Trends in Food Science and Technology 15: 230-249.
10. Dubey, S. R., and A. S. Jalal. 2015. Application of image processing in fruit and vegetable analysis: A review. Journal of Intelligent Systems 24: 405-424.
11. Elmasry, G., S. Cubero, E. Molto, and J. Blasco. 2012. In-line sorting of irregular potatoes by using automated computer-based machine vision system. Journal of Food Engineering 112: 60-68.
12. Fu, L., S. Sun, R. Li, and S. Wang. 2016. Classification of kiwifruit grades based on fruit shape using a single camera. Sensors 16: 1012.
13. Golzarian, M. R., M. Shamili, O. Doosti Irani, and P. Azarkish. 2017. Diagnosis of surface defects caused by mechanical damages on mango of kelk-e sorkh variety with the use of color image processing. Iranian Food Science and Technology Research Journal 12: 652-662. (In Farsi).
14. Howarth, M. S., J. R. Brandon, S. W. Searcy, and N. Kehtarnavaz. 1992. Estimation of tip shape for carrot classification by machine vision. Journal of Agricultural Engineering Research 53: 123-139.
15. Izadi, H., S. Kamgar, and M. H. Raoufat. 2016. Tomato grading system using machine vision technology and neuro-fuzzy network (ANFIS). Journal of Agricultural Machinery 6: 49-59. (In Farsi).
16. Jahanbakhshi, A., Y. Abbaspour‐Gilandeh, and T. M. Gundoshmian. 2018. Determination of physical and mechanical properties of carrot in order to reduce waste during harvesting and post‐harvesting. Food Science and Nutrition 6: 1898-1903.
17. Javadikia, H., S. Sabzi, and H. Rabbani. 2017. Machine vision based expert system to estimate orange mass of three varieties. International Journal of Agricultural and Biological Engineering 10: 132-139.
18. Khalifa, S., and M. H. Komarizadeh. 2012. An intelligent approach based on adaptive neuro-fuzzy inference systems (ANFIS) for walnut sorting. Australian Journal of Crop Science 6: 183-187.
19. Kheiralipour, K., and A. Pormah. 2017. Introducing new shape features for classification of cucumber fruit based on image processing technique and artificial neural networks. Journal of Food Process Engineering 40: 1-4.
20. Khojastehnazh, M., M. Omid, and A. Tabatabaeefar. 2010. Development of a lemon sorting system based on color and size. African Journal of Plant Science 4: 122-127.
21. Koc, A. B. 2007. Determination of watermelon volume using ellipsoid approximation and image processing. Postharvest Biology and Technology 45: 366-371.
22. Liming, X., and Z. Yanchao. 2010. Automated strawberry grading system based on image processing. Computers and Electronics in Agriculture 71: S32-S39.
23. McRae, D. C. 1985. A review of developments in potato handling and grading. Journal of Agricultural Engineering Research 31: 115-138.
24. Mohammadi, V., K. Kheiralipour, and M. Ghasemi-Varnamkhasti. 2015. Detecting maturity of persimmon fruit based on image processing technique. Scientia Horticulture 184: 123-128.
25. Mollazade, K., M. Omid, and A. Arefi. 2012. Comparing data mining classifiers for grading raisins based on visual features. Computers and Electronics in Agriculture 84: 124-131.
26. Momin, M. A., K. Yamamoto, M. Miyamoto, N. Kondo, and T. Grift. 2017. Machine vision based soybean quality evaluation. Computers and Electronics in Agriculture 140: 452-460.
27. Moreda, G. P., J. Ortiz-Cañavate, F. J. Garcia-Ramos, and M. Ruiz-Altisent. 2009. Non-destructive technologies for fruit and vegetable size determination–a review. Journal of Food Engineering 92: 119-136.
28. Omid, M., M. Khojastehnazhand, and A. Tabatabaeefar. 2010. Estimating volume and mass of citrus fruits by image processing technique. Journal of Food Engineering 100: 315-321.
29. Omidi Arjenaki, O., P. Ahmadi Moghaddam, and A. Moddares Motlagh. 2013. Online tomato sorting based on shape, maturity, size, and surface defects using machine vision. Turkish Journal of Agriculture and Forestry 37: 62-68.
30. Park, B., and R. (Eds.). Lu. 2015. Hyper spectral imaging technology in food and agriculture. Springer New York.
31. Qiaohua, W., T. Yihua, and X. Zhuang. 2017. Grape size detection and online gradation based on machine vision. International Journal of Agricultural and Biological Engineering 10: 226.
32. Rashidi, M., and K. Seyfi. 2007. Classification of fruit shape in kiwifruit applying the analysis of outer dimensions. International Journal of Agriculture and Biology 9: 759-762.
33. Sabliov, C. M., D. Boldor, K. M. Keener, and B. E. Farkas. 2002. Image processing method to determine surface area and volume of axi-symmetric agricultural products. International Journal of Food Properties 5: 641-653.
34. Semary, N. A., A. Tharwat, E. Elhariri, and A. E. Hassanien. 2015. Fruit-based tomato grading system using features fusion and support vector machine. In Intelligent Systems' 2014: 401-410.
35. Vivek Venkatesh, G., S. M. Iqbal, A. Gopal, and D. Ganesan. 2015. Estimation of Volume and Mass of Axi-Symmetric Fruits Using Image Processing Technique. International Journal of Food Properties 18: 608-626.
36. Wang, N. N., D. W. Sun, Y. C. Yang, H. Pu, and Z. Zhu. 2016. Recent Advances in the Application of Hyper spectral Imaging for Evaluating Fruit Quality. Food Analytical Methods 9: 178-191.
37. Wang, T. Y., and S. K. Nguang. 2007. Low cost sensor for volume and surface area computation of axi-symmetric agricultural products. Journal of Food Engineering 79: 870-877.
38. Zhang, Y., and L. Wu. 2012. Classification of fruits using computer vision and a multiclass support vector machine. Sensors 12: 12489-12505.
CAPTCHA Image