نوع مقاله: مقاله علمی- پژوهشی

نویسندگان

1 دانشگاه محقق اردبیلی

2 دانشگاه ایلام

چکیده

ارزیابی کیفی محصولات کشاورزی از عوامل بسیار مهم در ارتقای بازارپسندی آن‌ها است. عملیات درجه‌بندی و بسته‌بندی محصولات کشاورزی توسط کارگران با مشکلات فراوانی مثل افزایش هزینه، زمان، نیروی کارگری، تلف شدن محصول و غیره روبه‌رو است. سامانه‌های پردازش تصویر روش‌های نوینی هستند که در بخش کشاورزی کاربردهای مختلفی از جمله درجه‌بندی محصولات دارد. هدف از این پژوهش پیاده‌سازی یک سامانه ماشین بینایی برای طبقه‌بندی هویج بر اساس شکل با استفاده از روش پردازش تصویر می‌باشد. برای این منظور تصویر 135 نمونه هویج در شکل‌های مختلف (معمول و غیرمعمول) تهیه گردید. پس از پیش‌پردازش تصاویر، ویژگی‌های مختلف شکل از تصاویر استخراج شد. در فرآیند انتخاب ویژگی، طول، وسعت، محیط، گردی، ناهمگنی مرکز سطح، ناهمگنی عرضی و تعداد ریشه به عنوان ویژگی­های کارا انتخاب گردید. از روش‌های هوش مصنوعی و ماشین­بردار پشتیبان برای طبقه‌بندی نمونه‌ها استفاده شد. نتایج نشان داد که دقت درجه‌بندی روش شبکه عصبی مصنوعی پرسپترون چندلایه از ماشین بردار پشتیبان بیشتر و برابر با 50/98 درصد می‌باشد. می‌توان گفت که روش پردازش تصویر و ماشین بینایی جهت ارتقا روش سنتی درجه‌بندی هویج کارآمد می‌باشند.

کلیدواژه‌ها

عنوان مقاله [English]

Carrot Sorting Based on Shape using Image Processing, Artificial Neural Network, and Support Vector Machine

نویسندگان [English]

  • A Jahanbakhshi 1
  • K Kheiralipour 2

1 University of Mohaghegh Ardabili

2 Ilam University

چکیده [English]

Introduction
Carrot is one of the most important agricultural products used by millions of people all over the world. Quality assessment of agricultural products is one of the most important factors in improving the marketability of agricultural products. In the market, carrots with irregular shapes are not commonly picked by customers due to their appearance. This causes to remain those carrots in the market for a long time and then decay. Therefore, adopting an appropriate method for sorting and packaging this product can increase its desirability in the market. Packaging and sorting of carrots by workers bring about many problems such as high cost, product waste, etc. Image processing systems are modern methods which have different applications in agriculture including sorting of different products. The aim of this study was to implement a machine vision system to classify carrot based on their shape using image processing.
 Materials and Methods
In this study, 135 carrot samples with different shapes (56 regulars and 79 irregulars) were selected and their images were obtained through an imaging system. First, an expert divided the carrots into, two categories according to their shapes. The carrots which had irregular shape were those with double or triple roots, cracked carrots, curved carrots, damaged carrots, and broken ones and those with upright shapes were considered as regular shape carrot. After imaging, image processing was started by an algorithm programmed in Matlab R2012a medium. Then some shape features such as length, width, breadth, perimeter, elongation, compactness, roundness, area, eccentricity, centroid, centroid non-homogeneity, and width non-homogeneity were extracted. After the selection of efficient features, artificial neural networks and support vector machine were used to classify the efficient features.
 Results and Discussion
The number of neurons in the hidden layers of artificial neural network models were varied to find the optimal model. The highest percentage of the correct classification rate (98.50%) belonged to the structure of 2-10-16, which in fact has 16 neurons in the input layer, 10 neurons in the hidden layer and 2 neurons in the output layer. This model has also the lowest mean squared error and the highest correlation coefficient of the test data, 0.90 and 2.52, respectively. This network was a feed forward back propagation error type and the activation functions in hidden and output layers were Tansig and Perlin, respectively. The correct classification rate of the support vector machine method was 89.62%. The confusion matrix of support vector machine method showed that out of 56 usual samples, 42 specimens were correctly identified but 14 samples were mistakenly classified as unusual carrots. All 79 carrots with unusual shapes were correctly classified. The results obtained from the comparison of the performance of the two methods, the neural network method has a good superiority than the support vector machine for classification.
 Conclusions
In this research, the classification of carrots was based on its appearance. At first the physical characteristics and appearance attributes of the carrot samples were extracted and processed using image processing. Image analysis was included the classification of samples into two usual and unusual shapes, which to classify the extracted properties two methods were used: the artificial neural network (ANN) and support vector machine (SVM). The classification accuracy of the ANN method was higher than SVM. It can be said that the image processing method can be used to improve the traditional method for grading the carrot product in new ways. So, the marketability of the product will be increased, and thus its losses will be reduced. Also, the image processing technique can be used as a simple, fast and non-destructive alternative to other methods of extracting geometric properties of agricultural products. Finally, it can be stated that image processing method and machine vision are effective ways for improving the traditional sorting techniques for carrots.

کلیدواژه‌ها [English]

  • Carrot
  • Grading
  • Machine vision
  • Artificial neural networks
  • Support vector machine

  1. Abbas, E. D. (2017). Effect of GA3 on growth and some physiological characterizes in carrot plant (Daucus carota L.). Ibn AL-Haitham Journal For Pure and Applied Science, 24(3).
  2. Ali, A. S. M. Y., Solaiman, A. H. M., & Saha, K. C. (2016). Influence of Organic Manures and Neem Products on Growth and Yield of Carrot. International Journal of Crop Science and Technology, 2(1), 19-25.
  3. Al-Mallahi, A., Kataoka, T., Okamoto, H., & Shibata, Y. (2010). Detection of potato tubers using an ultraviolet imaging-based machine vision system. Biosystems engineering, 105(2), 257-265.
  4. Arjenaki, O. O., Moghaddam, P. A., & Motlagh, A. M. (2013). Online tomato sorting based on shape, maturity, size, and surface defects using machine vision. Turkish Journal of Agriculture and Forestry, 37(1), 62-68.
  5. Blasco, J., Aleixos, N., & Molto, E. (2003). Machine vision system for automatic quality grading of fruit. Biosystems engineering, 85(4), 415-423.
  6. Clement, J., Novas, N., Gazquez, J. A., & Manzano-Agugliaro, F. (2012). High speed intelligent classifier of tomatoes by colour, size and weight. Spanish Journal of Agricultural Research, 10(2), 314-325.
  7. Du, C. J., & Sun, D. W. (2004). Recent developments in the applications of image processing techniques for food quality evaluation. Trends in food science & technology, 15(5), 230-249.
  8. Dubey, S. R., & Jalal, A. S. (2015). Application of image processing in fruit and vegetable analysis: A review. Journal of Intelligent Systems, 24(4), 405-424.
  9. Elmasry, G., Cubero, S., Molto, E., & Blasco, J. (2012). In-line sorting of irregular potatoes by using automated computer-based machine vision system. Journal of Food Engineering, 112(1), 60-68.
  10. Fu, L., Sun, S., Li, R., & Wang, S. (2016). Classification of kiwifruit grades based on fruit shape using a single camera. Sensors, 16(7), 1012.
  11. Golzarian, M. R., Shamili, M., Doosti Irani, o., & Azarkish, P. (2017). Diagnosis of surface defects caused by mechanical damages on mango of kelk-e sorkh variety with the use of color image processing. Iranian Food Science and Technology Research Journal, 12(5), 652.662. (In Farsi).
  12. Huang, Y., Whittaker, A.D. (2001). Automation for food engineering, food quality quantization and process control. CRC Press, Boca Raton, FL, USA.
  13. Izadi, H., Kamgar, S., & Raoufat, M. H. (2016). Tomato grading system using machine vision technology and neuro-fuzzy network (ANFIS). Journal of Agricultural machinery, 6(1), 49-59. (In Farsi).
  14. Javadikia, H., Sabzi, S., & Rabbani, H. (2017). Machine vision based expert system to estimate orange mass of three varieties. International Journal of Agricultural and Biological Engineering, 10(2), 132-139.
  15. Khalifa, S., & Komarizadeh, M. H. (2012). An intelligent approach based on adaptive neuro-fuzzy inference systems (ANFIS) for walnut sorting. Australian Journal of Crop Science, 6(2), 183-187.
  16. Kheiralipour, K., & Pormah, A. (2017). Introducing new shape features for classification of cucumber fruit based on image processing technique and artificial neural networks. Journal of Food Process Engineering.
  17. Khojastehnazh, M., Omid, M., & Tabatabaeefar, A. (2010). Development of a lemon sorting system based on color and size. African Journal of Plant Science, 4(4), 122-127.
  18. Koc, A.B. (2007). Determination of watermelon volume using ellipsoid approximation and image processing. Postharvest Biology and Technology, 45(3): 366-371.
  19. Liming, X., & Yanchao, Z. (2010). Automated strawberry grading system based on image processing. Computers and Electronics in Agriculture, 71, S32-S39.
  20. McRae, D. C. (1985). A review of developments in potato handling and grading. Journal of agricultural Engineering research, 31(2), 115-138.
  21. Mohammadi, V., Kheiralipour, K., & Ghasemi-Varnamkhasti, M. (2015). Detecting maturity of persimmon fruit based on image processing technique. Scientia Horticulturae, 184, 123-128.
  22. Mollazade, K., Omid, M., & Arefi, A. (2012). Comparing data mining classifiers for grading raisins based on visual features. Computers and electronics in agriculture, 84, 124-131.
  23. Momin, M. A., Yamamoto, K., Miyamoto, M., Kondo, N., & Grift, T. (2017). Machine vision based soybean quality evaluation. Computers and Electronics in Agriculture, 140, 452-460.
  24. Moreda, G. P., Ortiz-Cañavate, J., Garcia-Ramos, F. J., & Ruiz-Altisent, M. (2009). Non-destructive technologies for fruit and vegetable size determination–a review. Journal of Food Engineering, 92(2), 119-136.
  25. Omid, M., Khojastehnazhand, M., & Tabatabaeefar, A. (2010). Estimating volume and mass of citrus fruits by image processing technique. Journal of food Engineering, 100(2), 315-321.
  26. Park, B., & Lu, R. (Eds.). (2015). Hyperspectral imaging technology in food and agriculture. Springer New York.
  27. Qiaohua, W., Yihua, T., & Zhuang, X. (2017). Grape size detection and online gradation based on machine vision. International Journal of Agricultural and Biological Engineering, 10(1), 226.
  28. Rashidi, M., & Seyfi, K. (2007). Classification of fruit shape in kiwifruit applying the analysis of outer dimensions. International journal of agriculture and biology, 9(5), 759-762.
  29. Rubatzky, V. E., & Yamaguchi, M. (2012). World vegetables: principles, production, and nutritive values. Springer Science & Business Media.
  30. Sabliov, C.M., Boldor, D., Keener, K.M., & Farkas, B.E. (2002). Image processing method to determine surface area and volume of axi-symmetric agricultural products. International Journal of Food Properties, 5(3): 641-653.
  31. Vivek Venkatesh, G., Iqbal, S. M., Gopal, A., & Ganesan, D. (2015). Estimation of Volume and Mass of Axi-Symmetric Fruits Using Image Processing Technique. International Journal of Food Properties, 18(3), 608-626.
  32. Wang, N. N., Sun, D. W., Yang, Y. C., Pu, H., & Zhu, Z. (2016). Recent Advances in the Application of Hyperspectral Imaging for Evaluating Fruit Quality. Food Analytical Methods, 9(1), 178-191.
  33. Wang, T.Y., & Nguang, S.K. (2007). Low cost sensor for volume and surface area computation of axi-symmetric agricultural products. Journal of Food Engineering, 79(3): 870-877.
  34. Zhang, Y., & Wu, L. (2012). Classification of fruits using computer vision and a multiclass support vector machine. Sensors, 12(9), 12489-12505.