با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 بخش مهندسی مکانیک بیوسیستم، دانشگاه شهید باهنر کرمان، کرمان، ایران

2 بخش تحقیقات فنی و مهندسی کشاورزی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان کرمان، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرمان، ایران

چکیده

محصول خرما یکی از ارزشمندترین محصولات باغبانی در ایران به‌شمار می‌آید که 16% کل صادرات جهانی را شامل می‌شود. استان کرمان دومین رتبه در سطح زیر کشت خرما در ایران را دارا است. به همین منظور تعیین سطح زیر کشت خرما اهمیت پیدا کرده است. برخی از سازمان‌ها برای تعیین سطح زیر کشت از سرشماری استفاده می‌کنند که معایب آن هزینه بالا و اتلاف وقت و نیاز به نیروی انسانی زیاد برای پوشش‌دهی کل کشور است. هدف از این تحقیق سنجش توانایی ماهواره لندست 8 با سنجده OLI  در شناسایی و تعیین سطح زیر کشت نخلستان‌ها است. برای پی بردن به بهترین روش برای شناسایی نخلستان‌ها چهار روش طبقه‌بندی نظارت‌شده Maximum Likelihood Classifier (MLC), Support Vector Machines (SVM), Neural Network (NN), Mahalanobis Distance Classifier (MDC) و یک روش طبقه‌بندی نظارت‌نشده (K-Means) مورد ارزیابی قرار گرفت. نتایج طبقه‌بندی‌ها نشان داد که دقت کلی طبقه‌بندی10/99 % (ضریب کاپا 98/0) با استفاده از NN، 77/98 % (ضریب کاپا 975/0) با استفاده از MLC، 66/98 % (ضریب کاپا 973/0) با استفاده از SVM، 52/98 % (ضریب کاپا 97/0) با استفاده از MDC و 52/66 % ( ضریب کاپا 31/0) با استفاده از K-Means است. خطای تخمین مساحت نخیلات با استفاده از ( RMSE) در روش NN (0)، در روش MLC (2/0)، در روش MDC (06/0)، در روش SVM (0) و در روش K-Means (0) محاسبه شد. پس از تحلیل‌داده‌ها بهترین روش طبقه‌بندی برای شناسایی نخلستان‌ها روش NN شناخته شد. در پژوهش حاضر، با بررسی انجام‌شده بر روی‌داده‌ها در ماتریس آشفتگی مشخص شد که SVM قدرت بالاتری برای شناسایی نخلستان با تشخیص 100% سامانه (تولیدکننده) نسبت به MLC را داشت و همچنین K-Means نیز می‌تواند نخلستان خرما را شناسایی کند اما مناطقی که به رنگ قهوه‌ای تیره هستند را نیز به‌عنوان نخلستان شناسایی کرده است. در مجموع می‌توان گفت هر چهار روش طبقه‌بندی نظارت‌شده با دقت قابل قبولی می‌توانند نخلستان را شناسایی کنند.

کلیدواژه‌ها

1. Alavipanah, S. K. 2017. Application of Remote Sensing in the Earth sciences (soil). (In Farsi).
2. Alipour, F., M. H. Aghakhani, M. H. Abasspour-Fard. and A. Sepehr. 2014. Demarcation and Estimation of Agricultural Lands Using ETM+ Imagery Data (Case study: Astan Ghods Razavi Great Farm). Journal of Agricultural Machinery 4 (2): 244-254. (In Farsi).
3. Azizi, J., and S. Yazdani. 2007. Investigation Stability Income of Export Date of Iran. Journal of Agricultural Sciences 13: 1-19. (In Farsi).
4. Bannari, A., A. Pacheco, K. Staenz, H. McNairn, and K. Omari. 2006. Estimating and mapping crop residues cover on agricultural lands using hyperspectral and IKONOS data. Remote Sensing of Environment 104: 447-459.
5. Bruzzone, L., and B. Demir. 2014. A review of modern approaches to classification of remote sensing data. Pages 127-143. Land Use and Land Cover Mapping in Europe, Springer.
6. Büttner, G. 2014. CORINE land cover and land cover change products. Pages 55-74. Land Use and Land Cover Mapping in Europe, Springer.
7. Chen, Y., and P. Gong. 2013. Clustering based on eigenspace transformation-CBEST for efficient classification. ISPRS Journal of Photogrammetry and Remote Sensing 83: 64-80.
8. De Maesschalck, R., D. Jouan-Rimbaud, and D. L. Massart. 2000. The mahalanobis distance. Chemometrics and intelligent laboratory systems 50: 1-18.
9. Detailed results of in the country Agricultural General Census. 2015. Statistical Center of Iran. (In Farsi).
10. Fatemi-talab, S. R., M. Madani pour, and S. A. Hashemi. 2015. Estimating the land coverage changes in Rudsar Jungles using NN and MLC methods. Journal of Remote sensing and GIS in Natural Resources 6 (2). (In Farsi).
11. Fazeli-farsani, A., R. Ghazavi, and M. A. Farzaneh. 2015. Evaluation of land use classification algorithms using image integration method. Journal of Remote sensing and GIS in Natural Resources 6 (1). (In Farsi).
12. Frey, K. E., and L. C. Smith. 2007. How well do we know northern land cover? Comparison of four global vegetation and wetland products with a new ground‐truth database for West Siberia. Global Biogeochemical Cycles 21.
13. Fritz, S., L. See, and F. Rembold. 2010. Comparison of global and regional land cover maps with statistical information for the agricultural domain in Africa. International Journal of Remote Sensing 31: 2237-2256.
14. Ghebrezgabher, M. G., T. Yang, X. Yang, X. Wang, and M. Khan. 2016. Extracting and analyzing forest and woodland cover change in Eritrea based on landsat data using supervised classification. The Egyptian Journal of Remote Sensing and Space Science 19: 37-47.
15. Ghorbani, M. A., F. Azani, and L. Naghipour. 2016. Comparing SVM and other supervised classification methods in simulating rainfall and run-off. Research Journal of Aquifers Management 13.
16. Gomez, C., J. C. White, and M. A. Wulder. 2016. Optical remotely sensed time series data for land cover classification: A review. ISPRS Journal of Photogrammetry and Remote Sensing 116: 55-72.
17. Gong, W., L. Yuan, W. Fan, X. Wang, and P. Stott. 2016. Comparison to supervised classification modelling in land use cover using Landsat 8 OLI data: an example in Miyun county of North China. Nature Environment and Pollution Technology 15: 243.
18. Huang, C., L. S. Davis, and J. R. Townshend. 2002. An assessment of support vector machines for land cover classification. International Journal of Remote Sensing 23: 725-749.
19. Hansen, M. C., A. Egorov, D. P. Roy, P. Potapov, J. Ju, S. Turubanova, I. Kommareddy, and T. R. Loveland. 2011. Continuous fields of land cover for the conterminous United States using Landsat data: First results from the Web-Enabled Landsat Data (WELD) project. Remote Sensing Letters 2: 279-288.
20. Hashemi Tangestani, M., S. Beyranvand, and M. H. Tayebi. 2013. Detection of changes in Bakhtegan lake at time intervals from 1956 to 2007. Journal of Environmental Studies 39: 189-199. (In Farsi).
21. Hussain, M., D. Chen, A. Cheng, H. Wei, and D. Stanley. 2013. Change detection from remotely sensed images: From pixel-based to object-based approaches. ISPRS Journal of Photogrammetry and Remote Sensing 80: 91-106.
22. Khan, A. A., N. Minallah, and S. Khan. 2015. on the performance of supervised classifiers for crop identification and estimation using multi-spectral imagery. Journal of Engineering and Applied Sciences 34.
23. Khatami, R., G. Mountrakis, and S. V. Stehman. 2016. A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future research. Remote Sensing of Environment 177: 89-100.
24. Kirchhof, W., P. Haberäcker, E. Krauth, G. Kritikos, and R. Winter. 1980. A rapid method to generate spectral theme classification of Landsat imagery. Acta Astronautica 7: 243-253.
25. Kumar, P., D. K. Gupta, V. N. Mishra, and R. Prasad. 2015. Comparison of support vector machine, artificial neural network, and spectral angle mapper algorithms for crop classification using LISS IV data. International Journal of Remote Sensing 36: 1604-1617.
26. Lillesand, T., R. W. Kiefer, and J. Chipman. 2014. Remote sensing and image interpretation. John Wiley & Sons.
27. Loveland, T. R., B. C. Reed, J. F. Brown, D. O. Ohlen, Z. Zhu, L. Yang, and J. W. Merchant. 2000. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. International Journal of Remote Sensing 21: 1303-1330.
28. NASA. 2017. Landsat Project Description. https://landsat.usgs.gov/landsat-project-statistics.
29. Pal, M., and P. Mather. 2006. Some issues in the classification of DAIS hyperspectral data. International Journal of Remote Sensing 27: 2895-2916.
30. Petropoulos, G. P., K. P. Vadrevu, G. Xanthopoulos, G. Karantounias, and M. Scholze. 2010. A comparison of spectral angle mapper and artificial neural network classifiers combined with Landsat TM imagery analysis for obtaining burnt area mapping. Sensors 10: 1967-1985.
31. Powers, D. M. 2011. Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation.
32. Powers, D. M. 2012. The problem with kappa. Pages 345-355. Proceedings of the 13th Conference of the European Chapter of the Association for Computational Linguistics: Association for Computational Linguistics.
33. Radoux, J., C. Lamarche, E. Van Bogaert, S. Bontemps, C. Brockmann, and P. Defourny. 2014. Automated training sample extraction for global land cover mapping. Remote Sensing 6: 3965-3987.
34. Richards, J. A. 1999. Remote sensing digital image analysis. Springer.
35. Rostami, M. A., and H. Afzali. 2016. Remote Sensing of Residue Management in Farms using Landsat 8 Sensor Imagery. Journal of Agricultural Machinery 7 (2): 388-400. (In Farsi).
36. Rostami, M. A., M. H. Raoufat, A. A. Jafari, M. Loghavi, M. Kasraei, and S. M. R. Nazemsadat. 2014. Monitoring of Conservation Tillage and Tillage Intensity by Ground and Satellite Imagery. Journal of Agricultural Machinery 4 (2): 255-265. (In Farsi).
37. Sammut, C., and G. I. Webb. 2011. Encyclopedia of machine learning. Springer Science & Business Media.
38. Shahosseini, R., S. Homayouni, and M. R. Sarajian. 2009. classification remote sensing images using support vector machines. Geometric. (In Farsi).
39. Shao, Y., and R. S. Lunetta. 2012. Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points. ISPRS Journal of Photogrammetry and Remote Sensing 70: 78-87.
40. Tewkesbury, A. P., A. J. Comber, N. J. Tate, A. Lamb, and P. F. Fisher. 2015. A critical synthesis of remotely sensed optical image change detection techniques. Remote Sensing of Environment 160: 1-14.
41. Vapnik V. 1995. The nature of statistical learning theory, Springer-Verlag, New York. 314 pp.
42. Wanga, Q., B. Chena, J. Wang, F. Wanga, H. Hana, S. Li, K. Wang, C. Xiaod, and J. Daid. 2015. Four supervised classification methods for monitoring cotton field of verticillium wilt using TM image. Journal of Animal and Plant Sciences 25: 5-12.
43. Wulder, M. A., J. C. White, M. Cranny, R. J. Hall, J. E. Luther, A. Beaudoin, D. G. Goodenough, and J. A. Dechka. 2008a. Monitoring Canada’s forests. Part 1: Completion of the EOSD land cover project. Canadian Journal of Remote Sensing 34: 549-562.
44. Wulder, M. A., J. C. White, S. N. Goward, J. G. Masek, J. R. Irons, M. Herold, W. B. Cohen, T. R. Loveland, and C. E. Woodcock. 2008b. Landsat continuity: Issues and opportunities for land cover monitoring. Remote Sensing of Environment 112: 955-969.
45. Zobeiry, M., and A. R. Majd. 2013. An Introduction to Remote Sensing Technology and natural resources. University of Tehran press. (In Farsi).
CAPTCHA Image