با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی لاتین

نویسندگان

1 دانشگاه جیرفت

2 دانشگاه بوعلی سینا

3 سازمان پژوهش‌های علمی و صنعتی ایران

چکیده

استفاده از روش‌های غیرشیمیایی یکی از راهکارهای بهبود جوانه‌زنی بذر به‌شمار می‌رود. به‌منظور بررسی اثر اعمال میدان مغناطیسی بر شاخص‌های جوانه‌زنی بذر و رشد گیاهچه پیاز، یک سامانه‌ی میدان مغناطیسی چهار قطبی طراحی و ساخته شد و با سامانه دوقطبی مورد مقایسه قرار گرفت. در سامانه چهارقطبی، هر یک از چهار کلاف سیم پیچ شامل سه‌لایه سیم‌پیچ و یک هسته فلزی است که هسته قابلیت حرکت در درون سیم‌پیچ را دارد. این قابلیت باعث تغییر شدت میدان مغناطیسی، علاوه بر تغییر از طریق تغییر جریان ورودی، خواهد شد. دو آزمایش مستقل با دو سامانه‌ی میدان مغناطیسی به‌صورت فاکتوریل در قالب طرح کاملاً تصادفی با سه تکرار انجام شد. فاکتورها شامل نوع سامانه (دو قطبی و چهار قطبی)، شدت میدان مغناطیسی (75، 150، 300 و 600 میکروتسلا) و مدت زمان اعمال میدان (15، 30، 60 و 120 دقیقه) بود. شاخص‌های مورد بررسی عبارت بودند از: درصد جوانه‌زنی، سرعت جوانه‌زنی، متوسط زمان جوانه‌زنی، شاخص بنیه، طول ساقه‌چه، طول ریشه‌چه، وزن تر ساقه‌چه، وزن‌تر ریشه‌چه، وزن تر گیاهچه، وزن خشک ریشه‌چه و وزن خشک ساقه‌چه. به‌طور کلی نتایج نشان داد که میدان مغناطیسی بر روی شاخص‌های جوانه‌زنی و رشد گیاهچه پیاز تاثیر معنی‌دار داشته و سامانه چهارقطبی نبست به سامانه دوقطبی در بیشتر شاخص‌های مورد مطالعه عملکرد بهتری داشته است. در مورد غالب صفات (به‌جز وزن)، افزایش شدت میدان، منجر به کاهش صفات شد. سیستم چهارقطبی که میدان مغناطیسی 600 میکروتسلایی را به مدت 15 دقیقه به بذر اعمال کرد، باعث افزایش 63 درصدی وزن گیاهچه گردید. غالب صفات جوانه‌زنی تحت تأثیر مدت زمان اعمال میدان به بذر قرار نگرفتند. به هرحال بررسی‌های بیشتر در خصوص مدت زمان اعمال میدان نسبت به زمان اعمال شده در این مطالعه ضروری است.

کلیدواژه‌ها

1. Aboutalebian, M. A., F. Sharifzadeh, M. R. Jahansouz, A. Ahmadi, and M. R. Naghavi. 2005. Effect of osmopriming treatments on speed of emergence, germination percentage, base temperature of germination and seedling vigour index of some wheat cultivars (Triticum aestivum L.). Agricultural Research Soil, Water and Plant 5 (1): 67-82.
2. Bhardwaj, J., A .Anand, and S. Nagarajan. 2012. Biochemical and biophysical changes associated with magnetopriming in germinating cucumber seeds, Plant Physiology and Biochemistry 57: 67-73.
3. Cakmak, T., R. Dumlupinar, and S. Erdal. 2010. Acceleration of germination and early growth of wheat and bean seedlings grown under various magnetic field and osmotic conditions. Bioelectromagnetics 31: 120-129.
4. Carbonell, M., E. Martinez, and R. M. Flores. 2005. Influencia de campos magneticos estacionarios de 125mT y 250 mT en la germinacion de semillas de girasol (in Spanish). Ingenieria de Recursos Naturales y del Ambiente 2 (3): 34-39.
5. De Souza, A., D. Garcia, L. Sueiro, and F. Gilart. 2014. Improvement of the seed germination, growth and yield of onion plants by extremely low frequency non-uniform magnetic fields, Scientia Horticulturae 176: 63-69.
6. Feyzollahzadeh, M., A. Nikbakht, and A. Modarres Motlagh. 2013. Investigation of the Effects of Irrigation and Nutrient Treatments on Biophysical and Biomechanical Properties of Safflower Seed. Journal of Agricultural Machinery 3 (1): 58-70. (In Farsi),
7. Fischer, G., M. Tausz, M. Kock, and D. Grill. 2004. Effects of weak 16 Hz magnetic fields on growth parameters of young sunflower and wheat seedlings. Bioelectromagnetics 25 (8): 638-641.
8. Hołubowicz, R., L. Kubisz, M. Gauza, Y. Tong, and D. Hojan-jezierska. 2014. Effect of Low Frequency Magnetic Field (LFMF) on the Germination of Seeds and Selected Useful Characters of Onion (Allium cepa L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 42 (1): 168-172.
9. Hoseyni, H., and P. Rezvani Moghadam. 2009. Effect of water and salinity stress in seed germination on Isabgol (Plantago ovata). Iranian Journal of Field Crops Research 4 (1): 15-22. (In Farsi).
10. Hozayn, M., A. Amal, A. EL-Mahdy, and H. M. H. Abdel-Rahman. 2015. Effect of magnetic field on germination, seedling growth and cytogenetic of onion (Allium cepa L.). African Journal of Agricultural Research 10 (8): 849-857.
11. Imanmehr, A. 2014. Effects of Drum Speed and Feed Rate on Damaged Wheat Grain during Threshing Operation. Journal of Agricultural Machinery 5 (1): 184-190. (In Farsi).
12. Maguire, J. D. 1962. Speed of germination-aid in selection and evaluation for seedling emergence and vigor. Crop Science 2 (2): 176-177.
13. Martinez, E., M. V. Carbonell, Florez, J. M. Amaya, and R. Maqueda. 2009. Germination of tomato seeds (Lycopersicon esculentum L.) under magnetic field. International Agro Physics 23: 45-49.
14. Rajabbeigi, E., F. Ghanati, and P. Abdolmaleki. 2013. Physiologic responses of suspension-cultured parsley cells to static magnetic field. Iranian Journal of Plant Biology 5 (15): 59-68. (In Farsi).
15. Ranjbar, F., and M. Kianmehr. 2017. Review of some of Coating Seed Factors in Rotary Pan Coater. Journal of Agricultural Machinery 8 (1): 31-41. (In Farsi).
16. Vashisth, A., and D. K. Joshi. 2016. Growth characteristics of maize seeds exposed to magnetic field. Bioelectromagnetics. DOI: 10.1002/bem.2202.
17. Wang, P., and C. Chang. 2003. Detection of the low-germination-rate resting oospores of Pythium myriotylum from soil by PCR. Letters in Applied Microbiology 36 (3):157-161.
18. Zamiran, A., V. R. Saffari, and M. R. Maleki. 2013. Seed Germination Enhancement of Zinnia (Zinnia elegans) Using Electromagnetic Field. Journal of Ornamental Plants 3 (3): 203-214.
19. Zeidali, H., Z. Rostami, F. Darabi, H. Soheyli, Gh. Nabiyouni, and R. Naseri. 2017. Germination and Growth of Wheat and Wild Oat Seedling as Affected by Different Intensities and Times of Magnetic Fields. Biological, Environmental and Agricultural Sciences 2: 86-100.