با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی مکانیک بیوسیستم، دانشگاه صنعتی اصفهان، اصفهان، ایران

2 گروه مهندسی مکانیک بیوسیستم، دانشگاه ایلام، ایلام، ایران

3 بخش مهندسی بیوسیستم، دانشگاه شیراز، شیراز، ایران

چکیده

در این پژوهش، نیروهای وارد بر گاوآهن برگرداندار، به دلیل اهمیت و تأثیرگذاری در برخی موارد همچون انتخاب تراکتور و به‌دست آوردن مدلی دقیق برای پیش‌بینی این نیروها، مورد بررسی قرار گرفتند. اثرات عمق خا‌ک‌ورزی در پنج سطح (5، 10، 15، 20 و 25 سانتی‌متر) و نیز سرعت پیشروی در پنج سطح (1، 5/1، 2، 5/2 و 3 متر بر ثانیه) بر نیروهای وارد بر گاوآهن برگرداندار (کششی، عمودی و جانبی) به‌صورت شبیه‌سازی شده به روش المان محدود به‌دست آمده و مورد بررسی و ارزیابی قرار گرفتند. دو روش سطح پاسخ و شبکه عصبی مصنوعی برای مدل‌سازی و پیش‌بینی نیروها به‌کار گرفته شدند. نتایج مقایسه این دو روش نشان داد که این دو روش به خوبی می‌توانند نیروهای مورد نظر را پیش‌بینی کنند، اما روش شبکه عصبی مصنوعی عملکرد بهتری نسبت به روش دیگر برای پیش‌بینی نیروها داشت. نتایج داده‌های به‌دست آمده حاکی از آن است که افزایش عمق خاک‌ورزی از 5 تا 25 سانتی‌متر و سرعت پیشروی از 1 تا 3 متر بر ثانیه، منجر به افزایش غیر خطی نیروهای کششی، عمودی و جانبی به‌ترتیب به میزان 55/66%، 47/68% و 76/64% می­شود. با استفاده ازمدل‌هایی که توسط شبکه عصبی مصنوعی به‌دست آمده که دقت نسبتاً خوبی دارند، می‌توان قبل از ورود به مزرعه با توجه به عمق خاک‌ورزی و سرعت پیشروی مد نظر با توجه به بازه‌های تعریف شده برای هر کدام در این پژوهش، مقادیر نیروهای وارد بر گاوآهن برگرداندار را بررسی و به‌دست آورد. سپس با استفاده از این نیروها می‌توان به‌طور مثال تراکتوری را انتخاب نمود که توان کشش این گاوآهن را در شرایط تعریف شده (عمق خاک‌ورزی و سرعت پیشروی) مورد نظر داشته باشد. به همین خاطر توصیه می‌گردد که از مدل شبکه عصبی توسعه داده شده در این پژوهش، استفاده گردد.  

کلیدواژه‌ها

موضوعات

Open Access

©2020 The author(s). This article is licensed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

1. ABAQUS. 2016. ABAQUS User’s Manuals Version 6.12.1. ABAQUS Inc. Providence, RI.
2. Abo-Elnor, M., R. Hamilton, and J. Boyle. 2004. Simulation of soil-blade interaction for sandy soil using advanced 3D finite element analysis. Soil and Tillage Research 75 (1): 61-73.
3. AISI Standard. 2011. S905-08: Test methods for mechanically fastened cold-formed steel connections.
4. Akbarnia, A., A. Mohammadi, R. Alimardani, and F. Farhani. 2014. Simulation of draft force of winged share tillage tool using artificial neural network model. Agricultural Engineering International: CIGR Journal 16 (4): 57-65.
5. Al-Suhaibani, S., and A. E. Ghaly. 2010. Effect of plowing depth of tillage and forward speed on the performance of a medium size chisel plow operating in a sandy soil. American Journal of Agricultural and Biological Science.
6. Arvidsson, J., T. Keller, and K. Gustafson. 2004. Specific draught for moldboard plough, chisel plough and disc harrow at different water contents. Soil and Tillage Research 79: 221-231.
7. Bentaher, H., A. Ibrahmi, E. Hamza, M. Hbaieb, G. Kantchev, A. Maalej, and W. Arnold. 2013. Finite element simulation of moldboard–soil interaction. Soil and Tillage Research 134: 11-16.
8. Bishop, C. 2006. Pattern recognition and machine learning. USA: Springer.
9. Chen, Y., L. J. Munkholm, and T. Nyord. 2013. A discrete element model for soil–sweep interaction in three different soils. Soil and Tillage Research 126: 34-41.
10. Durairaj, C., and M. Balasubramanian. 1997. A method for dynamic measurement of soil failure patterns caused by tillage tools. Soil and Tillage Research 41: 115-121.
11. Godwin, R. J., M. J. O'Dogherty, C. Saunders, and A. T. Balafoutis. 2007. A force prediction model for mouldboard ploughs incorporating the effects of soil characteristic properties, plough geometric factors and ploughing speed. Biosystems Engineering 97 (1): 117-129.
12. Hosseini, M., S. A. Movahedi Naeini, A. A. Dehghani, and Y. Khaledian. 2016. Estimation of soil mechanical resistance parameter by using particle swarm optimization, genetic algorithm and multiple regression methods. Soil and Tillage Research 157: 32-42.
13. Ibrahmi, A., H. Bentaher, M. Hbaieb, A. Maalej, and A. Mouazen. 2015a. Study the effect of tool geometry and operational conditions on mouldboard plough forces and energy requirement: Part 1. Finite element simulation. Computers and Electronics in Agriculture 117: 258-267.
14. Ibrahmi, A., H. Bentaher, E. Hamza, A. Maalej, and A. Mouazen. 2015b. Study the effect of tool geometry and operational conditions on mouldboard plough forces and energy requirement: Part 2. Experimental validation with soil bin test. Computers and Electronics in Agriculture 117: 268-275.
15. Jafari, R., and T. TavakoliHashjin. 2016. Performance evaluation of modified Bentleg plow using finite element approach. Iran Agricultural Research 35 (1): 63-72.
16. Li, B., Y. Chen, and J. Chen. 2016. Modeling of soil–claw interaction using the discrete element method (DEM). Soil and Tillage Research 158: 177-185.
17. Maran, J. P., and B. Priya. 2015. Comparison of response surface methodology and artificial neural network approach towards efficient ultrasound-assisted biodiesel production from muskmelon oil. Ultrason Sonochem 23: 192-200.
18. Mckyes, E. 1985. Soil Cutting and Tillage. Elsevier Science Publishing Company Inc., 52 Vanderbilt Avenue, New York, NY 10017, USA.
19. Miron, R., D. Hrimiuc, H. Shimada, and S. V. Sabau. 2002. The geometry of Hamilton and Lagrange spaces. Kluwer academic publishers.
20. Mostafaei, M., H. Javadikia, and L. Naderloo. 2016. Modeling the effects of ultrasound power and reactor dimension on the biodiesel production yield: Comparison of prediction abilities between response surface methodology (RSM) and adaptive neuro-fuzzy inference system (ANFIS). Energy 115: 626-636.
21. Rahmatian, M., S. H. Karparvarfard, and M. A. Nematollahi. 2018. Prediction for optimizing performance of chisel blade used in combined tillage to obtain suitable effectiveness. Iranian Journal of Biosystem Engineering, 49 (1): 73-82. (In Farsi).
22. Roul, A. K., H. Raheman, M. S. Pansare, and R. Machavaram. 2009. Predicting the draught requirement of tillage implements in sandy clay loam soil using an artificial neural network. Biosystems Engineering 104: 476-485.
23. Salar, M. R., and S. H. Karparvarfard. 2017. Modeling and optimization of wing geometry effect on draft and vertical forces of winged chisel plow. Journal of Agricultural Machinery 7 (2): 468-479. (In Farsi).
24. Sahu, R. K., and H. Raheman. 2006. Draught prediction of agricultural implements using reference tillage tools in sandy clay loam soil. Biosystems Engineering 94 (2): 275-284.
25. Sarve, A., S. S. Sonawane, and M. N. Varma. 2015. Ultrasound assisted biodiesel production from sesame (Sesamum indicum L.) oil using barium hydroxide as a heterogeneous catalyst: comparative assessment of prediction abilities between response surface methodology (RSM) and artificial neural network (ANN). Ultrason Sonochem 26: 218-28.
26. Shafaei, S. M., M. Loghavi, and S. A. Kamgar. 2018. Comparative study between mathematical models and the ANN data mining technique in draft force prediction of disk plow implement in clay loam soil. Agricultural Engineering International: CIGR Journal. (In press).
27. Shafaei, S. M., and S. Kamgar, 2017. Comprehensive investigation on static and dynamic friction coefficients of wheat grain with the adoption of statistical analysis. Journal of Advanced Research 8 (1): 51-61.
28. Shmulevich, I., Z. Asaf, and D. Rubinstein. 2007. Interaction between soil and a wide cutting blade using the discrete element method. Soil and Tillage Research 97 (1): 37-50.
29. Srivastava, A. K., C. E. Goering, R. P. Rohrbach, and D. R. Buckmaster. 2006. Soil tillage. Chapter 8 in Engineering Principles of Agricultural Machines, 2nd ed., 169-230. St. Joseph, Michigan: ASABE.
30. Taghavifar, H., A. Mardani, H. Karim-Maslak, and H. Kalbkhani. 2013. Artificial Neural Network estimation of wheel rolling resistance in clay loam soil. Applied Soft Computing 13 (8): 35-51.
31. Taghavifar, H., and A. Mardani. 2014a. Application of artificial neural networks for the prediction of traction performance parameters. Journal of the Saudi Society of Agricultural Science 13 (1): 35-43.
32. Taghavifar, H., and A. Mardani. 2014b. Wavelet neural network applied for prognostication of contact pressure between soil and driving wheel. Information Processing in Agriculture 1 (1): 51-60.
33. Ucgul, M., C. Saunders, and J. M. Fielke. 2017. Discrete element modeling of tillage forces and soil movement of a one-third scale moldboard plough. Biosystems Engineering 155: 44-54.
CAPTCHA Image