1. Chen, F., C. F. Liu, and J. Y. Yang. 1994. Supersonic flow in the second-throat ejector–diffuser system. Journal of Spacecraft and Rockets 31 (1): 123-129.
2. Fan, J., J. Eves, H. M. Thompson, V. V. Toropov, N. Kapur, and D. Copley. 2011. Computational fluid dynamic analysis and design optimization of jet pumps. Computers & Fluids 46: 212- 217.
3. Giacomelli, F., G. Biferi, F. Mazzelli, and A. Milazzo. 2016. CFD Modeling of the Supersonic Condensation inside a Steam Ejector. Energy Procedia 101: 1224-1231.
4. Gyarmathy, G. 1963. On the growth rate of droplets in a supersaturated atmosphere. Zeitschrift für angewandte Mathematik und Physik 14 (13): 280-293.
5. Gyarmathy, G. 1976 .Condensation in flowing steam, a von-Karman institute book on two-phase steam flow in turbines and separators. Hemisphere 127-89.
6. Han, B., Z. Liu, H. Wu, and Y. Li. 2014. Experimental study on a new method for improving the performance of thermal vapor compressors for multi-effect distillation systems. Desalination 344: 391-3955.
7. Kantrowitz, A. 1951. Nucleation in very rapid vapor expansions. The Journal of Chemical Physics 19:1097-1100.
8. Khalid, K. A., M. A. Antar, A. Khalifa, O. A. Hamed. 2018. Allocation of thermal vapor compressor in multi effect desalination systems with different feed configurations. Desalination 426: 164-173.
9. Kim, S. D., I. S. Jeong, and D. J. Song. 2007. A computational analysis of unsteady transonic/ supersonic flows over backward facing step in air jet nozzle. Journal of Mechanical Science and Technology 21 (2): 336-348.
10. McDonald, J. E. 1962. Homogeneous nucleation of water vapor condensation: I. Thermodynamic aspects. American Journal of Physics 30: 870-877.
11. MyoungKuk, J., T. Utomo, J. Woo, Y. H. Lee, H. M. Jeong, and H. S. Chung. 2010. CFD investigation on the flow structure inside thermo vapor compressor. Energy 35: 2694-2702.
12. Naddi, F., S. A. Mehdizadeh, and U. N. Zonuz. 2017. Comparing between predicted output temperature of flat-plate solar collector and experimental results: computational fluid dynamics and artificial neural network. Journal of Agricultural Machinery 7 (1): 298-311. (In Farsi).
13. Pianthong, K., W. Seehanam, M. Behnia, T. Sriveerakul, and S. Aphornratana. 2007. Investigation and improvement of ejector refrigeration system using computational fluid dynamics technique. Energy Conversion and Management 48: 2556-2564.
14. Rezvanivandefanayi, A., and A. M. Nikbakht. 2015. A CFD Study of the Effects of Feed Diameter on the Pressure Drop in Acyclone Separator. International Journal of Food Engineering 11: 71-77.
15. Riffat, S. B., G. Gan, and S. Smith. 1996. Computational fluid dynamics applied to ejector heat pumps. Applied Thermal Engineering 16: 291-297.
16. Rusly, E., and L. Aye. 2005. CFD analysis of ejector in a combined ejector cooling system. International Journal of Refrigeration 28: 1092-1100.
17. Shari, N., M. Boroomand, and R. Kouhikamali. 2012. Wet steam flow energy analysis within thermo-compressors. Energy 47: 609-619.
18. Sharifi, N., and M. Boroomand. 2013. An investigation of thermo-compressor design by analysis and experiment. Part 2. Development of design method by using comprehensive characteristic curves. Energy Conversion and Management 69: 228-237.
19. Simpson, D. A., and A. J. White. 2005. Viscous and unsteady flow calculations of condensing steam in nozzles. International Journal of Heat and Fluid Flow 26: 71-79
20. Young, J. B. 1982. The spontaneous condensation of steam in supersonic nozzles. Physicochemical Hydrodynamics 3 (1): 57-82.
21. Young, J. B. 1992. Two-dimensional non-equilibrium wet-steam calculations for nozzles and turbine cascades. Journal of Turbomachinery 114: 569-578.
ارسال نظر در مورد این مقاله