با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 بخش مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ایران

2 گروه مهندسی مکانیک بیوسیستم، دانشگاه صنعتی اصفهان، اصفهان، ایران

چکیده

نوعی تیغه خاک‌ورز جدید با زوایای تمایل مختلف مورد بررسی قرار گرفت. در این تحقیق تیغه‌های باله‌دار و بدون باله ساخته شده و مورد ارزیابی قرار گرفت. تیمارهای آزمایش که به‌عنوان عوامل وابسته در نظر گرفته شدند عبارت از دو سطح عمق خاک‌ورزی (15 و 20 سانتی‌متر)، پنج زاویه تمایل (صفر، 10، 15، 20 و 25 درجه) و سه سطح سرعت پیشروی (3، 4 و 5 کیلومتر بر ساعت) بودند. همچنین شش عامل مستقل اندازه‌گیری شده شامل مقاومت کششی، مصرف سوخت تراکتور، لغزش چرخ محرک، سطح مقطع به‌هم‌خوردگی خاک، سطح مقطع بالا‌آمدگی خاک و مقاومت ویژه بودند. برای انجام آزمایش‌های مزرعه‌ای از طرح آماری کرت‌های دو بار خرد شده بر پایه‌ی طرح کامل تصادفی و در سه تکرار استفاده گردید. طبق نتایج به‌دست آمده از بهینه‌سازی، مقادیر بهینه‌ی عمق خاک‌ورزی برای تیغه‌های باله‌دار و بدون باله، 20 سانتی‌متر به‌دست آمد. همچنین مقادیر بهینه‌ی زاویه تمایل و سرعت پیشروی در هر دو حالت باله‌دار و بدون باله به‌ترتیب 25 و 8/24 درجه و 3/3 و 5/3 کیلومتر بر ساعت به‌دست آمد. ضمناً راندمان کششی تراکتور 82 درصد و میزان کاهش مصرف سوخت تراکتور 34 درصد بر اساس شرایط موجود در این پژوهش گزارش گردید.

کلیدواژه‌ها

Open Access

©2020 The author(s). This article is licensed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

1. Akbarnia, A., A. Mohammadi, R. Alimardani, and F. Farhani. 2014. Simulation of draft force of winged share tillage tool using artificial neural network model. Agricultural Engineering International: CIGR Journal 16 (4): 57-65.
2. Al-Suhaibani, S., and A. E. Ghaly. 2010. Effect of plowing depth of tillage and forward speed on the performance of a medium size chisel plow operating in a sandy soil. American Journal of Agricultural and Biological Science.
3. Azimi Zadeh, Z. 2017. Development and evaluation of a narrow blade for improving combined tillage tool performance. School of Agriculture. Shiraz University, Shiraz. Iran. (In Farsi).
4. Bilgili, M., and B. Sahin. 2010. Comparative analysis of regression and artificial neural network models for wind speed prediction. Meteorology and Atmospheric Physics 109 (1): 61-72.
5. Garner, T., W. Reynolds, H. Musen, G. Miles, J. Davis, D. Wolf, and U. Peiper. 1987. Energy requirement for subsoiling coastal plain soils. Transactions of the ASAE, 30 (2): 343-0349.
6. Harrison, H. P., and Z. J. Licsko. 1989. Soil reacting forces for models of three bent-leg plows. Soil and Tillage Research 15 (2): 125-135.
7. Hosseini, M., S. A. Movahedi Naeini, A. A. Dehghani, and Y. Khaledian. 2016. Estimation of soil mechanical resistance parameter by using particle swarm optimization, genetic algorithm and multiple regressions. Soil and Tillage Research 157: 32-42.
8. Ibrahmi, A., H. Bentaher, E. Hamza, A. Maalej, and A. Mouazen. 2015. Study the effect of tool geometry and operational conditions on moldboard plough forces and energy requirement: Part 2. Experimental validation with soil bin test. Computers and Electronics in Agriculture 117: 268-275.
9. Ismail, W., W. Ishak, and T. Burkhardt. 1993. Draft and fuel requirements measurement using tractor on-board data acquisition system. Pertanika Journal of Science & Technology 1 (1): 51-64.
10. Jafari, R., S. H. Karparvarfard, and S. A. Hosseini. 2011. The Effect of Geometry and Motion Characteristics of Narrow Tillage Tool on Soil Disturbance Efficiency. Tarım Makinaları Bilimi Dergisi 7 (3).
11. Kheiralla, A. F., A. Yahya, M. Zohadie, and W. Ishak. 2004. Modeling of power and energy requirements for tillage implements operating in Serdang sandy clay loam in Malaysia. Soil and Tillage Research 78: 21-34.
12. Kotu, V., and B. Deshpande. 2015. Concepts and Practice with Rapid miner. PP 165-193 in M. Kaufmann. Eds. Predictive Analytics and Data Mining. E-Publishing Inc., San Francisco.
13. Liu, J., and R. Kushwaha. 2006. Modeling of soil profile produced by a single sweep tool. Agricultural Engineering International: The CIGR Journal 7 (1): 1-13.
14. Manuwa, S. 2009. Performance evaluation of tillage tines operating under different depths in a sandy clay loam soil. Soil and Tillage Research 103 (2): 399-405.
15. Majidi-Iraj, H., and M. H. Raoufat. 1997. Power requirement of a bent leg plow and its effects on soil physical conditions. Iran Agricultural Research 16 (1): 1-16.
16. Mckyes, E. 1985. Soil cutting and tillage. Development in agricultural engineering. vol. 7. Elsevier. Amsterdam.
17. Melero, S., R. Lopez-Garrido, J. M. Murillo, and F. Moreno. 2009. Conservation tillage: Short-and long-term effects on soil carbon fractions and enzymatic activities under Mediterranean conditions. Soil and Tillage Research 104 (2): 292-298.
18. Mehrijani, M., J. Khodaei, and S. Zareei. 2018. Modeling and optimizing of the energy consumption of moldboard plow using Response Surface Methodology (RSM). Journal of Agricultural Machinery 9 (1): 167-176. (In Farsi).
19. Moitzi, G., H. Wagentristl, K. Refenner, H. Weingartmann, G. Piringer, J. Boxberger, and A. Gronauer. 2014. Effects of working depth and wheel slip on fuel consumption of selected tillage implements. Agricultural Engineering International: The CIGR Journal 16(1): 182-190.
20. Raheman, S., and Y. Chen. 2001. Laboratory investigation of cutting forces and soil disturbance resulting from different manure incorporation tools in a loamy sand soil. Soil and Tillage Research 58 (1): 19-29.
21. Rahmanian-Koushkaki, H., S. H. Karparvarfard, and A. Mortezaei. 2015. The effect of the operational characteristics of the tractor composite electronic measurement system by the standards of emotion on the performance of chisel plows in a clay loam soil. Agricultural Engineering International: The CIGR Journal. 17 (1): 44-49.
22. Rahmatian, M., S. H. Karparvarfard, and M. A. Nematollahi. 2018. Prediction for optimizing performance of chisel blade used in combined tillage to obtain suitable effectiveness. Iranian Journal of Biosystem Engineering 49 (1): 73-82. (In Farsi).
23. Rowe, R., and K. Barnes. 1961. Influence of speed on elements of draft of a tillage tool.
24. Salar, M. R., A. Esehaghbeygi, and A. Hemmat. 2013. Soil loosening characteristics of a dual bent blade subsurface tillage implement. Soil and Tillage Research 134: 17-24.
25. Salar, M. R., and S. H. Karparvarfard. 2017. Modeling and optimization of wing geometry effect on draft and vertical forces of winged chisel plow. Journal of Agricultural Machinery 7 (2): 468-479. (In Farsi).
26. Sahu, R. K., and H. Raheman. 2006. An approach for draft prediction of combination tillage implements in sandy clay loam soil. Soil and Tillage Research 90 (1): 145-155.
27. Solhjou, A., J. M. Fielke, and J. M. Desbiolles. 2012. Soil translocation by narrow openers with various rake angles. Biosystems Engineering 112 (1): 65-73.
28. Shafaei, S. M., M. Loghavi, and S. Kamgar. 2018. On the neurocomputing based intelligent simulation of tractor fuel efficiency parameters. Information Processing in Agriculture 5 (2): 205-223.
29. Spoor, G., and R. J. Godwin. 1978. An experimental investigation into the deep loosening of soil by rigid tines. Agricultural Engineering Research 23: 243-258.
30. Spoor, G., and R. K. Fry. 1983. Soil disturbance generated by deep working low rake angle narrow tines. Agricultural Engineering Research 28: 217-234.
31. Wismer, R. D., and H. J. Luth. 1974. Off-Road traction prediction for wheeled vehicles. Transactions of the ASAE, Presented as ASAE Paper No. 72-619. pp. 8-14.
32. Wolf, D., T. H. Garner, and J. W. Davis. 1981. Tillage mechanical energy input and soil crop response. Transactions of the ASAE, 24 (6): 1412-1419.
CAPTCHA Image