با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی لاتین

نویسندگان

1 گروه مهندسی مکانیک بیوسیستم، پردیس ابوریحان، دانشگاه تهران، تهران، ایران

2 موسسه تحقیقات فنی و مهندسی کشاورزی، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

3 دانشکده مهندسی کشاورزی و بیولوژی، دانشگاه پوردو، لفایت، ایالات متحده امریکا

چکیده

در این تحقیق، استفاده از مبدل حرارتی زمین-هوا (EAHE) به‌عنوان منبع انرژی زمین گرمایی کم عمق برای تأمین نیازهای حرارتی یک گلخانه تجاری واقع در استان البرز، مورد بررسی قرار گرفت. از شاخص درجه-روز برای برآورد پتانسیل سیستم EAHE به‌منظور تامین نیازهای حرارتی گلخانه از جمله سرمایش و گرمایش استفاده شد. نتایج نشان داد که این منطقه برای رسیدن به دمای مناسب در داخل گلخانه برای تامین گرمایش نسبت به نیاز سرمایشی، نیاز به انرژی بیشتری دارد. متوسط پتانسیل سیستم EAHE بر اساس شاخص درجه-روز برای افزایش دما در فصل سردºC 76/10 و برای کاهش دما در فصل گرم ºC96/17 است. این بدان معنی است که سیستم EAHE قادر به تأمین نیازهای حرارتی گلخانه در این منطقه با توجه به مقادیر محاسبه شده درجه-روز گرمایش (HDD) و درجه-روز سرمایش (CDD) است. این روش می‌تواند در نظارت و بهینه‌سازی شرایط رشد گیاه به‌عنوان انتخاب بهترین نوع محصول یا نوع کشت و همچنین در آبیاری و مدیریت باروری محصولات زراعی مفید باشد.

کلیدواژه‌ها

موضوعات

Open Access

©2020 The author(s). This article is licensed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

1. Abbaspour-Fard, M. H., A. Gholami, and M. Khojastehpour. 2011. Evaluation of an earth-to-air heat exchanger for the north-east of Iran with semi-arid climate. International Journal of Green Energy 8: 499-510.
2. Abdolhosseini, M., S. Eslamian, and S. F. Mousavi. 2013. Effect of climate change on potential evapotranspiration: a case study on Gharehsoo sub-basin, Iran. International Journal of Hydrology Science and Technology 2 (4): 362-372.
3. Amiri, M. J., and S. S. Eslamian. 2010. Investigation of climate change in Iran. Journal of Environmental Science and Technology 3 (4): 208-216.
4. Atilgan, A., A. Yucel, O. Z. Hassan, and B. Saltuk. 2016. Determination of heating and cooling degree days for broiler breeding in the Tigris basin. Scientific Papers: Series D, Animal Science, The International Session of Scientific Communications of the Faculty of Animal Science 59.
5. Azimi, F., R. Ebrahimi, and M. Narangifard. 2017. Analysis and mapping of the HDD, CDD and temperatures for southern Caspian Sea (CS) Based Model EH5OM. International Journal of Urban Management and Energy Sustainability 1 (4): 28-38.
6. Bisoniya, T. S. 2015. Design of earth–air heat exchanger system. Geothermal Energy 3 (1): 18.
7. Borah, P., M. K. Singh, and S. Mahapatra. 2015. Estimation of degree-days for different climatic zones of North-East India. Sustainable Cities and Society 14: 70-81.
8. Chai, H., W. Cheng, C. Zhou, X. Chen, X. Ma, and S. Zhao. 2011. Analysis and comparison of spatial interpolation methods for temperature data in Xinjiang Uygur Autonomous Region, China. Natural Science 3 (12): 999-1010.
9. Ciriaco, A. E., S. J.Zarrouk, and G. Zakeri. 2020. Geothermal resource and reserve assessment methodology: Overview, analysis and future directions. Renewable and Sustainable Energy Reviews 119: 109515.
10. Ciulla, G., V. Lo Brano, and E. Moreci. 2015. Degree days and building energy demand. 3rd Southern African Solar Energy Conference, South Africa, 11-13 May, 2015.
11. Day, T. 2016. Degree-days: Theory and Application (TM41). The Chartered Institution of Building Services Engineers, CIBSE, London, UK.
12. De Rosa, M., V. Bianco, F. Scarpa, and L. A. Tagliafico. 2015. Historical trends and current state of heating and cooling degree days in Italy. Energy Conversion and Management 90: 323-335.
13. Dreidy, M., H. Mokhlis, and S. Mekhilef. 2017. Inertia response and frequency control techniques for renewable energy sources: A review. Renewable & Sustainable Energy Reviews 69: 144-155.
14. Ebinger, J., and W. Vergara. 2011. Climate impacts on energy systems: key issues for energy sector adaptation. Washington, DC: World Bank.
15. Franczak, M. 2017. Oil Shock: The 1973 Crisis and Its Economic Legacy. Edited by Elisabetta Bini, Giuliano Garavini, and Federico Romero. London: IB Tauris, 2016. 336 pp. Illustrations, notes. Cloth, $110.00. ISBN: 978-1-78453-556-8. Business History Review 91 (3): 595-598.
16. Faridi, H., A. Arabhosseini, G. Zarei, and M. Okos. 2019a. Design parameters of an earth-air heat exchanger with a square cross section- case study: greenhouse. Agricultural Mechanization and Systems Research, DOI: 10.22092/erams.2019.126401.1313. (in press).
17. Faridi, H., A. Arabhosseini, G. Zarei, and M. Okos. 2019b. Utilization of Soil Temperature Modeling to Check the Possibility of Earth-Air Heat Exchanger for Agricultural Building. Iranian (Iranica) Journal of Energy and Environment 10 (4): 260-268.
18. Ghasemi Mobtaker, H., Y., Ajabshirchi, S. F., Ranjbar, and M. Matloobi. 2017. Investigating the Effect of a North Wall on Energy Consumption of an East-West Oriented Single Span Greenhouse. Journal of Agricultural Machinery 7 (2): 350-363. (In Farsi).
19. Goff, J. M. 2015. A Value-Added Approach in Degree Day Calculation, National Weather Service: Burlington, VT.
20. Jiang, F., X. Li, B. Wei, R. Hu, and Z. Li. 2009. Observed trends of heating and cooling degree-days in Xinjiang Province, China. Theoretical and Applied Climatology 97 (3-4): 349-360.
21. Kabeel, A. E., and E. M. El-Said. 2015. Water production for irrigation and drinking needs in remote arid communities using closed-system greenhouse: A review. Engineering Science and Technology, an International Journal 18 (2): 294-301.
22. Krese, G., M. Prek, and V. Butala. 2012. Analysis of building electric energy consumption data using an improved cooling degree day method. Strojniški vestnik-Journal of Mechanical Engineering 58 (2): 107-114.
23. Lopez-Aguilar, K., A. Benavides-Mendoza, S. Gonzalez-Morales, A. Juarez-Maldonado, P. Chiñas-Sanchez, and A. Morelos-Moreno. 2020. Artificial Neural Network Modelling of Greenhouse Tomato Yield and Aerial Dry Matter. Agriculture 10 (4): 97.
24. Marimon, N., I. Eduardo, J. Martinez-Minaya, A. Vicente, and J. Luque. 2020. A decision support system based on degree-days to initiate fungicide spray programs for peach powdery mildew in Catalonia, Spain. Plant Disease, (ja).
25. Mideksa, T. K., and S. Kallbekken. 2010. The impact of climate change on the electricity market: A review. Energy Policy 38 (7): 3579-3585.
26. Misra, R., V. Bansal, G. D. Agrawal, J. Mathur, and T. Aseri. 2013. Transient analysis based determination of derating factor for earth air tunnel heat exchanger in summer. Energy and Buildings 58: 103-110.
27. Mongkon, S., S. Thepa, P. Namprakai, and N. Pratinthong. 2014. Cooling performance assessment of horizontal earth tube system and effect on planting in tropical greenhouse. Energy Conversion and Management 78: 225-236.
28. Moreno, L. S., C. G. Pedreira, K. J. Boote, and R. R. Alves. 2014. Base temperature determination of tropical Panicum spp. grasses and its effects on degree-day-based models. Agricultural and Forest Meteorology 186: 26-33.
29. Mourshed, M. 2012. Relationship between annual mean temperature and degree-days. Energy and Buildings 54: 418-425.
30. Papakostas, K. T., A. K. Michopoulos, and N. A. Kyriakis. 2009. Equivalent full-load hours for estimating heating and cooling energy requirements in buildings: Greece case study. Applied Energy 86 (5): 757-761.
31. Rehman, S., L. M. Al-Hadhrami, and S. Khan. 2011. Annual and seasonal trends of cooling, heating, and industrial degree-days in coastal regions of Saudi Arabia. Theoretical and Applied Climatology 104 (3-4): 479-488.
32. Romanovskaja, D., and E. Baksiene. 2011. The influence of climate change on the beginning of spring season and prediction of apple tree flowering in Lithuania. Sodininkystė ir Daržininkystė 30 (3/4): 29-39.
33. Roshan, G. R., and S. W. Grab. 2012. Regional climate change scenarios and their impacts on water requirements for wheat production in Iran. International Journal of Plant Production 6 (2): 239-266.
34. Schaeffer, R., A. S. Szklo, A. F. P. de Lucena, B. S. M. C. Borba, L. P. P. Nogueira, F. P. Fleming, A. Troccoli, M. Harrison, and M. S. Boulahya. 2012. Energy sector vulnerability to climate change: a review. Energy 38 (1): 1-12.
35. Sehli, A., A. Hasni, and M. Tamali. 2012. The potential of earth-air heat exchangers for low energy cooling of buildings in South Algeria. Energy Procedia 18: 496-506.
36. Shen, X., and B. Liu. 2016. Changes in the timing, length and heating degree days of the heating season in central heating zone of China. Scientific reports 6: 33384.
37. Vadiee, A., and V. Martin. 2014. Energy management strategies for commercial greenhouses. Applied Energy 114: 880-888.
38. Verbai, Z., A. Lakatos, and F. Kalmar. 2014. Prediction of energy demand for heating of residential buildings using variable degree day. Energy 76: 780-787.
39. Way, R. G., A. G. Lewkowicz, and P. P. Bonnaventure 2017. Development of moderate‐resolution gridded monthly air temperature and degree‐day maps for the Labrador‐Ungava region of northern Canada. International Journal of Climatology 37 (1): 493-508.
40. Yucel, A., A. Atilgan, H. Oz, and B. Saltuk. 2014. The determination of heating and cooling day values using degree-day method: Tomato plant example. Infrastruktura i Ekologia Terenow Wiejskich (IV/1): 1049-1061.
41. Zheng, S., G. Huang, X. Zhou, and X. Zhu. 2020. Climate-change impacts on electricity demands at a metropolitan scale: A case study of Guangzhou, China. Applied Energy 261: 114295.
CAPTCHA Image