با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مؤسسه تحقیقات فنی و مهندسی کشاورزی، سازمان تحقیقات،‌آموزش و ترویج کشاورزی، کرج، ایران

2 بخش خصوصی

چکیده

در این تحقیق، تهویه و سرمایش یک گلخانه که ستون‌های آن بر رئوس یک هشت‌وجهی منتظم قرار گرفته‌اند بررسی شد. سه جانمایی متفاوت از محل قرارگیری فن‌ها، دریچه‌ها و پدها بر روی این سازۀ گلخانه با استفاده از مباحث دینامیک سیالاتی نرم‌افزار سالیدورک 2018 شبیه‌سازی شد که بر این اساس، بهترین محل قرارگیری فن‌ها، پدها و دریچه‌های تهویه مشخص گردید. این جانمایی‌ها شامل ابتدا قرارگیری فن‌ها در قسمت تاج سقف و دریچه‌ها در دیواره‌های هرم است. سپس در جانمایی دوم، پدها و فن‌ها در دیواره‌های طولی گلخانه در مقابل یکدیگر واقع شده و در حالت آخر نیز فن‌ها در سقف هرم‌های گلخانه و پدها در دیوارهای طولی روبه‌روی هم (پدهای موازی) در نظر گرفته شدند. در جانمایی اول، امکان ایجاد وزش باد به‌صورت چرخشی در گلخانه امکان‌پذیر است. لذا تبادل حرارتی قسمت‌های مختلف محیط گلخانه افزایش پیدا خواهد نمود و در این حالت میزان گاز دی‌اکسید کربن دریافتی توسط گیاه نیز بالا خواهد رفت. در حالت فن و پد روبه‌روی هم، باد عبوری از پد به‌صورت یکنواخت در گلخانه جریان پیدا کرده و از فن‌های مقابل خارج می‌شود که منجر به ایجاد جریان هوایی مطلوب در گلخانه می‌شود. در صورت استفاده از فن در سقف و پدها به‌صورت موازی در گلخانه، رطوبت نسبی بالا رفته و دما به‌ویژه در هنگام استفاده از سایه‌اندازها به شدت کاهش می‌یابد. این حالت برای سرمایش در مناطق خشک می‌تواند کاربرد داشته باشد. همچنین نتایج نشان داد که با انتخاب صحیح چیدمان پد، فن و دریچه در گلخانه هشت‌وجهی، می‌توان از این گلخانه در شرایط آب و هوایی مختلف به‌ویژه گرم و خشک، استفاده کرد.

کلیدواژه‌ها

موضوعات

Open Access

©2021 The author(s). This article is licensed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

1. Alakashi, A. M., B. Basuno, and H. T. M. Elkamel. 2015. Comparison between finite volume method (FVM) based on inviscid and viscous flow with experimental and fluent results. Applied and Computational Mathematics 4 (1): 12-17.
2. Anonymous. 2003. Heating, ventilation and cooling greenhouses. ASAE Standard. EP406.4
3. Bartzanas, T., T. Boulard, and C. Kittas. 2004. Effect of vent arrangement on windward ventilation of a tunnel greenhouse. Biosystems Engineering 88 (4): 479-490.
4. Barzegar, R., and M.Yadegari. 2010. Production management in greenhouses. College of Applied Science and the Skill of Agriculture Press. 246 p. (In Farsi).
5. Boulard, T., J. C. Roy, J. B. Pouillard, H. Fatnassi, and A. Grisey. 2017. Modelling of micrometeorology, canopy transpiration and photosynthesis in a closed greenhouse using computational fluid dynamics. Biosystems Engineering 158: 110-133.
6. Buffington, D. E., R. A. Bucklin, R. W. Henley, and D. B. McConnell. 2016. Greenhouse Ventilation. AE-10 Series, UF/IFAS Extension, Gainesville, FL 32611.
7. Cheng, J., D. Qi, A. Katal, L. Wang, and T. Stathopoulos. 2018. Evaluating wind-driven natural ventilation potential for early building design. Journal of Wind Engineering and Industrial Aerodynamics 182: 160-169.
8. Chen, J., Y. Cai, F. Xu, H. Hu, and Q. Ai. 2014. Analysis and optimization of the fan-pad evaporative cooling system for greenhouse based on CFD. Advances in Mechanical Engineering. Article ID 712740, 8 pages.
9. Firoozi, S., M. J. Sheikhdavoodi, and S. M. Farani. 2014. Optimizing energy consumption efficiency for greenhouse cucumber production using the data envelopment analysis technique in Lorestan Province of Iran. International Journal of Advanced Biological and Biomedical Research 2: 636-649.
10. Franco, A., D. L. Valera, and A. Pena. 2014. Energy efficiency in greenhouse evaporative cooling techniques: cooling boxes versus cellulose pads. Energies 7: 1427-1447.
11. Fuchs, M., E. Dayan, and E. Presnov. 2006. Evaporative cooling of a ventilated greenhouse rose crop. Agricultural and Forest Meteorology 138 (1-4): 203-215.
12. Ghani, S., F. Bakochristou, E. M. A. E. Bialy, S. M. A. Gamaledin, M. M., Rashwan, A. M. Abdelhalim, and S. Ismail. 2019. Design challenges of agricultural greenhouses in hot and arid environments- A review. Engineering in Agriculture, Environment and Food 12 (1): 48-70.
13. Ghoulem, M., K. Moueddeb, E. Nehdi, R. Boukhanouf, and J. K. Calautit. 2019. Greenhouse design and cooling technologies for sustainable food cultivation in hot climates: Review of current practice and future status. Biosystems Engineering 183: 121-150.
14. He, J., F. Pan, C. S. Cai, A. Chowdhury, and F. Habte. 2018. Progressive failure analysis of low-rise timber buildings under extreme wind events using a DAD approach. Journal of Wind Engineering and Industrial Aerodynamics 182: 101-114.
15. Jafari, A. M., M. Solgi, and G. Zarei. 2019. Economic evaluation of artificial lighting in vegetable greenhouses (Case study: Cucumber production in hamadan province). Journal of Science and Technology of Greenhouse Culture 10 (1): 71-85. (In Farsi).
16. Katsoulas, N., A. Sapounas, F. De Zwart, J. A. Dieleman, and C. Stanghellini. 2015. Reducing ventilation requirements in semi-closed greenhouses increases water use efficiency. Agricultural Water Management 156: 90-99.
17. Kittas, C., T. Bartzanas, and A. Jaffrin. 2003. Temperature gradients in a partially shaded large greenhouse equipped with evaporative cooling pads. Biosystems Engineering 85 (1): 87-94.
18. Lee, I., and T. Short. 2001. Verification of computational fluid dynamic temperature simulations in a full-scale naturally ventilated greenhouse. Transactions of the ASAE 44 (1): 119-127.
19. Longo, R., M. Ferrarotti, C. G. Sanchez, M. Derudi, A. Parente. 2017. Advanced turbulence models and boundary conditions for flows around different configurations of ground-mounted buildings. Journal of Wind Engineering and Industrial Aerodynamics 167: 160-182.
20. Majdoubi, H., T. Boulard, H. Fatnassi, A. Senhaji, S. Elbahi, H. Demrati, M. Mouqallid, and L. Bouirden. 2016. Canary greenhouse CFD nocturnal climate simulation. Open Journal of Fluid Dynamics 6: 88-100.
21. Majeed, A., A. Zeeshan, and F. M. Noori. 2019. Numerical study of Darcy-Forchheimer model with activation energy subject to chemically reactive species and momentum slip of order two. AIP Advances 9, 045035 :1-11.
22. Mistriotis, A., G. P. A. Bot, P. Picuno, and G. Scarascia-Mugnozza. 1997. Analysis of the efficiency of greenhouse ventilation using computational fluid dynamics, Agricultural and Forest Meteorology 85 (3-4): 217-228.
23. Mobtaker, H. G., Y. Ajabshirchi, S. F. Ranjbar, and M. Matloobi. 2017. Investigating the effect of a north wall on energy consumption of an east- west oriented single span greenhouse. Journal of Agricultural Machinery 7 (2): 350-363. (In Farsi).
24. Ould Khaoua, S. A., P .E. Bournet, C. Migeon, T. Boulard, and G. Chasseriaux, Analysis of Greenhouse Ventilation Efficiency based on Computational Fluid Dynamics, Biosystems Engineering 95 (1): 83-98.
25. Pepper, D. A., A. Kassab, and E. Divo. 2014. An introduction to finite element, boundary element, and meshless methods with applications to heat transfer and fluid flow. New York, NY: ASME Press.
26. Rasheed, A., J. W. Lee, H. T. Kim, and H. W. Lee. 2019. Efficiency of Different Roof Vent Designs on Natural Ventilation of Single-Span Plastic Greenhouse. Protected Horticulture and Plant Factory 28 (3): 225-233.
27. Shirzadi, M., P. A. Mirzaei, and M. Naghashzadegan. 2017. Improvement of k-epsilon turbulence model for CFD simulation of atmospheric boundary layer around a high-rise building using stochasticoptimization and Monte Carlo Sampling technique. Journal of Wind Engineering and Industrial Aerodynamics 171: 366-379.
28. Schulein, E. 2010. Shock-wave control by permeable wake generators. in the 5th Flow Control Conference. Chicago, Illinois. USA.
29. Saberian, A., and S. M. Sajadiye. 2019. The effect of dynamic solar heat load on the greenhouse microclimate using CFD simulation. Renewable Energy 138: 722-737.
30. Santolini, E., B. Pulvirenti, S. Benni, L. Barbaresi, D. Torreggiani, and P. Tassinari. 2018. Numerical study of wind-driven natural ventilation in a greenhouse with Screens. Computers and Electronics in Agriculture 149: 41-53.
31. Sase, S. 2006. Air movement and climate uniformity in ventilated greenhouses. Acta Horticulture 719: 313-323.
32. Tong, G., D. M. Christopher, and G. Zhang. 2018. New insights on span selection for Chinese solar greenhouses using CFD Analyses. Computers and Electronics in Agriculture 149: 3-15.
33. Teitel, M., J. I. W. Montero, and E. J. Baeza. 2012. Greenhouse design: concepts and trends. Acta Horticulturae 952: 605-620.
34. Teitel, M., R. Atias, and M. Barak. 2019. Gradients of temperature, humidity and CO2 along a fan-ventilated greenhouse. Biosystems Engineering 106 (2): 166-174.
35. Velazquez, J. F., A. Rojano, A. Rishor, and W. O. Bustamante. 2015. Computational fluid dynamics achievements applied to optimal ccrop production in a greenhouse. New Perspectives in Fluid Dynamics. In Book: 76-100.
36. Walker, J. N. 1965. Predicting temperatures in ventilated greenhouses. Transactions of the ASAE 8 (3): 445-448.
37. Wilcox, D. C. 2006. Tubulence Modeling for CFD. DCW Industries.
38. William, B., and Jr. Brower. 1999. A Primer in Fluid MechanicsDynamics of Flows in One Space Dimension. CRC Press. P:24.
39. Zabeltitz, V. 1986. Greenhouse heating with solar energy. Energy in Agriculture 5: 111-120.
40. Zabeltitz, V. 1999. Greenhouse structure. In: Stanhill G, ZVI Enoch H Greenhouse ecosystems. Ecosystems of the world. Elsevier, Amsterdam, pp 20:17-69.
41. Zarei, G. 2017. Structural challenges of greenhouses in Iran. Strategic Research Journal of Agricultural Sciences and Natural Resources 2 (2): 149-162. (In Farsi).
42. Zhang, G., Z. Fu, M. Yang, X. Kim, Y. Dong, and X. Li. 2019. Nonlinear simulation for coupling modeling of air humidity and vent opening in Chinese solar greenhouse based on CFD. Computers and Electronics in Agriculture 162: 337-347.
43. Zhong, H. Y., D. D. Liu, D. Zhang, F. Y. Zhao, Y. Li, and H. Q. Wang. 2018. Two-dimensional numerical simulation of wind driven ventilation across a building enclosure with two free apertures on the rear side: Vortex shedding and “pumping flow mechanism”. Journal of Wind Engineering and Industrial Aerodynamics 179: 449-462.
44. Ziaaddini, A., H. Mortezapour, M. Shams, and A. Sarafi. 2019. Energy and exergy analysis of a greenhouse heating system equipped with a parabolic trough concentrator and a flat -plate solar collector. Journal of Agricultural Machinery 9 (2): 439-453. (In Farsi).
CAPTCHA Image