با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه کردستان، سنندج، ایران

چکیده

در این پژوهش بررسی سینتیک خشک شدن چیپس سیب‌زمینی و مدل‌سازی آن در یک خشک‌کن مایکروویو با سامانه ثبت تصویر به‌صورت بلادرنگ و اعمال سطوح توان متغیر در طی فرآیند خشک کردن انجام گرفت. در خشک‌کن مورد نظر دو سری آزمایش انجام گرفت، سری اول با سه سطح چگالی توان 2.67، 4 و 8 W g-1 با دو حالت چگالی توان ثابت و متغیر برای بررسی و مدل‌سازی سینتیک تغییرات محتوای رطوبتی و سری دوم با دو سطح 3 و 5 W g-1 برای ارزیابی مدل‌های ساخته شده استفاده شد. همچنین چروکیدگی محصول به کمک الگوریتم پردازش تصویر توسعه داده شده اندازه‌گیری شد. دو مدل شبکه عصبی، اولی با ورودی‌های زمان و چگالی توان و دومی با ورودی‌های نسبت چروکیدگی و چگالی توان برای مدل‌سازی و پیش‌بینی تغییرات محتوای رطوبتی توسعه داده شدند. نتایج ارزیابی مدل‌ها نشان داد که مدل دوم با همبستگی 0.994 و خطای 0.067 نسبت به مدل اول با همبستگی 0.961 و خطای 0.173 دارای قابلیت اعتماد و اطمینان بیشتری برای پیش‌بینی تغییرات محتوای رطوبتی می‌باشد.

کلیدواژه‌ها

موضوعات

Open Access

©2020 The author(s). This article is licensed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

1. AOAC. 1980. Official methods of analysis (13th ed.). Washington, DC: Author.
2. Abbaszadeh, A., A. Motevali, M. H. Khoshtaghaza, and M. Kazemi. 2011. Evaluation of thin-layer drying models and neural network for describing drying kinetics of lasagnas angustifolia L. International Food Research Journal 18 (4): 1321-1328.
3. Andres, A., C. Bilbao, and P. Fito. 2004. Drying kinetics of apple cylinders under combined hot air-microwave dehydration. Journal of Food Engineering 63: 71-78.
4. Bilbao-Sainz, C., A. Andres, and P. Fito. 2005. Hydration kinetics of dried apple as affected by drying conditions. Journal of Food Engineering 68: 369-376.
5. Bahmanpour, H., S. M. Sajadiye, M. J. Sheikhdavoodi, and M. Zolfaghari. 2017. The Effect of Temperature and Drying Method on Drying Time and Color Quality of Mint. Journal of Agricultural Machinery 7 (2): 415-426. (In Farsi).
6. Behroozi-Khazaei, N., T. Tavakoli Hashjin, H. Ghassemian, M. H. Khoshtaghaza, and A. Banakar. 2013. Applied machine vision and artificial neural network for modeling and controlling of the grape drying process. Computers and Electronic in Agriculture 98: 205-213.
7. Bai, J. W., H. W. Xiao, H. L. Ma, and C. S. Zhou. 2018. Artificial neural network modeling of drying kinetics and color changes of ginkgo biloba seeds during microwave drying process. Journal of Food Quality, Article ID 3278595, 8 pages.
8. Cheng, W. M., G. S. V. Raghavan, M. Ngadi, and N. Wang. 2006. Microwave power control strategies on the drying process I. Development and evaluation of new microwave drying system. Journal of Food Engineering 76: 188-194.
9. Feng, H., and J. Tang. 1998. Microwave finish drying of diced apples in a spouted bed. Journal of Food Science 63 (4): 679-683.
10. Figiel, A. 2006. Drying kinetics and drying shrinkage of garlic subjected to vacuum-microwave dehydration. Acta Agrophysica 7 (1): 49-58.
11. Golpour, I., R. Amiri-Chayjan, J. Amiri-Parian, and J. Khazaei. 2015. Prediction of paddy moisture content during thin layer drying using machine vision and artificial neural networks. Journal of Agricultural Science and Technology 17: 287-298.
12. Hosseinpour, S., Sh. Rafiee, and S. S. Mohtasebi. 2011. Application of image processing to analyze shrinkage and shape changes of shrimp batch during drying. Drying Technology 29 (12): 1416-1438.
13. Hafezi, N., M. J. Sheikhdavoodi, S. M. Sajadiye, and M. E. Khorasani Ferdavani. 2016. The study of some physical properties and energy aspects of potatoes drying process by the infrared-vacuum method. Journal of Agricultural Machinery 6 (2): 463-475. (In Farsi).
14. Kone, K. Y., C. Druon, E. Z. Gnimpieba, M. Delmotte, A. Duquenoy, and J. C. Laguerre. 2013. Power density control in microwave assisted air drying to improve quality of food. Journal of Food Engineering 119 (4): 750-757.
15. Kaveh, M., Y. Abbaspour-Gilandeh, R. Amiri Chayjan, and R. Mohammadigol. 2019. Comparison of mathematical modeling, artificial neural networks and fuzzy logic for predicting the moisture ratio of garlic and shallot in a fluidized bed dryer. Journal of Agricultural Machinery 9 (1): 99-112. (In Farsi).
16. Monteiro, R. L., B. A. M. Carciofi, A. M. Jr, and J. B. Laurindo. 2015. How to make a microwave vacuum dryer with turntable. Journal of Food Engineering 166: 276-284.
17. Martynenko, A. I. 2006. Computer-vision system for control of drying processes. Drying Technology 24: 879-888.
18. Martynenko, A. I., and S. Yang. 2007. An intelligent control system for thermal processing of biomaterials. In: Proceedings of the IEEE International Conference on Networking, Sensing and Control, London, UK, 15-17, April.
19. Nadian, M. H., Sh. Rafiee, M. Aghbashlo, S. Hosseinpour, and S. S. Mohtasebi. 2015. Continuous real-time monitoring and neural network modeling of apple slices color changes during hot air drying. Food and Bioproducts Processing 94: 263-274.
20. Nadian, M. H., M. H. Abbaspour-Fard, A. Martynenko, and M. R. Golzarian. 2017. An intelligent integrated control of hybrid hot air-infrared dryer based on fuzzy logic and computer vision system. Computers and Electronics in Agriculture 137: 138-149.
21. Li, Z., G. S. V. Raghavan, and V. Orsat. 2010a. Temperature and power control in microwave drying. Journal of Food Engineering 97 (4): 478-483.
22. Li, Z., G. S. V. Raghavan, and V. Orsat. 2010b. Optimal power control strategies in microwave drying. Journal of Food Engineering 99 (3): 263-268.
23. Omari, A., N. Behroozi-Khazaei, and F. Sharifian. 2018. Drying kinetic and artificial neural network modeling of mushroom drying process in microwave-hot air dryer. Journal of Food Process Engineering e12849.
24. Omid, M., A. Baharlooei, and H. Ahmadi. 2009. Modeling drying kinetics of pistachio nuts with multilayer feed-forward neural network. Drying Technology 27 (10): 1069-1077.
25. Rezaei, S., N. Behroozi-Khazaei, and H. Darvishi. 2019. Microwave power adjusting during potato slice drying process using machine vision. Computers and Electronics in Agriculture 160: 40-50.
26. Sharifian, F., A. Modarres-Motlagh, M. H. Komarizade, and A. N. Nikbakht. 2013. Color change analysis of fig fruit during microwave drying. International Journal of Food Engineering 9 (1): 107-114.
27. Seremet, L., E. Botez, O. V. Nistor, D. G. Andronoiu, and G. D. Mocanu. 2015. Effect of different drying methods on moisture ratio and rehydration of pumpkin slices. Food Chemistry 195: 104-109.
CAPTCHA Image