با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران

چکیده

در این مطالعه مصرف انرژی مستقیم در تولید تخته نئوپان از باگاس نیشکر و امکان جایگزینی آن با ضایعات کشت و صنعت نیشکر دعبل خزاعی و صنایع جانبی آن بررسی گردید. انرژی مستقیم مصرفی به ازای هر مترمکعب نئوپان تولیدی 829/5 گیگاژول محاسبه شد که گاز طبیعی، برق و سوخت دیزل به‌ترتیب 52/78، 87/18 و 61/2 درصد آن را تشکیل می‌دهند. پیت و خرده چوب‌های حاصل از ضایعات کارخانه نئوپان‌سازی، برگ و پوشال نیشکر، باگاس مازاد و ویناس حاصل از تولید الکل از ملاس نیشکر به‌عنوان ضایعات جهت تولید انرژی در نظر گرفته شدند. خاکستر، رطوبت، ارزش حرارتی خالص (با استفاده از بمب کالری‌متر) و مقدار ضایعات خشبی و همچنین پتانسیل تولید زیست‌گاز از تخمیر بی‌هوازی ویناس اندازه‌گیری و محاسبه شد. نتایج نشان داد با استفاده از پسماند خشبی کارخانه نئوپان‌سازی و کشت و صنعت دعبل خزاعی می‌توان 33/4 برابر کل انرژی گاز مصرفی در کارخانه نئوپان‌سازی انرژی حرارتی با بازده 60 درصد تولید کرد. همچنین با استفاده از ضایعات کارخانه نئوپان‌سازی و باگاس، می‌توان کل گاز و برق مصرفی کارخانه نئوپان‌سازی را جایگزین کرد. بررسی حجم ویناس و پتانسیل تولید زیست‌گاز از آن نشان داد پتانسیل تولید انرژی معادل ‌8824319 مترمکعب گاز طبیعی در سال وجود دارد.

کلیدواژه‌ها

  1. Alena, A., and O. Sahu. 2013. Cogenerations of energy from sugar factory bagasse. Energy Engineering 1 (2): 22-29.
  2. Andekaizade, A., M. J. Sheikh Davoodi, and M. Byria. 2018. Qualitative and quantitative features evaluation of two methods of sugarcane harvesting (with aim of energy and sugar production). Journal of Agricultural Machinery 8 (1): 212-221. (In Persian). http://dx.doi.org/10.22067/jam.v8i1.53629.
  3. Anonymous. 2016. Energy Balance Sheet. Iran Ministry of Energy. Power and Energy Planting Department Publication. (In Persian).
  4. 2018. Statistical Yearbook of agriculture. Statistical center of Iran. (In Persian).
  5. Arshad, A., and S. Ahmed. 2016. Cogeneration through bagasse: A renewable strategy to meet the future energy needs. Renewable and Sustainable Energy Reviews 54: 732-737.
  6. Baguant, J. 1984. Electricity Production from the Biomass of the Sugarcane Industry in Mauritius. Biomass 5: 283-297.
  7. Birru, B., A. Martin, and C. Erlich. 2016. Sugar Cane industry overview and energy efficiency considerations, Stockholm: KTH Royal Institute of Technology.
  8. Caputo, A. C., M. Palumbo, P. M. Pelagagge, and F. Scacchia. 2005. Economics of biomass energy utilization in combustion and gasification plants: effects of logistic variables. Biomass and Bioenergy 28: 35-51.
  9. Dantas, G. A., L. Legey, and A. M. Mazzone. 2013. Energy from sugarcane bagasse in Brazil: An assessment of the productivity and cost of different technological routes. Renewable and Sustainable Energy Reviews 21: 356-364.
  10. Demirbas, M. F., M. Balat, and H. Balat. 2009. Potential contribution of biomass to the sustainable energy development. Energy Conversion and Management 50: 1746-1760.
  11. Evans, A., V. Strezov, and T. J. Evans. 2010. Sustainability considerations for electricity generation from biomass. Renewable and Sustainable Energy Reviews 14: 1419-1427.
  12. Flausinio, B., A. Costa, R. Pinheiro, and A. Fortini. 2014. Theoretical Study about the Cogeneration Potential of the Bagasse Sugarcane at the Brazilian State of Minas Gerais. International Journal of Energy Science 4 (2): 35-42.
  13. Fowler, P., G. Krajacic, D. Loncar, and N. Duic. 2009. Modeling the energy potential of biomass. International Journal of Hydrogen Energy 34: 7027-7040.
  14. Halder, P. K., M. A. Hossain, N. Paul, and I. Khan. 2014. Agricultural residue for electricity generation in Bangladesh. Journal of Mechanical and Civil Engineering 11 (2): 89-95.
  15. Haroni, S., M. J. Sheykhdavodi, and M. Kiani Deh Kiani. 2018. Application of artificial neural networks for predicting the yield and GHG emissions of sugarcane production. Journal of Agricultural Machinery 8 (2): 389-401. (In Persian). http://dx.doi.org/10.22067/jam.v8i2.52870.
  16. Hasanaki, N., Y. Mansoori, and A. Asakereh. 2019. Potential of substituting bagasse for natural gas in Karun sugar factory and its economic evaluation. Iranian Journal of Biosystem Engineering 51 (1): 11-21. (In Persian).
  17. Hasanaki, N. 2018. Technical and Economic Feasibility Study of Heat and Power Production in Karoon Sugar Factory Using a Hybrid System of Biomass, Photovoltaic, and Natural Gas. MSc thesis. Shahid Chamran University of Ahvaz. (In Persian).
  18. Jadidyan, F., M. Talaeipoor, S. Mahdavi, and A. Hamasi. 2016. Evaluation of thermal energy and activated carbon production from bagasse pith. Iranian journal of Wood and Paper Science Research 31 (2): 181-193. (In Persian).
  19. Janghathaikul, D., and S. H. Gheewala. 2005. Environmental assessment of power generation from bagasse at a sugar factory in Thailand. Energy 6 (1): 57-66.
  20. Jezini, M. 2010. Investigating the effect of environmental conditions and optimization measures affecting the efficiency of thermal power plants. Journal of Electrical Industry 161: 38-44. (In Persian).
  21. Karaj, S. H., T. Rehl, H. Leis, and J. Muller. 2009. Analysis of biomass residues potential for electrical energy generation in Albania. Renewable and Sustainable Energy Reviews 14: 493-499.
  22. Kim, M., and D. F. Day. 2011. Composition of sugar cane, energy cane, and sweet sorghum suitable for ethanol production at Louisiana sugar mills. Journal of Industrial Microbiology & Biotechnology 38: 803-807.
  23. Kitani, O. 1999. CIGR Handbook of Agricultural Engineering, Vol, V, Energy and Biomass Engineering. ASAE Publication, ST Joseph, MI.
  24. Mashoko, L., C. Mbohwa, and V. M. Thomas. 2013. Life cycle inventory of electricity cogeneration from bagasse in the South African sugar industry. Cleaner Production 39: 42-49.
  25. Mbohwa, C., and S. H. Fukuda. 2003. Electricity from bagasse in Zimbabwe. Biomass and Bioenergy 25: 197-207.
  26. McKendry, P. 2002. Energy production from biomass (part 2): conversion technologies. Bioresource Technology 83: 47-54.
  27. Mohlala, L. M., M. O. Bodunrin, A. A. Awosusi, M. O. Daramola, N. P. Cele, and P. A. Olubambi. 2016. Beneficiation of corncob and sugarcane bagasse for energy generation and materials development in Nigeria and South Africa: A short overview. Alexandria Engineering Journal 55: 3025-3036.
  28. Mondal, M. A. H., and M. Denich. 2010. Assessment of renewable energy resources potential for electricity generation in Bangladesh. Renewable and Sustainable Energy Reviews 14: 2401-2413.
  29. Moreira, J. R. 2006. Global biomass energy potential. Mitigation and Adaptation Strategies for Global Change 11 (2): 313-342.
  30. Parsaee, M., M. Kiani, and A. Takdastan. 2018. Biogas production from sugar cane vinasse using a Static Granual Bed Reactor (SGBR). Fuel and Combustion 11 (2): 69-78. (In Persian).
  31. Pellegrini, L. F., and S. Junior. 2011. Combined production of sugar, ethanol and electricity: Thermo economic and environmental analysis and optimization. Energy 36: 3704-3715.
  32. Pourasad, K., A. Zali, M. Ganjkhanlou, A. Emami, and A. Hatefi. 2015. Effects of replacing molasses with sugar beet vinasse on performance, blood and ruminal parameters in Mahabadi kids. Journal Management Systems 3 (3): 11-21. (In Persian).
  33. Ramjeawon, T. 2008. Life cycle assessment of electricity generation from bagasse in Mauritius. Journal of Cleaner Production 16: 1727-1734.
  34. Rathnasiri, K., S. A. S. Senarath, A. G. T. Sugathapala, S. C. Bhattacharya, and P. A. Salam. 2005. Assessment of sustainable energy potential of non-plantation biomass resources in Sri Lanka. Biomass and Bioenergy 29 (3): 199-213.
  35. Restutia, D., and A. Michaelowa. 2007. The economic potential of bagasse cogeneration as CDM projects in Indonesia. Energy Policy 35: 3952-3966.
  36. Seabra, E. A., and I. Macedo. 2011. Comparative analysis for power generation and ethanol production from sugarcane residual biomass in Brazi. Energy Policy 39: 421-428.
  37. Singh, J., B. S. Panesar, and S. K. Sharma. 2008. Energy potential through agricultural biomass using geographical information system-A case study of Punjab. Biomass and Bioenergy 32: 301-307.
  38. Soleymani, M., A. Keyhani, and M. Omid. 2018.  Life cycle assessment, Ethanol, Sugarcane, Biofuel. Journal of Agricultural Engineering 40 (2): 13-27. (In Persian).
  39. Tang, J., Zhu, K. Kookana, and A. Katayama. 2013. Characteristics of biochar and its application in remediation of contaminated soil. Journal of Bioscience and Bioengineering 116 (6): 653-659.
CAPTCHA Image