با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله مروری

نویسندگان

گروه مهندسی بیوسیستم، دانشکده علوم کشاورزی، دانشگاه گیلان، رشت، ایران

چکیده

تاکنون مطالعات زیادی در زمینه ارزیابی تأثیر الگوی مصرف نهاده در شاخص‌های انرژی، اقتصادی و اثرات زیست‌محیطی در محصولات باغی و گلخانه‌ای ایران انجام‌شده است. این مطالعات بیشتر جنبه گزارش وضعیت موجود را داشته و اقدامات مداخله‌ای و بررسی اثر آن‌ها در بهبود الگوی مصرف نهاده در میزان پایداری سامانه مدنظر محققان قرار نگرفته است. لذا به‌منظور افزایش اثربخشی و جهت‌دهی مناسب به مطالعات در این زمینه، این مطالعه مروری انجام شد. در این مقاله، سامانه‌های تولید محصولات باغی و گلخانه‌ای ایران از طریق مرور مقالات منتشرشده بین سال‌های 2008 تا 2018، با استفاده از روش پریسما، تعداد 63 مقاله به‌صورت سامانمند انتخاب شد و مورد بررسی و تحلیل قرار گرفت. به‌طورکلی در مقاله حاضر، چالش‌ها و ریسک‌های موجود در روش‌های استفاده‌شده در مطالعات پیشین موردتوجه قرار گرفت. برای ترسیم یک وضعیت کلی از شاخص‌های انرژی و زیست‌محیطی سامانه‌های باغی و گلخانه‌ای ایران، نتایج منتشرشده در مقالات موردبررسی قرار گرفت. برای افزایش اثربخشی تحقیقات در این بخش، این‌گونه مطالعات بهتر است به‌صورت پویا و حداقل دو یا چندساله انجام شود. بررسی مقالات نشان داد که مطالعه تأثیر عوامل اجتماعی در رفتار انواع سامانه‌های تولید مغفول مانده است. ازآن‌جایی‌که الگوی مصرف انرژی در بخش کشاورزی تا حد قابل‌توجهی تابع رفتار بهره‌برداران و مشخصات سامانه‌ها و روش‌های تولید محصول است، به‌نظر می‌رسد توجه به این عامل برای آماده‌سازی و طراحی هرگونه راهکار بهبود فرآیند در سامانه ضروری است. در این مطالعه همچنین برای تکمیل مطالعات مربوط به تحلیل سامانه‌های کشاورزی یک رویه جدید شامل سه مرحله تحلیل، بازطراحی و ارزیابی مطرح‌ شد.

کلیدواژه‌ها

موضوعات

  1. Anonymous. 2017. The results of the survey of the country's horticulture. Tehran: Statistics Center of Iran. Report no.
  2. Asakereh, A., M. J. Shiekhdavoodi, M. Almassi, and M. Sami. 2010. Effects of mechanization on energy requirements for apple production in Esfahan province, Iran. African Journal of Agricultural Research 5: 1424-1429.
  3. Banaeian, N., and M. Zangeneh. 2011a. Estimating production function of walnut production in iran using cobb-douglas method. Agricultura Tropica Et Subtropica 44: 177-189.
  4. Banaeian, N., and M. Zangeneh. 2011b. Modeling energy flow and economic analysis for walnut production in Iran. Research Journal of Applied Sciences, Engineering and Technology 3: 194-201.
  5. Banaeian, N., M. Zangeneh, and M. Omid. 2010. Energy use efficiency for walnut producers using Data Envelopment Analysis (DEA). Australian Journal of Crop Science 4: 359-362.
  6. Banaeian, N., M. Omid, and H. Ahmadi. 2011. Energy and economic analysis of greenhouse strawberry production in Tehran province of Iran. Energy Conversion and Management 52: 1020-1025. https://doi.org/10.1016/j.enconman.2010.08.030
  7. Banaeian, N., M. Zangeneh, and S. Clark. 2020. Trends and Future Directions in Crop Energy Analyses: A Focus on Iran. Sustainability 12: 10002. https://doi.org/10.3390/su122310002
  8. Beza , E., J. V. Silva, L. Kooistra, and P. Reidsma. 2017. Review of yield gap explaining factors and opportunities for alternative data collection approaches. European Journal of Agronomy 82: 206-222. https://doi.org/10.1016/j.eja.2016.06.016
  9. Bolandnazar, E., A. Keyhani, and M. Omid. 2014. Determination of efficient and inefficient greenhouse cucumber producers using Data Envelopment Analysis approach, a case study: Jiroft city in Iran. Journal of Cleaner Production 79: 108-115. https://doi.org/10.1016/j.jclepro.2014.05.027
  10. Cochrane. 2021. Cochrane Handbook for Systematic Reviews of Interventions version 6.2 (updated February 2021).
  11. Farashah, H. R., S. A. Tabatabaeifar, A. Rajabipour, and P. Sefeedpari. 2013. Energy Efficiency Analysis of White Button Mushroom Producers in Alburz Province of Iran: A Data Envelopment Analysis Approach. Open Journal of Energy Efficiency 2: 65-74. DOI: 4236/ojee.2013.22010
  12. Ghatrehsamani, S., R. Ebrahimi, S. N. Kazi, A. Badarudin Badry, and E. Sadeghinezhad. 2016. Optimization model of peach production relevant to input energies- Yield function in Chaharmahal va Bakhtiari province, Iran. Energy 99: 315-321. https://doi.org/10.1016/j.energy.2015.07.078
  13. Houshyar, E., M. Mahmoodi-Eshkaftaki, and H. Azadi. 2017. Impacts of technological change on energy use efficiency and GHG mitigation of pomegranate: Application of dynamic data envelopment analysis models. Journal of Cleaner Production 162: 1180-1191. https://doi.org/10.1016/j.jclepro.2017.06.152
  14. Karimi, M., and H. Moghaddam. 2018. On-farm energy flow in grape orchards. Journal of the Saudi Society of Agricultural Sciences 17 (2): 191-194. https://doi.org/10.1016/j.jssas.2016.04.002
  15. Khoshnevisan, B., S. Rafiee, M. Omid, and H. Mousazadeh. 2013a. Reduction of CO2 emission by improving energy use efficiency of greenhouse cucumber production using DEA approach. Energy 55: 676-682. https://doi.org/10.1016/j.energy.2013.04.021
  16. Khoshnevisan, B., S. Rafiee, M. Omid, M. Yousefi, and M. Movahedi. 2013b. Modeling of energy consumption and GHG (greenhouse gas) emissions in wheat production in Esfahan province of Iran using artificial neural networks. Energy 52: 333-338. https://doi.org/10.1016/j.energy.2013.01.028
  17. Khoshnevisan, B., S. Rafiee, and H. Mousazadeh. 2014a. Application of multi-layer adaptive neuro-fuzzy inference system for estimation of greenhouse strawberry yield. Measurement 47: 903-910. https://doi.org/10.1016/j.measurement.2013.10.018
  18. Khoshnevisan, B., S. Rafiee, and H. Mousazadeh. 2014b. Environmental impact assessment of open field and greenhouse strawberry production. European Journal of Agronomy 50: 29-37. https://doi.org/10.1016/j.eja.2013.05.003
  19. Khoshnevisan, B., S. Rafiee, and H. Mousazadeh. 2014c. Application of multi-layer adaptive neuro-fuzzy inference system for estimation of greenhouse strawberry yield. Measurement 47: 903-910. https://doi.org/10.1016/j.measurement.2013.10.018
  20. Khoshnevisan, B., H. M. Shariati, S. Rafiee, and H. Mousazadeh. 2014d. Comparison of energy consumption and GHG emissions of open field and greenhouse strawberry production. Renewable and Sustainable Energy Reviews 29: 316-324. https://doi.org/10.1016/j.rser.2013.08.098
  21. Khoshnevisan, B., S. Rafiee, M. Omid, H. Mousazadeh, and S. Clark. 2014e. Environmental impact assessment of tomato and cucumber cultivation in greenhouses using life cycle assessment and adaptive neuro-fuzzy inference system. Journal of Cleaner Production 73: 183-192. https://doi.org/10.1016/j.jclepro.2013.09.057
  22. Khoshnevisan, B., S. Rafiee, J. Iqbal, S. Shamshirband, M. Omid, N. B. Anuar, and A. W. Abdul Wahab. 2015. A comparative study between artificial neural networks and adaptive neuro-fuzzy  inference systems for modeling energy consumption in greenhouse tomato production: A case study in isfahan province. Journal of Agricultural Science and Technology 17 (1): 49-62.
  23. Khoshroo, A., R. Mulwa, A. Emrouznejad, and B. Arabi. 2013. A non-parametric Data Envelopment Analysis approach for improving energy efficiency of grape production. Energy 63: 189-194. https://doi.org/10.1016/j.energy.2013.09.021
  24. Loghmanpour Zarini, R., H. Yaghoubi, and A. Akram. 2013. Energy use in citrus production of mazandaran province in iran. African Crop Science Journal 21: 61-65.
  25. M. Yousefi, M. O., Sh. Rafiee, and B. Khoshnevisan. 2013. Modeling GHG emission and energy consumption in selected greenhouses in Iran. Energy and environment 4: 511-518.
  26. Mahmoudi, N., M. Almassi, A. M. Borghei, M. Ghahderijani, and M. R. Asadi Asad Abad. 2012. Estimation of energy consumption indicators in pistachio production of Khatam cityYazd state. Advances in Environmental Biology 6: 1740-1744.
  27. Mardani, A., and H. Taghavifar. 2016. An overview on energy inputs and environmental emissions of grape production in West Azerbayjan of Iran. Renewable and Sustainable Energy Reviews 54: 918-924. https://doi.org/10.1016/j.rser.2015.10.073
  28. Mohammadi, A., and M. Omid. 2010. Economical analysis and relation between energy inputs and yield of greenhouse cucumber production in Iran. Applied Energy 87: 191-196. https://doi.org/10.1016/j.apenergy.2009.07.021
  29. Mohammadi, A., S. Rafiee, S. S. Mohtasebi, and H. Rafiee. 2010. Energy inputs – yield relationship and cost analysis of kiwifruit production in Iran. Renewable Energy 35: 1071-1075. https://doi.org/10.1016/j.renene.2009.09.004
  30. Mohammadshirazi, A., A. Akram, S. Rafiee, S. H. Mousavi Avval and E. Bagheri Kalhor. 2012. An analysis of energy use and relation between energy inputs and yield in tangerine production. Renewable and Sustainable Energy Reviews 16: 4515-4521. https://doi.org/10.1016/j.rser.2012.04.047
  31. Moher, D., A. Liberati, J. Tetzlaff, and D. G. Altman. 2009. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Annals of Internal Medicine 151: 264-269. doi: https://doi.org/10.1136/bmj.b2535
  32. Mohseni, P., A. M. Borgheei, and M. Khanali. 2019. Energy Consumption Analysis and Environmental Impact Assessment of Grape Production in Hazavah Region of Arak City. Journal of Agricultural Machinery 9: 177-193. (In Persian). http://doi.org/10.22067/jam.v9i1.67645
  33. Mousavi-Avval, S. H., A. Mohammadi, S. Rafiee, and A. Tabatabaeefar. 2012. Assessing the technical efficiency of energy use in different barberry production systems. Journal of Cleaner Production 27: 126-132. https://doi.org/10.1016/j.jclepro.2012.01.014
  34. Munn, Z., M. D. J. Peters, C. Stern, C. Tufanaru, A. McArthur, and E. Aromataris. 2018. Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approach. BMC Medical Research Methodology 18: 143.
  35. Nabavi-Pelesaraei, A., R. Abdi, S. Rafiee, and H. G. Mobtaker. 2014. Optimization of energy required and greenhouse gas emissions analysis for orange producers using data envelopment analysis approach. Journal of Cleaner Production 65: 311-317. https://doi.org/10.1016/j.jclepro.2013.08.019
  36. Nabavi-Pelesaraei, A., S. Rafiee, H. Hosseinzadeh-Bandbafha, and S. Shamshirband. 2016. Modeling energy consumption and greenhouse gas emissions for kiwifruit production using artificial neural networks. Journal of Cleaner Production 133: 924-931. https://doi.org/10.1016/j.jclepro.2016.05.188
  37. Namdari, M., A. Asadi Kangarshahi, and N. Akhlaghi Amiri. 2011a. Econometric Model Estimation and Sensitivity Analysis of Input for mandarin Production in Mazandaran Province of Iran. Research Journal of Applied Sciences, Engineering and Technology 3: 464-470.
  38. Namdari, M., A. Asadi Kangarshahi, and N. Akhlaghi Amiri. 2011b. Input-output energy analysis of citrus production in Mazandaran province of Iran. African Journal of Agricultural Research 6: 2558-2564.
  39. Nikkhah, A., B. Emadi, and S. Firouzi. 2015. Greenhouse gas emissions footprint of agricultural production in Guilan province of Iran. Sustainable Energy Technologies and Assessments 12: 10-14.
  40. Nikkhah, A., M. Royan, M. Khojastehpour, and J. Bacenetti. 2017. Environmental impacts modeling of Iranian peach production. Renewable and Sustainable Energy Reviews 75: 677-682. https://doi.org/10.1016/j.rser.2016.11.041
  41. Nikkhah, A., B. Emadi, H. Soltanali, S. Firouzi, K. A. Rosentrater, and M. S. Allahyari. 2016. Integration of life cycle assessment and Cobb-Douglas modeling for the environmental assessment of kiwifruit in Iran. Journal of Cleaner Production 137: 843-849. https://doi.org/10.1016/j.jclepro.2016.07.151
  42. Pahlavan, R., M. Omid, and A. Akram. 2011. Energy use efficiency in greenhouse tomato production in Iran. Energy 36: 6714-6719. https://doi.org/10.1016/j.energy.2011.10.038
  43. Pahlavan, R., M. Omid, and A. Akram. 2012a. The Relationship between Energy Inputs and Crop Yield in Greenhouse Basil Production. Journal of Agricultural Science and Technology 14: 1243-1253.
  44. Pahlavan, R., M. Omid, and A. Akram. 2012b. Application of Data Envelopment Analysis for Performance Assessment and Energy Efficiency Improvement Opportunities in Greenhouses Cucumber Production. Journal of Agricultural Science and Technology 14: 1465-1475.
  45. Pahlavan, R., M. Omid, and A. Akram. 2012c. Energy input–output analysis and application of artificial neural networks for predicting greenhouse basil production. Energy 37: 171-176. https://doi.org/10.1016/j.energy.2011.11.055
  46. Pahlavan, R., M. Omid, S. Rafiee, and S. H. Mousavi-Avval. 2012d. Optimization of energy consumption for rose production in Iran. Energy for Sustainable Development 16: 236-241. https://doi.org/10.1016/j.esd.2011.12.001
  47. Pishgar-Komleh, S. H., M. Omid, and M. D. Heidari. 2013. On the study of energy use and GHG (greenhouse gas) emissions in greenhouse cucumber production in Yazd province. Energy 59: 63-71. https://doi.org/10.1016/j.energy.2013.07.037
  48. Rafiee, S., S. H. Mousavi Avval, and A. Mohammadi. 2010. Modeling and sensitivity analysis of energy inputs for apple production in Iran. Energy 35: 3301-3306. https://doi.org/10.1016/j.energy.2010.04.015
  49. Rajabi Hamedani, S., A. Keyhani, and R. Alimardani. 2011. Energy use patterns and econometric models of grape production in Hamadan province of Iran. Energy 36: 6345-6351. https://doi.org/10.1016/j.energy.2011.09.041
  50. Royan, M., M. Khojastehpour, B. Emadi, and H. G. Mobtaker. 2012. Investigation of energy inputs for peach production using sensitivity analysis in Iran. Energy Conversion and Management 64: 441-446. https://doi.org/10.1016/j.enconman.2012.07.002
  51. Salami, P., H. Ahmadi, and A. Keyhani. 2010. Energy use and economic analysis of strawberry production in Sanandaj zone of Iran. Biotechnology, Agronomy and Society and Environment 14: 653-658.
  52. Salehi, M., R. Ebrahimi, A. Maleki, and H. Ghasemi Mobtaker. 2014. An assessment of energy modeling and input costs for greenhouse button mushroom production in Iran. Journal of Cleaner Production 64: 377-383. https://doi.org/10.1016/j.jclepro.2013.09.005
  53. Salehi, M., A. Maleki, H. G. Mobtaker, S. Rostami, and H. Shakeri. 2016. Investigation of energy inputs and CO2 emission for almond production using sensitivity analysis in Iran. Agricultural Engineering International: CIGR Journal 18: 158-166.
  54. Shabani, Z., S. Rafiee, H. Mobli, and E. Khanalipur. 2012. Optimization in energy consumption of carnation production using data envelopment analysis (DEA). Energy Systems 3: 325-339.
  55. Shabanzadeh, M., R. Esfanjari Kenari, and A. Rezaei. 2017. Investigating the energy pattern of tomato production in khorasan razavi province. Journal of Agricultural Machinery 6: 524-536. (In Persian). http://doi.org/10.22067/jam.v6i2.37724
  56. Soltanali, H., A. Nikkhah, and A. Rohani. 2017. Energy audit of Iranian kiwifruit production using intelligent systems. Energy 139: 646-654. https://doi.org/10.1016/j.energy.2017.08.010
  57. Tabatabaie, S. M. H., S. Rafiee, and A. Keyhani. 2012. Energy consumption flow and econometric models of two plum cultivars productions in Tehran province of Iran. Energy 44: 211-216. https://doi.org/10.1016/j.energy.2012.06.036
  58. Tabatabaie, S. M. H., S. Rafiee, A. Keyhani, and A. Ebrahimi. 2013a. Energy and economic assessment of prune production in Tehran province of Iran. Journal of Cleaner Production 39: 280-284. https://doi.org/10.1016/j.jclepro.2012.07.052
  59. Tabatabaie, S. M. H., S. Rafiee, A. Keyhani, and M. D. Heidari. 2013b. Energy use pattern and sensitivity analysis of energy inputs and input costs for pear production in Iran. Renewable Energy 51: 7-12. https://doi.org/10.1016/j.renene.2012.08.077
  60. Taghavifar, H., and A. Mardani. 2015. Prognostication of energy consumption and greenhouse gas (GHG) emissions analysis of apple production in West Azarbayjan of Iran using Artificial Neural Network. Journal of Cleaner Production 87: 159-167. https://doi.org/10.1016/j.jclepro.2014.10.054
  61. Taki, M., R. Abdi, M. Akbarpour, and H. G. Mobtaker. 2013. Energy inputs - Yield relationship and sensitivity analysis for tomato greenhouse production in Iran. Agricultural Engineering International: CIGR Journal 15: 59-67.
  62. Yousefi, M., F. Darijani, and A. Alipour Jahangiri. 2012. Comparing energy flow of greenhouse and open-field cucumber production systems in Iran. African Journal of Agricultural Research 7: 624-628.
CAPTCHA Image