با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران

چکیده

ترموکمپرسور یا اجکتور به‌منظور افزایش آنتالپی بخار در صنایع تبدیلی مورد استفاده قرار می‌گیرد. هزینه ساخت و تعمیر نگهداری پایین در کنار ساختار ساده آن باعث افزایش کاربرد این تجهیز در زمینه‌های مرتبط با صنعت و کشاورزی شده است. پارامترهای ورودی به ترموکمپرسور شامل مشخصات ترمودینامیکی بخار محرک و بخار مکشی مهم‌ترین عوامل تاثیرگذار بر روی عملکرد یک ترموکمپرسور می‌باشند. در این مطالعه 4 سطح فشار بخار محرک شامل بخار با فشار 7/3 بار، 5 بار، 10 بار و 15 بار به‌عنوان سطوح مختلف فشار ورودی بخار محرک مورد بررسی قرار گرفته است. از مدل آشفتگی k-ε تحقق‌پذیر برای شبیه‌سازی آشفتگی‌های داخل جریان استفاده شده است ویژگی‌های ترمودینامیکی جریان‌های ورودی و تغییرات آن‌ها در خروجی، مانند فشار، سرعت، عدد ماخ و نسبت‌های جرمی به‌ازای فشارهای مختلف بخار محرک استخراج شده و مورد بحث قرار گرفته‌اند. نتایج نشان داد که با در نظر گرفتن پارامترهای عملکردی، عدم وجود جریان‌های بازگشتی و همچنین میزان تقویت فشار و دما، فشار 15 بار بهترین عملکرد را در بین 4 سطح اولیه مورد بررسی به‌خود اختصاص داده است. در استفاده از فشار محرک 15 بار، فشار بخار مکشی 1/0 بار، در خروجی تقویت شد و به مقدار ۳/۰ بار افزایش پیدا کرد. همچنین دما افزایشی قابل‌توجهی نسبت به جریان مکشی داشت و به مقدار 135 درجه سلسیوس رسید. همچنین با اعمال فشار بخار محرک 15 بار، به‌ترتیب مقادیر 59/0 و 41/0 برای نسبت‌های جرمی محرک و مکشی خروجی دیفیوزر به‌دست آمد.

کلیدواژه‌ها

موضوعات

  1. Aphornratana, S., and T. Sriveerakul. 2010. Analysis of a combined Rankine–vapour–compression refrigeration cycle. Energy Conversion and Management 51 (12): 2557-2564. https://doi.org/10.1016/j.enconman.2010.04.016.
  2. Ariafar, K., and A. Toorani. 2012. Effect of Nozzle Geometry on a Model Thermocompressor Performance. 20th Annual International Conference on Mechanical Engineering 16-19.
  3. Bartosiewicz, Y., Z. Aidoun, and Y. Mercadier. 2006. Numerical assessment of ejector operation for refrigeration applications based on CFD. Applied Thermal Engineering 26: 604-612. https://doi.org/10.1016/j.applthermaleng.2005.07.003.
  4. Besagni, G., and F. Inzoli. 2017. Computational fluid-dynamics modeling of supersonic ejectors: Screening of turbulence modeling approaches. Applied Thermal Engineering 117: 122-144. https://doi.org/10.1016/j.applthermaleng.2017.02.011.
  5. Besagni, G. 2019. Ejectors on the cutting edge: The past, the present and the perspective. Energy 170: 998-1003. https://doi.org/10.1016/j.energy.2018.12.214.
  6. Bonanos, A. M. 2017. Physical modeling of thermo-compressor for desalination applications. Desalination 412: 13-19. https://doi.org/10.1016/j.desal.2017.03.004.
  7. Caliskan, H. 2017. Energy, exergy, environmental, enviroeconomic, exergoenvironmental (EXEN) and exergoenviroeconomic (EXENEC) analyses of solar collectors. Renewable and Sustainable Energy Reviews 69: 488-492. https://doi.org/10.1016/j.rser.2016.11.203.
  8. Chen, Q., M. K. Ja, Y. Li, and K. J. Chua. 2019. Energy, exergy and economic analysis of a hybrid spray-assisted low-temperature desalination/thermal vapor compression system. Energy 166: 871-885. https://doi.org/10.1016/j.energy.2018.10.154.
  9. Dutton, J. C., and B. F. Carroll. 1986. Optimal Supersonic Ejector Designs. Journal of Fluids Engineering 108: 414-420. https://doi.org/10.1115/1.3242597.
  10. Huang, B. J., J. M. Chang, C. P. Wang, V. A. and Petrenko. 1999. A 1-D analysis of ejector performance. International Journal of Refrigeration 22 (5): 354-364. https://doi.org/10.1016/S0140-7007(99)00004-3.
  11. Inc. ANSYS. 2013. ANSYS FLUENT Theory Guide. Release 182 15317: 373-464.
  12. Ji, M., T. Utomo, J. Woo, Y. Lee, H. Jeong, and H. Chung. 2010. CFD investigation on the flow structure inside thermo vapor compressor. Energy 35 (6): 2694-2702. https://doi.org/10.1016/j.energy.2009.12.002.
  13. Keenan, J. H. 1942. A simple air ejector. Journal of Applied Mechanics 64: 75-81. https://doi.org/10.1115/1.4009187.
  14. MyoungKuk, J., T. Utomo, J. Woo, Y. H. Lee, H. M. Jeong, and H. S. Chung. 2010. CFD investigation on the flow structure inside thermo vapor compressor. Energy 35 (6): 2694-2702. https://doi.org/10.1016/j.energy.2009.12.002.
  15. Naimi, S., Gh. Shahgholi, A. Rezvanivand Fanaie, and V. Rotampour. 2019. Numerical Study of Wheat Conveying in Separator Cyclone Using Computational Fluid Dynamics. Journal of Agricultural Machinery 11 (2): 231-246. (In Persian). http://dx.doi.org/10.22067/jam.v11i2.79613.
  16. Noori, S. M., and R. Kouhikamali. 2016. CFD-aided mathematical modeling of thermal vapor compressors in multiple effects distillation units. Applied Mathematical Modelling 40: 6850-6868. https://doi.org/10.1016/j.apm.2016.02.032.
  17. Rezvanivandefanayi, A., and A. M. Nikbakht. 2015. A CFD Study of the Effects of Feed Diameter on the Pressure Drop in Acyclone Separator. International Journal of Food Engineering 11 (1): 71-77. https://doi.org/10.1515/ijfe-2014-0125.
  18. Rezvanivandefanayi, A., A. Hassanpour, and A. M. Nikbakht. 2019. Study of the vapor thermos-compressor to reduce energy consumption in the sugar production line using Computational Fluid Dynamics: Journal of Agricultural Machinery 10 (2): 241-253. (In Persian). http://doi.org/10.22067/jam.v10i2.76872
  19. Rezvanivand Fanaei, A., A. M. Nikbakht, and A. Hassanpour. 2021. A Computational-Experimental Investigation of Thermal Vapor Compressor as an Energy Saving Tool for the Crystallization of Sugar in a Sugar Processing Plant. Journal of Food Process Engineering 44 (7): https://doi.org/10.1111/jfpe.13727.
  20. Riffat, S. B., and S. A. Omer. 2001. CFD modelling and experimental investigation of an ejector refrigeration system using methanol as the working fluid. International Journal of Energy Research 25: 115-128. https://doi.org/10.1002/er.666.
  21. Sabralilou, B., A. Mohebbi, E. Akbarian, A. Rezvanicand fanaei. 2019. Aero-acoustical Study of Axial Fan using Computational Fluid Dynamics. Journal of Agricultural Machinery 10 (2): 255-264. (In Persian). http://doi.org/10.22067/jam.v10i2.74963
  22. Sharifi, N., M. Boroomand, and R. Kouhikamali. 2012. Wet steam flow energy analysis within thermo-compressors. Energy 47 (1): 609-619. https://doi.org/10.1016/j.energy.2012.09.003.
  23. Sharifi, N., and M. Boroomand. 2013. An investigation of thermo-compressor design by analysis and experiment : Part 2. Development of design method by using comprehensive characteristic curves. Energy Conversion and Management 69: 228-237. https://doi.org/10.1016/j.enconman.2012.12.034.
  24. Sriveerakul, T., S. Aphornratana, and K. Chunnanond. 2007. Performance prediction of steam ejector using computational fluid dynamics: Part 1. Validation of the CFD results. International Journal of Thermal Sciences 46 (8): 812-822. https://doi.org/10.1016/j.ijthermalsci.2006.10.014.
  25. Sun, D. W. 1997. Solar powered combined ejector-vapour compression cycle for air conditioning and refrigeration. Energy Conversion and Management 38 (5): 479-491. https://doi.org/10.1016/S0196-8904(96)00063-5.
  26. Sun, D. W. 1999. Comparative study of the performance of an ejector refrigeration cycle operating with various refrigerants. Energy Conversion and Management 40: 873-884. https://doi.org/10.1016/S0196-8904(98)00151-4.
  27. Zhu, J., F. Botticella, and S. Elbel. 2018. Experimental investigation and theoretical analysis of oil circulation rates in ejector cooling cycles. Energy 157: 718-733.
  28. Zobeiri, M., V. Rostampour, A. Rezvanivand Fanaei, and A. M. Nikbakht. 2019. Experimental and Numerical investigation of deviation blade effect on sedimentation chamber performance in chickpea harvesting machine. Iran Biosystems Engineering 52: 329-339. (In Persian). DOI: 22059/ijbse.2020.276317.665166.
CAPTCHA Image