با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد گروه مهندسی بیوسیستم، دانشگاه گیلان، رشت، ایران

2 گروه مهندسی بیوسیستم، دانشگاه گیلان، رشت، ایران

چکیده

سنجش از دور، یکی از ابزارهای کارآمد برای بررسی روند تغییرات سطح زیرکشت محصولات کشاورزی و باغی در سطوح وسیع و زمان کوتاه است. سیاست‌گذاران با آگاهی از این اطلاعات، می‌توانند تصیمات صحیح و به‌موقعی داشته باشند. مطالعه‌ی حاضر، با هدف تخمین سطح زیرکشت شالیزارهای برنج در بخش کیاشهر استان گیلان انجام شد. از تصاویر سنجنده TM ماهواره لندست 5 و سنجنده OLI ماهواره لندست 8 به‌منظور تهیه نقشه‌های کاربری اراضی استفاده شد. ابتدا، تصحیح هندسی و اتمسفری بر روی تصاویر صورت گرفت. سپس، با استفاده از الگوریتم طبقه‌بندی نظارت شده حداکثر احتمال، نقشه‌های کاربری اراضی منطقه با هفت کاربری شامل اراضی برنج، جنگل نیمه‌انبوه، جنگل تنک، مناطق مسکونی، مناطق آبی، پهنه‌های ماسه‌ای و سایر اراضی تهیه شد. در ادامه، مساحت هر یک از کاربری‌ها محاسبه شد و روند تغییرات، مورد مقایسه قرار گرفت. دقت کلّی و ضریب کاپای طبقه‌بندی به‌ترتیب معادل 98.45% و 0.98 برای سال 2000، 97.59% و 0.97 برای سال 2010 و 98.72% و 0.98 برای سال 2020 به‌دست آمد. نتایج نشان داد که اراضی برنج در یک بازه 20 ساله، با کاهش 6.94 درصدی همراه بوده، به‌طوری‌که مساحت آن از 11080.66 هکتار در سال 2000 به 10311.69 هکتار در سال 2020 رسیده است. همچنین، در این مدّت مناطق مسکونی و جنگل‌های تنک به‌میزان 67.94 و 18.73 درصد رشد کرده‌اند، اما جنگل‌های نیمه‌انبوه، مناطق آبی و پهنه‌های ماسه‌ای به‌ترتیب 61.32، 4.91 و 61.48 درصد کاهش داشتند. با توجه به نتایج، توجه جدّی به تغییر کاربری اراضی برنج و تخریب جنگل‌ها ضروری می‌باشد.

کلیدواژه‌ها

موضوعات

Open Access

©2021 The author(s). This article is licensed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

  1. Ajith, K., Geethalakshmi, V., Ragunath, K., Pazhanivelan, S., & Panneerselvam, S. (2017). Rice Acreage Estimation in Thanjavur, Tamil Nadu Using Lands at 8 OLIIMAGES and GIS Techniques. International Journal of Current Microbiology and Applied Sciences, 6, 2327-2335. https://doi.org/10.20546/ijcmas.2017.607.275
  2. Alipour, F., Aghkhani, M., Abasspour-Fard, M., & Sepehr, A. (2014). Demarcation and estimation of agricultural lands using etm+ imagery data (case study: Astan ghods razavi great farm). Journal of Agricultural Machinery, 4, 244-254. (in Persian with English abstract). https://doi.org/10.22067/JAM.V4I2.34827
  3. Ansari Amoli, A., & Alimohammadi Sarab, A. (2011). Rice area estimation by using multi-temporal classification method and AVHRR data. Spatial Planning (Modares Human Sciences), 15, 1-16. (in Persian).
  4. Atzberger, C. 2013. Advances in remote sensing of agriculture: Context description, existing operational monitoring systems and major information needs. Remote Sensing, 5, 949-981. https://doi.org/10.3390/rs5020949
  5. Bagan, H., & Yamagata, Y. 2012. Landsat analysis of urban growth: How Tokyo became the world's largest megacity during the last 40 years. Remote Sensing of Environment, 127, 210-222. https://doi.org/10.1016/j.rse.2012.09.011
  6. Chauhan, S., Darvishzadeh, R., Boschetti, M., Pepe, M., & Nelson, A. (2019). Remote sensing-based crop lodging assessment: Current status and perspectives. ISPRS Journal of Photogrammetry and Remote Sensing, 151, 124-140. https://doi.org/10.1016/j.isprsjprs.2019.03.005
  7. Darvishzadeh, R., Matkan, A. A., & Eskandari, N. (2011). Evaluation of ALOS-AVNIR2 spectral indices for prediction of rice biomass. Journal of Geographical Landscape, 6, 11-14. (in Persian).
  8. Dashti Marvili, M., Kamkar, B., & Kazemi, H. (2019). Detection of rice and soybean grown fields and their related cultivation area using Sentinel-2 satellite images in summer cropping patterns to analyze temporal changes in their cultivation area (Case study: four watershed basins of Golestan Province). Journal of Water and Soil Conservation (Journal of Agricultural Sciences and Natural Resources), 26, 151-167. (in Persian).
  9. FAO. 2019. Food and agriculture organization of the United Nations. FAOSTAT: Crops. http://www.fao.org/faostat/en/#data/QC.
  10. Godarzi Mehr, S., Abbaspour, R. A., Ahadnezhad, V., & Khakbaz, B. (2012). Comparison of support vector machine, neural network, and maximum likelihood methods for the separation of lithological units. Iranian Journal of Geology, 6, 75-92. (in Persian).
  11. Hopkins, P. F., Maclean, A., & Lillesand, T. (1988). Assessment of Thematic Mapper imagery for forestry applications under Lake States conditions. Photogrammetric Engineering and Remote sensing (USA).
  12. Izaddoost, H., Samizadeh, H., Rabiei, B., & Abdollahi, S. (2013). Evaluation of salt tolerance in rice (Oryza sativa) cultivars and lines with emphasis on stress tolerance indices. Cereal Research, 3, 167-180. (in Persian). https://doi.org/20.1001.1.22520163.1392.3.3.1.2
  13. Kazemi Posht Mousavi, H., Pirdashti, H. A., Bahmanyar, M. A., & Nasiri, M. (2007). Study the effects of nitrogen fertilizer rates and split application on yield and yield components of different rice (Oryza sativa) cultivars. Pajouhesh-va-Sazandegi, 20, 68-77. (in Persian).
  14. Khatami, R., Mountrakis, G., & Stehman, S. V. (2016). A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future Remote Sensing of Environment, 177, 89-100. https://doi.org/10.1016/j.rse.2016.02.028
  15. Li, C., Wang, J., Wang, L., Hu, L., & Gong, P. (2014). Comparison of classification algorithms and training sample sizes in urban land classification with Landsat thematic mapper imagery. Remote Sensing, 6, 964-983. https://doi.org/10.3390/rs6020964
  16. Mather, P., & Tso, B. (2016). Classification methods for remotely sensed data. CRC press. https://doi.org/10.1201/9781420090741
  17. Mondal, S., Jeganathan, C., Sinha, N. K., Rajan, H., Roy, T., & Kumar, P. (2014). Extracting seasonal cropping patterns using multi-temporal vegetation indices from IRS LISS-III data in Muzaffarpur District of Bihar, India. The Egyptian Journal of Remote Sensing and Space Science, 17, 123-134. https://doi.org/10.1016/j.ejrs.2014.09.002
  18. Naghinezhad, A. R., Saeidi Mehrvarz, S., Norouzi, M., & Faridi, M. (2006). Contribution to the vascular and bryophyte flora as well as habitat diversity of the boujagh national park, n. Iran. Rostaniha, 7, 83-105. (in Persian).
  19. Nuarsa, I., Nishio, F., & Hongo, C. (2010). Development of the empirical model for rice field distribution mapping using multi-temporal Landsat ETM+ data: case study in Bali Indonesia. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, XXXVIII, part 8.
  20. Paul, G. C., Saha, S., & Hembram, T. K. (2020). Application of phenology-based algorithm and linear regression model for estimating rice cultivated areas and yield using remote sensing data in Bansloi River Basin, Eastern India. Remote Sensing Applications: Society and Environment, 19, 100367. https://doi.org/10.1016/j.rsase.2020.100367
  21. Prasad, A., Singh, R., Tare, V., & Kafatos, M. (2007). Use of vegetation index and meteorological parameters for the prediction of crop yield in India. International Journal of Remote Sensing, 28, 5207-5235. https://doi.org/10.1080/01431160601105843
  22. Richards, J. A., & Richards, J. (1999). Remote sensing digital image analysis. Springer.
  23. Sakamoto, T., Sprague, D. S., Okamoto, K., & Ishitsuka, N. (2018). Semi-automatic classification method for mapping the rice-planted areas of Japan using multi-temporal Landsat images. Remote Sensing Applications: Society and Environment, 10, 7-17. https://doi.org/10.1016/j.rsase.2018.02.001
  24. Shen, S., Yang, S., Li, B., Tan, B., Li, Z., & Le Toan, T. (2009). A scheme for regional rice yield estimation using ENVISAT ASAR data. Science in China Series D: Earth Sciences, 52, 1183-1194. https://doi.org/10.1007/s11430-009-0094-z
  25. Singha, M., Dong, J., Zhang, G., & Xiao, X. (2019). High resolution paddy rice maps in cloud-prone Bangladesh and Northeast India using Sentinel-1 data. Scientific data, 6, 1-10. https://doi.org/10.1038/s41597-019-0036-3
  26. Torbick, N., Chowdhury, D., Salas, W., & Qi, J. (2017). Monitoring rice agriculture across Myanmar using time series Sentinel-1 assisted by Landsat-8 and PALSAR-2. Remote Sensing, 9, 119. https://doi.org/10.3390/rs9020119
  27. USGS. (2021). United States Geological Survey. USGS Earth Explorer. https://earthexplorer.usgs.gov/.
  28. Weiss, M., Jacob, F., & Duveiller, G. (2020). Remote sensing for agricultural applications: A meta-review. Remote Sensing of Environment, 236, 111402. https://doi.org/10.1016/j.rse.2019.111402
  29. Yaghouti, H., Pazira, E., Amiri, E., & Masihabadi, M. H. (2018). Application of satellite imagery and remote sensing technology to estimate rice yield. Journal of Soil and Water Resources Conservation, 7, 55-68. (in Persian).
  30. Yang, C., Everitt, J. H., & Murden, D. (2011). Evaluating high resolution SPOT 5 satellite imagery for crop identification. Computers and Electronics in Agriculture, 75, 347-354. https://doi.org/10.1016/j.compag.2010.12.012
  31. Younesi, B., Ahmadi Sani, N., & Sharafi, S. (2019). Evaluation of IRS-P6 Images for Orchards Area Estimating. Remote Sensing & GIS, 11, 115-128. (in Persian). https://doi.org/10.52547/gisj.11.1.113
  32. Ziaeian Firouzabadi, P., Sayad Bidhendi, L., & Eskandari Noudeh, M. (2009). Mapping and acreage estimating of rice agricultural land using radarsat a satellite images. Physical Geography Research Quarterly, 41, 45-58. (in Persian).
CAPTCHA Image