با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد مهندسی مکانیک بیوسیستم، دانشگاه رازی، کرمانشاه، ایران

2 گروه مهندسی مکانیک بیوسیستم، دانشگاه رازی، کرمانشاه، ایران

3 گروه مهندسی مکانیک بیوسیستم،دانشکده کشاورزی سنقر، دانشگاه رازی، کرمانشاه، ایران

4 گروه مهندسی مکانیک بیوسیستم،دانشگاه رازی، کرمانشاه، ایران

چکیده

روغن‌های جامد نباتی یا روغن‌هایی مثل پالم دارای اسید چرب اشباع بالا هستند، چنین روغن‌هایی می‌توانند باعث بالا رفتن چربی خون، افزایش کلسترول بدن و در نهایت موجب گرفتگی و انسداد عروق شوند. در این پژوهش از یک سامانه به‌منظور تشخیص میزان پالم در روغن ذرت استفاده شده که شامل ده حسگر نیمه‌هادی اکسید فلزی بود. ویژگی‌های استخراج شده از سیگنال‌های به‌دست‌آمده از بینی‌الکتریکی با روش‌های تحلیل مولفه‌های اصلی، شبکه‌ی عصبی مصنوعی، انفیس و سطح پاسخ پردازش شدند. نمونه‌های مورد آزمایش شامل روغن ذرت خالص، روغن ذرت دارای 25 درصد پالم، روغن ذرت 50 درصد و روغن ذرت 75 درصد است. براساس نتایج به‌دست‌آمده دقت طبقه‌بندی در روش‌های PCA،ANN،ANFIS و RSM به‌ترتیب برابر 87‌، 71.9، 93.8 و 96.9 درصد است و باتوجه به این نتایج روش سطح پاسخ روشی مناسب‌تری برای تشخیص درصد پالم در روغن ذرت می‌باشد. با مدل ارائه شده می‌توان میزان روغن پالم بیش از حد مجاز استفاده شده را تشخیص داد.

کلیدواژه‌ها

موضوعات

©2021 The author(s). This article is licensed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

  1. Adibzadeh, A., Zaki Dizaji, H., & Nategh, N. A. (2019). Feasibility of Detecting Sugarcane Varieties by Electronic Nose Technique in Sugarcane Syrup. Iranian Journal of Biosystem Engineering, 51, 1-10. https://doi.org/10.22059/IJBSE.2019.287027.665209
  2. Ayari, F., Mirzaee-Ghaleh, E., Rabbani, H., & Heidarbeigi, K. (2020). Implementation of a Machine Olfaction for the Detection of Adulteration in Cow Ghee. Journal of Agricultural Machinery, 10(2), 129-139. (in Persian with English abstract). https://doi.org/10.22067/jam.v10i2.67524
  3. Berger, K. G. (1981). Food uses of palm oil. Porim occasional paper, 2, 1-27.
  4. Chicco, D., & Jurman, G. (2020). The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics, 21(6), 1-13. https://doi.org/10.1186/s12864-019-6413-7
  5. Doleman, B. J., & Lewis, N. S. (2001). Comparison of odor detection thresholds and odor discriminablities of a conducting polymer composite electronic nose versus mammalian olfaction. Sensors and Actuators B: Chemical, 72, 41-50. Available at: https://people.ee.duke.edu/~lcarin/DeminingMURI/Doleman_Sensor_Actuators_2001.pdf
  6. Feizy, J., & Jahani, M. (2020). A chromatographic method for detection of palm oil in butter. Journal of Food and Bioprocess Engineering, 3, 47-52. https://doi.org/10.22059/JFABE.2020.76393
  7. Foroughi-Rad, A., Mohtasebi, S. S., Ghasemi, M., & Omid, M. (2014). Nondestructive quality evaluation of Abbot Kiwifruit using electronic nose. Iranian Journal of Biosystems Engineering, 45, 1-9. https://doi.org/10.22059/IJBSE.2014.51285
  8. Ghasemi-Varnamkhasti, M., Mohtasebi, S. S., Siadat, M., Ahmadi, H., & Razavi, S. H. (2015). From simple classification methods to machine learning for the binary discrimination of beers using electronic nose data. Engineering in Agriculture, Environment and Food, 8, 44-51. https://doi.org/10.1016/j.eaef.2014.07.002
  9. Ghasemi-Varnamkhasti, M., Mohtasebi, S. S., Siadat, M., Lozano, J., Ahmadi, H., Razavi, S. H., & Dicko, A. (2011). Aging fingerprint characterization of beer using electronic nose. Sensors and Actuators B: Chemical, 159, 51-59.
  10. Golchin, A., Zaki Dizaji, H., Surestani, M. M., & Fardevani, M. E. K. (2019). The Electronic Nose Technique for Nondestructive clustering of Basil as a Medicinal Plant. Non-destructive Testing Technology, 2(4), 54-60. https://doi.org/10.30494/JNDT.1398.95385
  11. Gutierrez-Osuna, R. (2000). Pattern analysis for machine olfaction: a review. IEEE Sensors Journal, 2(3), 189-202. https://doi.org/10.1109/JSEN.2002.800688
  12. Hai, Z., & Wang, J. (2006). Detection of adulteration in camellia seed oil and sesame oil using an electronic nose. European Journal of Lipid Science and Technology, 108, 116-124. https://doi.org/10.1002/ejlt.200501224
  13. Jang, J. S. R. (1991). Fuzz Modeling Using Generalized Neural Networks and Kalman Filter Algorithm in Proceedings of the 9th National Conference on Artificial Intelligence. Anaheim, CA, USA.
  14. Karami, H. R., Keyhani, M., & Mowla, D. (2016). Experimental analysis of drag reduction in the pipelines with response surface methodology. Journal of Petroleum Science and Engineering, 138, 104-112. https://doi.org/10.1016/j.petrol.2015.11.041
  15. Kiani, S., Minaei, S., & Ghasemi-Varnamkhasti, M. (2018). Real-time aroma monitoring of mint (Mentha spicata) leaves during the drying process using electronic nose system. Measurement, 124, 447-452. https://doi.org/10.1016/j.measurement.2018.03.033
  16. Lupton, J. R. (2005). For Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids. Washington, DC: US Government Printing Office: Institute of Medicine. Report no.
  17. Marina, A. M., Che Man, Y. B., & Amin, I. (2010). Use of the SAW Sensor Electronic Nose for Detecting the Adulteration of Virgin Coconut Oil with RBD Palm Kernel Olein. Journal of the American Oil Chemists' Society, 87, 263-270. https://doi.org/10.1007/s11746-009-1492-2
  18. Mildner-Szkudlarz, S., & Jeleń, H. H. (2008). The potential of different techniques for volatile compounds analysis coupled with PCA for the detection of the adulteration of olive oil with hazelnut oil. Food Chemistry, 110(3), 751-761. https://doi.org/10.1016/j.foodchem.2008.02.053
  19. Mirmiran, P., Shideh, F., Aminpour, A., & Raei, F. (2001). The effect of corn oil on the metabolism of laboratory mice. Research in Medicine, 25, 43-46.
  20. Neapolitan, R. E. (2012). Contemporary artificial intelligence. Boca Raton. Fla: CRC.
  21. Nik-Mehr, S., Abdshahi, A., & Mirzaei, A. (2015). Evaluation of welfare effects of changes in the market inventory of edible oils in Iran. Agricultural Economics Research, 8(1), 71-83. Available at: https://ensani.ir/file/download/article/20160903152009-10006-210.pdf
  22. Rashidi, H., & Birmie, M. (2014). Palm oil: benefits and harms. Third National Conference on Food Science and Industry, Quchan.
  23. Sanaeifar, A., Zaki Dizaji, H., Jafari, A., & Guardia, M. D. L. (2017). Early detection of contamination and defect in foodstuffs by electronic nose: A review. TrAC Trends in Analytical Chemistry, 97, 257-271. https://doi.org/10.1016/j.trac.2017.09.014
  24. Scott, S. M., James, D., & Zulfiqur, A. (2007). Data analysis for electronic nose systems. Microchimica Acta, 156 (3), 183-207. https://doi.org/10.1007/s00604-006-0623-9
  25. Seif Elahi, F. (2011). Investigation of olfactory properties of palm olein and cottonseed oils and their various mixtures. Iranian Chemical Engineering Journal, 10, 16-22.
  26. Siew, W. L., & Chong, C. L. (1998). Phase transition of crystals in palm olein. PORIM Report PO 283: 1-71.
  27. Tawhidi, M., Ghasemi-Vernamkhasti, M., GhaffariNia, V., Mohtasbi, S. S., & Bonyadian, M. (2016). Fabrication and development of a machine olfaction system combined with pattern recognition techniques for detecting formalin adulteration in raw milk. Iranian Journal of Biosystem Engineering, 47, 761-770.
  28. Zaki Dizaji, H., Adibzadeh, A., & Aghili Nategh, N. (2021). Application of E-nose technique to predict sugarcane syrup quality based on purity and refined sugar percentage. Journal of Food Science and Technology, 58, 4149-4156. https://doi.org/10.1007/s13197-020-04879-4
CAPTCHA Image